David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * Driver for mt2063 Micronas tuner |
| 4 | * |
| 5 | * Copyright (c) 2011 Mauro Carvalho Chehab |
| 6 | * |
| 7 | * This driver came from a driver originally written by: |
| 8 | * Henry Wang <Henry.wang@AzureWave.com> |
| 9 | * Made publicly available by Terratec, at: |
| 10 | * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 11 | */ |
| 12 | |
| 13 | #include <linux/init.h> |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/string.h> |
| 17 | #include <linux/videodev2.h> |
| 18 | #include <linux/gcd.h> |
| 19 | |
| 20 | #include "mt2063.h" |
| 21 | |
| 22 | static unsigned int debug; |
| 23 | module_param(debug, int, 0644); |
| 24 | MODULE_PARM_DESC(debug, "Set Verbosity level"); |
| 25 | |
| 26 | #define dprintk(level, fmt, arg...) do { \ |
| 27 | if (debug >= level) \ |
| 28 | printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \ |
| 29 | } while (0) |
| 30 | |
| 31 | |
| 32 | /* positive error codes used internally */ |
| 33 | |
| 34 | /* Info: Unavoidable LO-related spur may be present in the output */ |
| 35 | #define MT2063_SPUR_PRESENT_ERR (0x00800000) |
| 36 | |
| 37 | /* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */ |
| 38 | #define MT2063_SPUR_CNT_MASK (0x001f0000) |
| 39 | #define MT2063_SPUR_SHIFT (16) |
| 40 | |
| 41 | /* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */ |
| 42 | #define MT2063_UPC_RANGE (0x04000000) |
| 43 | |
| 44 | /* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */ |
| 45 | #define MT2063_DNC_RANGE (0x08000000) |
| 46 | |
| 47 | /* |
| 48 | * Constant defining the version of the following structure |
| 49 | * and therefore the API for this code. |
| 50 | * |
| 51 | * When compiling the tuner driver, the preprocessor will |
| 52 | * check against this version number to make sure that |
| 53 | * it matches the version that the tuner driver knows about. |
| 54 | */ |
| 55 | |
| 56 | /* DECT Frequency Avoidance */ |
| 57 | #define MT2063_DECT_AVOID_US_FREQS 0x00000001 |
| 58 | |
| 59 | #define MT2063_DECT_AVOID_EURO_FREQS 0x00000002 |
| 60 | |
| 61 | #define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0) |
| 62 | |
| 63 | #define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0) |
| 64 | |
| 65 | enum MT2063_DECT_Avoid_Type { |
| 66 | MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */ |
| 67 | MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */ |
| 68 | MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */ |
| 69 | MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */ |
| 70 | }; |
| 71 | |
| 72 | #define MT2063_MAX_ZONES 48 |
| 73 | |
| 74 | struct MT2063_ExclZone_t { |
| 75 | u32 min_; |
| 76 | u32 max_; |
| 77 | struct MT2063_ExclZone_t *next_; |
| 78 | }; |
| 79 | |
| 80 | /* |
| 81 | * Structure of data needed for Spur Avoidance |
| 82 | */ |
| 83 | struct MT2063_AvoidSpursData_t { |
| 84 | u32 f_ref; |
| 85 | u32 f_in; |
| 86 | u32 f_LO1; |
| 87 | u32 f_if1_Center; |
| 88 | u32 f_if1_Request; |
| 89 | u32 f_if1_bw; |
| 90 | u32 f_LO2; |
| 91 | u32 f_out; |
| 92 | u32 f_out_bw; |
| 93 | u32 f_LO1_Step; |
| 94 | u32 f_LO2_Step; |
| 95 | u32 f_LO1_FracN_Avoid; |
| 96 | u32 f_LO2_FracN_Avoid; |
| 97 | u32 f_zif_bw; |
| 98 | u32 f_min_LO_Separation; |
| 99 | u32 maxH1; |
| 100 | u32 maxH2; |
| 101 | enum MT2063_DECT_Avoid_Type avoidDECT; |
| 102 | u32 bSpurPresent; |
| 103 | u32 bSpurAvoided; |
| 104 | u32 nSpursFound; |
| 105 | u32 nZones; |
| 106 | struct MT2063_ExclZone_t *freeZones; |
| 107 | struct MT2063_ExclZone_t *usedZones; |
| 108 | struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES]; |
| 109 | }; |
| 110 | |
| 111 | /* |
| 112 | * Parameter for function MT2063_SetPowerMask that specifies the power down |
| 113 | * of various sections of the MT2063. |
| 114 | */ |
| 115 | enum MT2063_Mask_Bits { |
| 116 | MT2063_REG_SD = 0x0040, /* Shutdown regulator */ |
| 117 | MT2063_SRO_SD = 0x0020, /* Shutdown SRO */ |
| 118 | MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */ |
| 119 | MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */ |
| 120 | MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */ |
| 121 | MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */ |
| 122 | MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */ |
| 123 | MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */ |
| 124 | MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */ |
| 125 | MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */ |
| 126 | MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */ |
| 127 | MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */ |
| 128 | MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */ |
| 129 | MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */ |
| 130 | MT2063_NONE_SD = 0x0000 /* No shutdown bits */ |
| 131 | }; |
| 132 | |
| 133 | /* |
| 134 | * Possible values for MT2063_DNC_OUTPUT |
| 135 | */ |
| 136 | enum MT2063_DNC_Output_Enable { |
| 137 | MT2063_DNC_NONE = 0, |
| 138 | MT2063_DNC_1, |
| 139 | MT2063_DNC_2, |
| 140 | MT2063_DNC_BOTH |
| 141 | }; |
| 142 | |
| 143 | /* |
| 144 | * Two-wire serial bus subaddresses of the tuner registers. |
| 145 | * Also known as the tuner's register addresses. |
| 146 | */ |
| 147 | enum MT2063_Register_Offsets { |
| 148 | MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */ |
| 149 | MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */ |
| 150 | MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */ |
| 151 | MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */ |
| 152 | MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */ |
| 153 | MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */ |
| 154 | MT2063_REG_RSVD_06, /* 0x06: Reserved */ |
| 155 | MT2063_REG_LO_STATUS, /* 0x07: LO Status */ |
| 156 | MT2063_REG_FIFFC, /* 0x08: FIFF Center */ |
| 157 | MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */ |
| 158 | MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */ |
| 159 | MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */ |
| 160 | MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */ |
| 161 | MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */ |
| 162 | MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */ |
| 163 | MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */ |
| 164 | MT2063_REG_RSVD_10, /* 0x10: Reserved */ |
| 165 | MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */ |
| 166 | MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */ |
| 167 | MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */ |
| 168 | MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */ |
| 169 | MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */ |
| 170 | MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */ |
| 171 | MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */ |
| 172 | MT2063_REG_RF_OV, /* 0x18: RF Attn Override */ |
| 173 | MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */ |
| 174 | MT2063_REG_LNA_TGT, /* 0x1A: Reserved */ |
| 175 | MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */ |
| 176 | MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */ |
| 177 | MT2063_REG_RSVD_1D, /* 0x1D: Reserved */ |
| 178 | MT2063_REG_RSVD_1E, /* 0x1E: Reserved */ |
| 179 | MT2063_REG_RSVD_1F, /* 0x1F: Reserved */ |
| 180 | MT2063_REG_RSVD_20, /* 0x20: Reserved */ |
| 181 | MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */ |
| 182 | MT2063_REG_RSVD_22, /* 0x22: Reserved */ |
| 183 | MT2063_REG_RSVD_23, /* 0x23: Reserved */ |
| 184 | MT2063_REG_RSVD_24, /* 0x24: Reserved */ |
| 185 | MT2063_REG_RSVD_25, /* 0x25: Reserved */ |
| 186 | MT2063_REG_RSVD_26, /* 0x26: Reserved */ |
| 187 | MT2063_REG_RSVD_27, /* 0x27: Reserved */ |
| 188 | MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */ |
| 189 | MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */ |
| 190 | MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */ |
| 191 | MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */ |
| 192 | MT2063_REG_CTRL_2C, /* 0x2C: Reserved */ |
| 193 | MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */ |
| 194 | MT2063_REG_RSVD_2E, /* 0x2E: Reserved */ |
| 195 | MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */ |
| 196 | MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */ |
| 197 | MT2063_REG_RSVD_31, /* 0x31: Reserved */ |
| 198 | MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */ |
| 199 | MT2063_REG_RSVD_33, /* 0x33: Reserved */ |
| 200 | MT2063_REG_RSVD_34, /* 0x34: Reserved */ |
| 201 | MT2063_REG_RSVD_35, /* 0x35: Reserved */ |
| 202 | MT2063_REG_RSVD_36, /* 0x36: Reserved */ |
| 203 | MT2063_REG_RSVD_37, /* 0x37: Reserved */ |
| 204 | MT2063_REG_RSVD_38, /* 0x38: Reserved */ |
| 205 | MT2063_REG_RSVD_39, /* 0x39: Reserved */ |
| 206 | MT2063_REG_RSVD_3A, /* 0x3A: Reserved */ |
| 207 | MT2063_REG_RSVD_3B, /* 0x3B: Reserved */ |
| 208 | MT2063_REG_RSVD_3C, /* 0x3C: Reserved */ |
| 209 | MT2063_REG_END_REGS |
| 210 | }; |
| 211 | |
| 212 | struct mt2063_state { |
| 213 | struct i2c_adapter *i2c; |
| 214 | |
| 215 | bool init; |
| 216 | |
| 217 | const struct mt2063_config *config; |
| 218 | struct dvb_tuner_ops ops; |
| 219 | struct dvb_frontend *frontend; |
| 220 | |
| 221 | u32 frequency; |
| 222 | u32 srate; |
| 223 | u32 bandwidth; |
| 224 | u32 reference; |
| 225 | |
| 226 | u32 tuner_id; |
| 227 | struct MT2063_AvoidSpursData_t AS_Data; |
| 228 | u32 f_IF1_actual; |
| 229 | u32 rcvr_mode; |
| 230 | u32 ctfilt_sw; |
| 231 | u32 CTFiltMax[31]; |
| 232 | u32 num_regs; |
| 233 | u8 reg[MT2063_REG_END_REGS]; |
| 234 | }; |
| 235 | |
| 236 | /* |
| 237 | * mt2063_write - Write data into the I2C bus |
| 238 | */ |
| 239 | static int mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len) |
| 240 | { |
| 241 | struct dvb_frontend *fe = state->frontend; |
| 242 | int ret; |
| 243 | u8 buf[60]; |
| 244 | struct i2c_msg msg = { |
| 245 | .addr = state->config->tuner_address, |
| 246 | .flags = 0, |
| 247 | .buf = buf, |
| 248 | .len = len + 1 |
| 249 | }; |
| 250 | |
| 251 | dprintk(2, "\n"); |
| 252 | |
| 253 | msg.buf[0] = reg; |
| 254 | memcpy(msg.buf + 1, data, len); |
| 255 | |
| 256 | if (fe->ops.i2c_gate_ctrl) |
| 257 | fe->ops.i2c_gate_ctrl(fe, 1); |
| 258 | ret = i2c_transfer(state->i2c, &msg, 1); |
| 259 | if (fe->ops.i2c_gate_ctrl) |
| 260 | fe->ops.i2c_gate_ctrl(fe, 0); |
| 261 | |
| 262 | if (ret < 0) |
| 263 | printk(KERN_ERR "%s error ret=%d\n", __func__, ret); |
| 264 | |
| 265 | return ret; |
| 266 | } |
| 267 | |
| 268 | /* |
| 269 | * mt2063_write - Write register data into the I2C bus, caching the value |
| 270 | */ |
| 271 | static int mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val) |
| 272 | { |
| 273 | int status; |
| 274 | |
| 275 | dprintk(2, "\n"); |
| 276 | |
| 277 | if (reg >= MT2063_REG_END_REGS) |
| 278 | return -ERANGE; |
| 279 | |
| 280 | status = mt2063_write(state, reg, &val, 1); |
| 281 | if (status < 0) |
| 282 | return status; |
| 283 | |
| 284 | state->reg[reg] = val; |
| 285 | |
| 286 | return 0; |
| 287 | } |
| 288 | |
| 289 | /* |
| 290 | * mt2063_read - Read data from the I2C bus |
| 291 | */ |
| 292 | static int mt2063_read(struct mt2063_state *state, |
| 293 | u8 subAddress, u8 *pData, u32 cnt) |
| 294 | { |
| 295 | int status = 0; /* Status to be returned */ |
| 296 | struct dvb_frontend *fe = state->frontend; |
| 297 | u32 i = 0; |
| 298 | |
| 299 | dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt); |
| 300 | |
| 301 | if (fe->ops.i2c_gate_ctrl) |
| 302 | fe->ops.i2c_gate_ctrl(fe, 1); |
| 303 | |
| 304 | for (i = 0; i < cnt; i++) { |
| 305 | u8 b0[] = { subAddress + i }; |
| 306 | struct i2c_msg msg[] = { |
| 307 | { |
| 308 | .addr = state->config->tuner_address, |
| 309 | .flags = 0, |
| 310 | .buf = b0, |
| 311 | .len = 1 |
| 312 | }, { |
| 313 | .addr = state->config->tuner_address, |
| 314 | .flags = I2C_M_RD, |
| 315 | .buf = pData + i, |
| 316 | .len = 1 |
| 317 | } |
| 318 | }; |
| 319 | |
| 320 | status = i2c_transfer(state->i2c, msg, 2); |
| 321 | dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n", |
| 322 | subAddress + i, status, *(pData + i)); |
| 323 | if (status < 0) |
| 324 | break; |
| 325 | } |
| 326 | if (fe->ops.i2c_gate_ctrl) |
| 327 | fe->ops.i2c_gate_ctrl(fe, 0); |
| 328 | |
| 329 | if (status < 0) |
| 330 | printk(KERN_ERR "Can't read from address 0x%02x,\n", |
| 331 | subAddress + i); |
| 332 | |
| 333 | return status; |
| 334 | } |
| 335 | |
| 336 | /* |
| 337 | * FIXME: Is this really needed? |
| 338 | */ |
| 339 | static int MT2063_Sleep(struct dvb_frontend *fe) |
| 340 | { |
| 341 | /* |
| 342 | * ToDo: Add code here to implement a OS blocking |
| 343 | */ |
| 344 | msleep(100); |
| 345 | |
| 346 | return 0; |
| 347 | } |
| 348 | |
| 349 | /* |
| 350 | * Microtune spur avoidance |
| 351 | */ |
| 352 | |
| 353 | /* Implement ceiling, floor functions. */ |
| 354 | #define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0)) |
| 355 | #define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d)) |
| 356 | |
| 357 | struct MT2063_FIFZone_t { |
| 358 | s32 min_; |
| 359 | s32 max_; |
| 360 | }; |
| 361 | |
| 362 | static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t |
| 363 | *pAS_Info, |
| 364 | struct MT2063_ExclZone_t *pPrevNode) |
| 365 | { |
| 366 | struct MT2063_ExclZone_t *pNode; |
| 367 | |
| 368 | dprintk(2, "\n"); |
| 369 | |
| 370 | /* Check for a node in the free list */ |
| 371 | if (pAS_Info->freeZones != NULL) { |
| 372 | /* Use one from the free list */ |
| 373 | pNode = pAS_Info->freeZones; |
| 374 | pAS_Info->freeZones = pNode->next_; |
| 375 | } else { |
| 376 | /* Grab a node from the array */ |
| 377 | pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones]; |
| 378 | } |
| 379 | |
| 380 | if (pPrevNode != NULL) { |
| 381 | pNode->next_ = pPrevNode->next_; |
| 382 | pPrevNode->next_ = pNode; |
| 383 | } else { /* insert at the beginning of the list */ |
| 384 | |
| 385 | pNode->next_ = pAS_Info->usedZones; |
| 386 | pAS_Info->usedZones = pNode; |
| 387 | } |
| 388 | |
| 389 | pAS_Info->nZones++; |
| 390 | return pNode; |
| 391 | } |
| 392 | |
| 393 | static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t |
| 394 | *pAS_Info, |
| 395 | struct MT2063_ExclZone_t *pPrevNode, |
| 396 | struct MT2063_ExclZone_t |
| 397 | *pNodeToRemove) |
| 398 | { |
| 399 | struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_; |
| 400 | |
| 401 | dprintk(2, "\n"); |
| 402 | |
| 403 | /* Make previous node point to the subsequent node */ |
| 404 | if (pPrevNode != NULL) |
| 405 | pPrevNode->next_ = pNext; |
| 406 | |
| 407 | /* Add pNodeToRemove to the beginning of the freeZones */ |
| 408 | pNodeToRemove->next_ = pAS_Info->freeZones; |
| 409 | pAS_Info->freeZones = pNodeToRemove; |
| 410 | |
| 411 | /* Decrement node count */ |
| 412 | pAS_Info->nZones--; |
| 413 | |
| 414 | return pNext; |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * MT_AddExclZone() |
| 419 | * |
| 420 | * Add (and merge) an exclusion zone into the list. |
| 421 | * If the range (f_min, f_max) is totally outside the |
| 422 | * 1st IF BW, ignore the entry. |
| 423 | * If the range (f_min, f_max) is negative, ignore the entry. |
| 424 | */ |
| 425 | static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info, |
| 426 | u32 f_min, u32 f_max) |
| 427 | { |
| 428 | struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones; |
| 429 | struct MT2063_ExclZone_t *pPrev = NULL; |
| 430 | struct MT2063_ExclZone_t *pNext = NULL; |
| 431 | |
| 432 | dprintk(2, "\n"); |
| 433 | |
| 434 | /* Check to see if this overlaps the 1st IF filter */ |
| 435 | if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2))) |
| 436 | && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2))) |
| 437 | && (f_min < f_max)) { |
| 438 | /* |
| 439 | * 1 2 3 4 5 6 |
| 440 | * |
| 441 | * New entry: |---| |--| |--| |-| |---| |--| |
| 442 | * or or or or or |
| 443 | * Existing: |--| |--| |--| |---| |-| |--| |
| 444 | */ |
| 445 | |
| 446 | /* Check for our place in the list */ |
| 447 | while ((pNode != NULL) && (pNode->max_ < f_min)) { |
| 448 | pPrev = pNode; |
| 449 | pNode = pNode->next_; |
| 450 | } |
| 451 | |
| 452 | if ((pNode != NULL) && (pNode->min_ < f_max)) { |
| 453 | /* Combine me with pNode */ |
| 454 | if (f_min < pNode->min_) |
| 455 | pNode->min_ = f_min; |
| 456 | if (f_max > pNode->max_) |
| 457 | pNode->max_ = f_max; |
| 458 | } else { |
| 459 | pNode = InsertNode(pAS_Info, pPrev); |
| 460 | pNode->min_ = f_min; |
| 461 | pNode->max_ = f_max; |
| 462 | } |
| 463 | |
| 464 | /* Look for merging possibilities */ |
| 465 | pNext = pNode->next_; |
| 466 | while ((pNext != NULL) && (pNext->min_ < pNode->max_)) { |
| 467 | if (pNext->max_ > pNode->max_) |
| 468 | pNode->max_ = pNext->max_; |
| 469 | /* Remove pNext, return ptr to pNext->next */ |
| 470 | pNext = RemoveNode(pAS_Info, pNode, pNext); |
| 471 | } |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | /* |
| 476 | * Reset all exclusion zones. |
| 477 | * Add zones to protect the PLL FracN regions near zero |
| 478 | */ |
| 479 | static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info) |
| 480 | { |
| 481 | u32 center; |
| 482 | |
| 483 | dprintk(2, "\n"); |
| 484 | |
| 485 | pAS_Info->nZones = 0; /* this clears the used list */ |
| 486 | pAS_Info->usedZones = NULL; /* reset ptr */ |
| 487 | pAS_Info->freeZones = NULL; /* reset ptr */ |
| 488 | |
| 489 | center = |
| 490 | pAS_Info->f_ref * |
| 491 | ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 + |
| 492 | pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in; |
| 493 | while (center < |
| 494 | pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 + |
| 495 | pAS_Info->f_LO1_FracN_Avoid) { |
| 496 | /* Exclude LO1 FracN */ |
| 497 | MT2063_AddExclZone(pAS_Info, |
| 498 | center - pAS_Info->f_LO1_FracN_Avoid, |
| 499 | center - 1); |
| 500 | MT2063_AddExclZone(pAS_Info, center + 1, |
| 501 | center + pAS_Info->f_LO1_FracN_Avoid); |
| 502 | center += pAS_Info->f_ref; |
| 503 | } |
| 504 | |
| 505 | center = |
| 506 | pAS_Info->f_ref * |
| 507 | ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 - |
| 508 | pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out; |
| 509 | while (center < |
| 510 | pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 + |
| 511 | pAS_Info->f_LO2_FracN_Avoid) { |
| 512 | /* Exclude LO2 FracN */ |
| 513 | MT2063_AddExclZone(pAS_Info, |
| 514 | center - pAS_Info->f_LO2_FracN_Avoid, |
| 515 | center - 1); |
| 516 | MT2063_AddExclZone(pAS_Info, center + 1, |
| 517 | center + pAS_Info->f_LO2_FracN_Avoid); |
| 518 | center += pAS_Info->f_ref; |
| 519 | } |
| 520 | |
| 521 | if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) { |
| 522 | /* Exclude LO1 values that conflict with DECT channels */ |
| 523 | MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */ |
| 524 | MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */ |
| 525 | MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */ |
| 526 | MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */ |
| 527 | MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */ |
| 528 | } |
| 529 | |
| 530 | if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) { |
| 531 | MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */ |
| 532 | MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */ |
| 533 | MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */ |
| 534 | MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */ |
| 535 | MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */ |
| 536 | MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */ |
| 537 | MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */ |
| 538 | MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */ |
| 539 | MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */ |
| 540 | MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */ |
| 541 | } |
| 542 | } |
| 543 | |
| 544 | /* |
| 545 | * MT_ChooseFirstIF - Choose the best available 1st IF |
| 546 | * If f_Desired is not excluded, choose that first. |
| 547 | * Otherwise, return the value closest to f_Center that is |
| 548 | * not excluded |
| 549 | */ |
| 550 | static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info) |
| 551 | { |
| 552 | /* |
| 553 | * Update "f_Desired" to be the nearest "combinational-multiple" of |
| 554 | * "f_LO1_Step". |
| 555 | * The resulting number, F_LO1 must be a multiple of f_LO1_Step. |
| 556 | * And F_LO1 is the arithmetic sum of f_in + f_Center. |
| 557 | * Neither f_in, nor f_Center must be a multiple of f_LO1_Step. |
| 558 | * However, the sum must be. |
| 559 | */ |
| 560 | const u32 f_Desired = |
| 561 | pAS_Info->f_LO1_Step * |
| 562 | ((pAS_Info->f_if1_Request + pAS_Info->f_in + |
| 563 | pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) - |
| 564 | pAS_Info->f_in; |
| 565 | const u32 f_Step = |
| 566 | (pAS_Info->f_LO1_Step > |
| 567 | pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info-> |
| 568 | f_LO2_Step; |
| 569 | u32 f_Center; |
| 570 | s32 i; |
| 571 | s32 j = 0; |
| 572 | u32 bDesiredExcluded = 0; |
| 573 | u32 bZeroExcluded = 0; |
| 574 | s32 tmpMin, tmpMax; |
| 575 | s32 bestDiff; |
| 576 | struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones; |
| 577 | struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES]; |
| 578 | |
| 579 | dprintk(2, "\n"); |
| 580 | |
| 581 | if (pAS_Info->nZones == 0) |
| 582 | return f_Desired; |
| 583 | |
| 584 | /* |
| 585 | * f_Center needs to be an integer multiple of f_Step away |
| 586 | * from f_Desired |
| 587 | */ |
| 588 | if (pAS_Info->f_if1_Center > f_Desired) |
| 589 | f_Center = |
| 590 | f_Desired + |
| 591 | f_Step * |
| 592 | ((pAS_Info->f_if1_Center - f_Desired + |
| 593 | f_Step / 2) / f_Step); |
| 594 | else |
| 595 | f_Center = |
| 596 | f_Desired - |
| 597 | f_Step * |
| 598 | ((f_Desired - pAS_Info->f_if1_Center + |
| 599 | f_Step / 2) / f_Step); |
| 600 | |
| 601 | /* |
| 602 | * Take MT_ExclZones, center around f_Center and change the |
| 603 | * resolution to f_Step |
| 604 | */ |
| 605 | while (pNode != NULL) { |
| 606 | /* floor function */ |
| 607 | tmpMin = |
| 608 | floor((s32) (pNode->min_ - f_Center), (s32) f_Step); |
| 609 | |
| 610 | /* ceil function */ |
| 611 | tmpMax = |
| 612 | ceil((s32) (pNode->max_ - f_Center), (s32) f_Step); |
| 613 | |
| 614 | if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired)) |
| 615 | bDesiredExcluded = 1; |
| 616 | |
| 617 | if ((tmpMin < 0) && (tmpMax > 0)) |
| 618 | bZeroExcluded = 1; |
| 619 | |
| 620 | /* See if this zone overlaps the previous */ |
| 621 | if ((j > 0) && (tmpMin < zones[j - 1].max_)) |
| 622 | zones[j - 1].max_ = tmpMax; |
| 623 | else { |
| 624 | /* Add new zone */ |
| 625 | zones[j].min_ = tmpMin; |
| 626 | zones[j].max_ = tmpMax; |
| 627 | j++; |
| 628 | } |
| 629 | pNode = pNode->next_; |
| 630 | } |
| 631 | |
| 632 | /* |
| 633 | * If the desired is okay, return with it |
| 634 | */ |
| 635 | if (bDesiredExcluded == 0) |
| 636 | return f_Desired; |
| 637 | |
| 638 | /* |
| 639 | * If the desired is excluded and the center is okay, return with it |
| 640 | */ |
| 641 | if (bZeroExcluded == 0) |
| 642 | return f_Center; |
| 643 | |
| 644 | /* Find the value closest to 0 (f_Center) */ |
| 645 | bestDiff = zones[0].min_; |
| 646 | for (i = 0; i < j; i++) { |
| 647 | if (abs(zones[i].min_) < abs(bestDiff)) |
| 648 | bestDiff = zones[i].min_; |
| 649 | if (abs(zones[i].max_) < abs(bestDiff)) |
| 650 | bestDiff = zones[i].max_; |
| 651 | } |
| 652 | |
| 653 | if (bestDiff < 0) |
| 654 | return f_Center - ((u32) (-bestDiff) * f_Step); |
| 655 | |
| 656 | return f_Center + (bestDiff * f_Step); |
| 657 | } |
| 658 | |
| 659 | /** |
| 660 | * IsSpurInBand() - Checks to see if a spur will be present within the IF's |
| 661 | * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW) |
| 662 | * |
| 663 | * ma mb mc md |
| 664 | * <--+-+-+-------------------+-------------------+-+-+--> |
| 665 | * | ^ 0 ^ | |
| 666 | * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^ |
| 667 | * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2 |
| 668 | * |
| 669 | * Note that some equations are doubled to prevent round-off |
| 670 | * problems when calculating fIFBW/2 |
| 671 | * |
| 672 | * @pAS_Info: Avoid Spurs information block |
| 673 | * @fm: If spur, amount f_IF1 has to move negative |
| 674 | * @fp: If spur, amount f_IF1 has to move positive |
| 675 | * |
| 676 | * Returns 1 if an LO spur would be present, otherwise 0. |
| 677 | */ |
| 678 | static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info, |
| 679 | u32 *fm, u32 * fp) |
| 680 | { |
| 681 | /* |
| 682 | ** Calculate LO frequency settings. |
| 683 | */ |
| 684 | u32 n, n0; |
| 685 | const u32 f_LO1 = pAS_Info->f_LO1; |
| 686 | const u32 f_LO2 = pAS_Info->f_LO2; |
| 687 | const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2; |
| 688 | const u32 c = d - pAS_Info->f_out_bw; |
| 689 | const u32 f = pAS_Info->f_zif_bw / 2; |
| 690 | const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1; |
| 691 | s32 f_nsLO1, f_nsLO2; |
| 692 | s32 f_Spur; |
| 693 | u32 ma, mb, mc, md, me, mf; |
| 694 | u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs; |
| 695 | |
| 696 | dprintk(2, "\n"); |
| 697 | |
| 698 | *fm = 0; |
| 699 | |
| 700 | /* |
| 701 | ** For each edge (d, c & f), calculate a scale, based on the gcd |
| 702 | ** of f_LO1, f_LO2 and the edge value. Use the larger of this |
| 703 | ** gcd-based scale factor or f_Scale. |
| 704 | */ |
| 705 | lo_gcd = gcd(f_LO1, f_LO2); |
| 706 | gd_Scale = max((u32) gcd(lo_gcd, d), f_Scale); |
| 707 | hgds = gd_Scale / 2; |
| 708 | gc_Scale = max((u32) gcd(lo_gcd, c), f_Scale); |
| 709 | hgcs = gc_Scale / 2; |
| 710 | gf_Scale = max((u32) gcd(lo_gcd, f), f_Scale); |
| 711 | hgfs = gf_Scale / 2; |
| 712 | |
| 713 | n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2); |
| 714 | |
| 715 | /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */ |
| 716 | for (n = n0; n <= pAS_Info->maxH1; ++n) { |
| 717 | md = (n * ((f_LO1 + hgds) / gd_Scale) - |
| 718 | ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale); |
| 719 | |
| 720 | /* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */ |
| 721 | if (md >= pAS_Info->maxH1) |
| 722 | break; |
| 723 | |
| 724 | ma = (n * ((f_LO1 + hgds) / gd_Scale) + |
| 725 | ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale); |
| 726 | |
| 727 | /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */ |
| 728 | if (md == ma) |
| 729 | continue; |
| 730 | |
| 731 | mc = (n * ((f_LO1 + hgcs) / gc_Scale) - |
| 732 | ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale); |
| 733 | if (mc != md) { |
| 734 | f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale)); |
| 735 | f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale)); |
| 736 | f_Spur = |
| 737 | (gc_Scale * (f_nsLO1 - f_nsLO2)) + |
| 738 | n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale); |
| 739 | |
| 740 | *fp = ((f_Spur - (s32) c) / (mc - n)) + 1; |
| 741 | *fm = (((s32) d - f_Spur) / (mc - n)) + 1; |
| 742 | return 1; |
| 743 | } |
| 744 | |
| 745 | /* Location of Zero-IF-spur to be checked */ |
| 746 | me = (n * ((f_LO1 + hgfs) / gf_Scale) + |
| 747 | ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale); |
| 748 | mf = (n * ((f_LO1 + hgfs) / gf_Scale) - |
| 749 | ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale); |
| 750 | if (me != mf) { |
| 751 | f_nsLO1 = n * (f_LO1 / gf_Scale); |
| 752 | f_nsLO2 = me * (f_LO2 / gf_Scale); |
| 753 | f_Spur = |
| 754 | (gf_Scale * (f_nsLO1 - f_nsLO2)) + |
| 755 | n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale); |
| 756 | |
| 757 | *fp = ((f_Spur + (s32) f) / (me - n)) + 1; |
| 758 | *fm = (((s32) f - f_Spur) / (me - n)) + 1; |
| 759 | return 1; |
| 760 | } |
| 761 | |
| 762 | mb = (n * ((f_LO1 + hgcs) / gc_Scale) + |
| 763 | ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale); |
| 764 | if (ma != mb) { |
| 765 | f_nsLO1 = n * (f_LO1 / gc_Scale); |
| 766 | f_nsLO2 = ma * (f_LO2 / gc_Scale); |
| 767 | f_Spur = |
| 768 | (gc_Scale * (f_nsLO1 - f_nsLO2)) + |
| 769 | n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale); |
| 770 | |
| 771 | *fp = (((s32) d + f_Spur) / (ma - n)) + 1; |
| 772 | *fm = (-(f_Spur + (s32) c) / (ma - n)) + 1; |
| 773 | return 1; |
| 774 | } |
| 775 | } |
| 776 | |
| 777 | /* No spurs found */ |
| 778 | return 0; |
| 779 | } |
| 780 | |
| 781 | /* |
| 782 | * MT_AvoidSpurs() - Main entry point to avoid spurs. |
| 783 | * Checks for existing spurs in present LO1, LO2 freqs |
| 784 | * and if present, chooses spur-free LO1, LO2 combination |
| 785 | * that tunes the same input/output frequencies. |
| 786 | */ |
| 787 | static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info) |
| 788 | { |
| 789 | int status = 0; |
| 790 | u32 fm, fp; /* restricted range on LO's */ |
| 791 | pAS_Info->bSpurAvoided = 0; |
| 792 | pAS_Info->nSpursFound = 0; |
| 793 | |
| 794 | dprintk(2, "\n"); |
| 795 | |
| 796 | if (pAS_Info->maxH1 == 0) |
| 797 | return 0; |
| 798 | |
| 799 | /* |
| 800 | * Avoid LO Generated Spurs |
| 801 | * |
| 802 | * Make sure that have no LO-related spurs within the IF output |
| 803 | * bandwidth. |
| 804 | * |
| 805 | * If there is an LO spur in this band, start at the current IF1 frequency |
| 806 | * and work out until we find a spur-free frequency or run up against the |
| 807 | * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they |
| 808 | * will be unchanged if a spur-free setting is not found. |
| 809 | */ |
| 810 | pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp); |
| 811 | if (pAS_Info->bSpurPresent) { |
| 812 | u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */ |
| 813 | u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */ |
| 814 | u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */ |
| 815 | u32 delta_IF1; |
| 816 | u32 new_IF1; |
| 817 | |
| 818 | /* |
| 819 | ** Spur was found, attempt to find a spur-free 1st IF |
| 820 | */ |
| 821 | do { |
| 822 | pAS_Info->nSpursFound++; |
| 823 | |
| 824 | /* Raise f_IF1_upper, if needed */ |
| 825 | MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp); |
| 826 | |
| 827 | /* Choose next IF1 that is closest to f_IF1_CENTER */ |
| 828 | new_IF1 = MT2063_ChooseFirstIF(pAS_Info); |
| 829 | |
| 830 | if (new_IF1 > zfIF1) { |
| 831 | pAS_Info->f_LO1 += (new_IF1 - zfIF1); |
| 832 | pAS_Info->f_LO2 += (new_IF1 - zfIF1); |
| 833 | } else { |
| 834 | pAS_Info->f_LO1 -= (zfIF1 - new_IF1); |
| 835 | pAS_Info->f_LO2 -= (zfIF1 - new_IF1); |
| 836 | } |
| 837 | zfIF1 = new_IF1; |
| 838 | |
| 839 | if (zfIF1 > pAS_Info->f_if1_Center) |
| 840 | delta_IF1 = zfIF1 - pAS_Info->f_if1_Center; |
| 841 | else |
| 842 | delta_IF1 = pAS_Info->f_if1_Center - zfIF1; |
| 843 | |
| 844 | pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp); |
| 845 | /* |
| 846 | * Continue while the new 1st IF is still within the 1st IF bandwidth |
| 847 | * and there is a spur in the band (again) |
| 848 | */ |
| 849 | } while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent); |
| 850 | |
| 851 | /* |
| 852 | * Use the LO-spur free values found. If the search went all |
| 853 | * the way to the 1st IF band edge and always found spurs, just |
| 854 | * leave the original choice. It's as "good" as any other. |
| 855 | */ |
| 856 | if (pAS_Info->bSpurPresent == 1) { |
| 857 | status |= MT2063_SPUR_PRESENT_ERR; |
| 858 | pAS_Info->f_LO1 = zfLO1; |
| 859 | pAS_Info->f_LO2 = zfLO2; |
| 860 | } else |
| 861 | pAS_Info->bSpurAvoided = 1; |
| 862 | } |
| 863 | |
| 864 | status |= |
| 865 | ((pAS_Info-> |
| 866 | nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK); |
| 867 | |
| 868 | return status; |
| 869 | } |
| 870 | |
| 871 | /* |
| 872 | * Constants used by the tuning algorithm |
| 873 | */ |
| 874 | #define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */ |
| 875 | #define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */ |
| 876 | #define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */ |
| 877 | #define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */ |
| 878 | #define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */ |
| 879 | #define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */ |
| 880 | #define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */ |
| 881 | #define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */ |
| 882 | #define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */ |
| 883 | #define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */ |
| 884 | #define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */ |
| 885 | #define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */ |
| 886 | #define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */ |
| 887 | #define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */ |
| 888 | #define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */ |
| 889 | #define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */ |
| 890 | #define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */ |
| 891 | #define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */ |
| 892 | |
| 893 | /* |
| 894 | * Define the supported Part/Rev codes for the MT2063 |
| 895 | */ |
| 896 | #define MT2063_B0 (0x9B) |
| 897 | #define MT2063_B1 (0x9C) |
| 898 | #define MT2063_B2 (0x9D) |
| 899 | #define MT2063_B3 (0x9E) |
| 900 | |
| 901 | /** |
| 902 | * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked |
| 903 | * |
| 904 | * @state: struct mt2063_state pointer |
| 905 | * |
| 906 | * This function returns 0, if no lock, 1 if locked and a value < 1 if error |
| 907 | */ |
| 908 | static int mt2063_lockStatus(struct mt2063_state *state) |
| 909 | { |
| 910 | const u32 nMaxWait = 100; /* wait a maximum of 100 msec */ |
| 911 | const u32 nPollRate = 2; /* poll status bits every 2 ms */ |
| 912 | const u32 nMaxLoops = nMaxWait / nPollRate; |
| 913 | const u8 LO1LK = 0x80; |
| 914 | u8 LO2LK = 0x08; |
| 915 | int status; |
| 916 | u32 nDelays = 0; |
| 917 | |
| 918 | dprintk(2, "\n"); |
| 919 | |
| 920 | /* LO2 Lock bit was in a different place for B0 version */ |
| 921 | if (state->tuner_id == MT2063_B0) |
| 922 | LO2LK = 0x40; |
| 923 | |
| 924 | do { |
| 925 | status = mt2063_read(state, MT2063_REG_LO_STATUS, |
| 926 | &state->reg[MT2063_REG_LO_STATUS], 1); |
| 927 | |
| 928 | if (status < 0) |
| 929 | return status; |
| 930 | |
| 931 | if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) == |
| 932 | (LO1LK | LO2LK)) { |
| 933 | return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO; |
| 934 | } |
| 935 | msleep(nPollRate); /* Wait between retries */ |
| 936 | } while (++nDelays < nMaxLoops); |
| 937 | |
| 938 | /* |
| 939 | * Got no lock or partial lock |
| 940 | */ |
| 941 | return 0; |
| 942 | } |
| 943 | |
| 944 | /* |
| 945 | * Constants for setting receiver modes. |
| 946 | * (6 modes defined at this time, enumerated by mt2063_delivery_sys) |
| 947 | * (DNC1GC & DNC2GC are the values, which are used, when the specific |
| 948 | * DNC Output is selected, the other is always off) |
| 949 | * |
| 950 | * enum mt2063_delivery_sys |
| 951 | * -------------+---------------------------------------------- |
| 952 | * Mode 0 : | MT2063_CABLE_QAM |
| 953 | * Mode 1 : | MT2063_CABLE_ANALOG |
| 954 | * Mode 2 : | MT2063_OFFAIR_COFDM |
| 955 | * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS |
| 956 | * Mode 4 : | MT2063_OFFAIR_ANALOG |
| 957 | * Mode 5 : | MT2063_OFFAIR_8VSB |
| 958 | * --------------+---------------------------------------------- |
| 959 | * |
| 960 | * |<---------- Mode -------------->| |
| 961 | * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 | |
| 962 | * ------------+-----+-----+-----+-----+-----+-----+ |
| 963 | * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF |
| 964 | * LNARin | 0 | 0 | 3 | 3 | 3 | 3 |
| 965 | * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1 |
| 966 | * FIFFq | 0 | 0 | 0 | 0 | 0 | 0 |
| 967 | * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0 |
| 968 | * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0 |
| 969 | * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1 |
| 970 | * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31 |
| 971 | * LNA Target | 44 | 43 | 43 | 43 | 43 | 43 |
| 972 | * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0 |
| 973 | * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31 |
| 974 | * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38 |
| 975 | * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0 |
| 976 | * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5 |
| 977 | * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42 |
| 978 | */ |
| 979 | |
| 980 | enum mt2063_delivery_sys { |
| 981 | MT2063_CABLE_QAM = 0, |
| 982 | MT2063_CABLE_ANALOG, |
| 983 | MT2063_OFFAIR_COFDM, |
| 984 | MT2063_OFFAIR_COFDM_SAWLESS, |
| 985 | MT2063_OFFAIR_ANALOG, |
| 986 | MT2063_OFFAIR_8VSB, |
| 987 | MT2063_NUM_RCVR_MODES |
| 988 | }; |
| 989 | |
| 990 | static const char *mt2063_mode_name[] = { |
| 991 | [MT2063_CABLE_QAM] = "digital cable", |
| 992 | [MT2063_CABLE_ANALOG] = "analog cable", |
| 993 | [MT2063_OFFAIR_COFDM] = "digital offair", |
| 994 | [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without SAW", |
| 995 | [MT2063_OFFAIR_ANALOG] = "analog offair", |
| 996 | [MT2063_OFFAIR_8VSB] = "analog offair 8vsb", |
| 997 | }; |
| 998 | |
| 999 | static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 }; |
| 1000 | static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 }; |
| 1001 | static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 }; |
| 1002 | static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 }; |
| 1003 | static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 }; |
| 1004 | static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 }; |
| 1005 | static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 }; |
| 1006 | static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 }; |
| 1007 | static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 }; |
| 1008 | static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 }; |
| 1009 | static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 }; |
| 1010 | static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 }; |
| 1011 | static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 }; |
| 1012 | static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 }; |
| 1013 | |
| 1014 | /* |
| 1015 | * mt2063_set_dnc_output_enable() |
| 1016 | */ |
| 1017 | static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state, |
| 1018 | enum MT2063_DNC_Output_Enable *pValue) |
| 1019 | { |
| 1020 | dprintk(2, "\n"); |
| 1021 | |
| 1022 | if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */ |
| 1023 | if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */ |
| 1024 | *pValue = MT2063_DNC_NONE; |
| 1025 | else |
| 1026 | *pValue = MT2063_DNC_2; |
| 1027 | } else { /* DNC1 is on */ |
| 1028 | if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */ |
| 1029 | *pValue = MT2063_DNC_1; |
| 1030 | else |
| 1031 | *pValue = MT2063_DNC_BOTH; |
| 1032 | } |
| 1033 | return 0; |
| 1034 | } |
| 1035 | |
| 1036 | /* |
| 1037 | * mt2063_set_dnc_output_enable() |
| 1038 | */ |
| 1039 | static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state, |
| 1040 | enum MT2063_DNC_Output_Enable nValue) |
| 1041 | { |
| 1042 | int status = 0; /* Status to be returned */ |
| 1043 | u8 val = 0; |
| 1044 | |
| 1045 | dprintk(2, "\n"); |
| 1046 | |
| 1047 | /* selects, which DNC output is used */ |
| 1048 | switch (nValue) { |
| 1049 | case MT2063_DNC_NONE: |
| 1050 | val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */ |
| 1051 | if (state->reg[MT2063_REG_DNC_GAIN] != |
| 1052 | val) |
| 1053 | status |= |
| 1054 | mt2063_setreg(state, |
| 1055 | MT2063_REG_DNC_GAIN, |
| 1056 | val); |
| 1057 | |
| 1058 | val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */ |
| 1059 | if (state->reg[MT2063_REG_VGA_GAIN] != |
| 1060 | val) |
| 1061 | status |= |
| 1062 | mt2063_setreg(state, |
| 1063 | MT2063_REG_VGA_GAIN, |
| 1064 | val); |
| 1065 | |
| 1066 | val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */ |
| 1067 | if (state->reg[MT2063_REG_RSVD_20] != |
| 1068 | val) |
| 1069 | status |= |
| 1070 | mt2063_setreg(state, |
| 1071 | MT2063_REG_RSVD_20, |
| 1072 | val); |
| 1073 | |
| 1074 | break; |
| 1075 | case MT2063_DNC_1: |
| 1076 | val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */ |
| 1077 | if (state->reg[MT2063_REG_DNC_GAIN] != |
| 1078 | val) |
| 1079 | status |= |
| 1080 | mt2063_setreg(state, |
| 1081 | MT2063_REG_DNC_GAIN, |
| 1082 | val); |
| 1083 | |
| 1084 | val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */ |
| 1085 | if (state->reg[MT2063_REG_VGA_GAIN] != |
| 1086 | val) |
| 1087 | status |= |
| 1088 | mt2063_setreg(state, |
| 1089 | MT2063_REG_VGA_GAIN, |
| 1090 | val); |
| 1091 | |
| 1092 | val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */ |
| 1093 | if (state->reg[MT2063_REG_RSVD_20] != |
| 1094 | val) |
| 1095 | status |= |
| 1096 | mt2063_setreg(state, |
| 1097 | MT2063_REG_RSVD_20, |
| 1098 | val); |
| 1099 | |
| 1100 | break; |
| 1101 | case MT2063_DNC_2: |
| 1102 | val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */ |
| 1103 | if (state->reg[MT2063_REG_DNC_GAIN] != |
| 1104 | val) |
| 1105 | status |= |
| 1106 | mt2063_setreg(state, |
| 1107 | MT2063_REG_DNC_GAIN, |
| 1108 | val); |
| 1109 | |
| 1110 | val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */ |
| 1111 | if (state->reg[MT2063_REG_VGA_GAIN] != |
| 1112 | val) |
| 1113 | status |= |
| 1114 | mt2063_setreg(state, |
| 1115 | MT2063_REG_VGA_GAIN, |
| 1116 | val); |
| 1117 | |
| 1118 | val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */ |
| 1119 | if (state->reg[MT2063_REG_RSVD_20] != |
| 1120 | val) |
| 1121 | status |= |
| 1122 | mt2063_setreg(state, |
| 1123 | MT2063_REG_RSVD_20, |
| 1124 | val); |
| 1125 | |
| 1126 | break; |
| 1127 | case MT2063_DNC_BOTH: |
| 1128 | val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */ |
| 1129 | if (state->reg[MT2063_REG_DNC_GAIN] != |
| 1130 | val) |
| 1131 | status |= |
| 1132 | mt2063_setreg(state, |
| 1133 | MT2063_REG_DNC_GAIN, |
| 1134 | val); |
| 1135 | |
| 1136 | val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */ |
| 1137 | if (state->reg[MT2063_REG_VGA_GAIN] != |
| 1138 | val) |
| 1139 | status |= |
| 1140 | mt2063_setreg(state, |
| 1141 | MT2063_REG_VGA_GAIN, |
| 1142 | val); |
| 1143 | |
| 1144 | val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */ |
| 1145 | if (state->reg[MT2063_REG_RSVD_20] != |
| 1146 | val) |
| 1147 | status |= |
| 1148 | mt2063_setreg(state, |
| 1149 | MT2063_REG_RSVD_20, |
| 1150 | val); |
| 1151 | |
| 1152 | break; |
| 1153 | default: |
| 1154 | break; |
| 1155 | } |
| 1156 | |
| 1157 | return status; |
| 1158 | } |
| 1159 | |
| 1160 | /* |
| 1161 | * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with |
| 1162 | * the selected enum mt2063_delivery_sys type. |
| 1163 | * |
| 1164 | * (DNC1GC & DNC2GC are the values, which are used, when the specific |
| 1165 | * DNC Output is selected, the other is always off) |
| 1166 | * |
| 1167 | * @state: ptr to mt2063_state structure |
| 1168 | * @Mode: desired receiver delivery system |
| 1169 | * |
| 1170 | * Note: Register cache must be valid for it to work |
| 1171 | */ |
| 1172 | |
| 1173 | static u32 MT2063_SetReceiverMode(struct mt2063_state *state, |
| 1174 | enum mt2063_delivery_sys Mode) |
| 1175 | { |
| 1176 | int status = 0; /* Status to be returned */ |
| 1177 | u8 val; |
| 1178 | u32 longval; |
| 1179 | |
| 1180 | dprintk(2, "\n"); |
| 1181 | |
| 1182 | if (Mode >= MT2063_NUM_RCVR_MODES) |
| 1183 | status = -ERANGE; |
| 1184 | |
| 1185 | /* RFAGCen */ |
| 1186 | if (status >= 0) { |
| 1187 | val = |
| 1188 | (state-> |
| 1189 | reg[MT2063_REG_PD1_TGT] & ~0x40) | (RFAGCEN[Mode] |
| 1190 | ? 0x40 : |
| 1191 | 0x00); |
| 1192 | if (state->reg[MT2063_REG_PD1_TGT] != val) |
| 1193 | status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); |
| 1194 | } |
| 1195 | |
| 1196 | /* LNARin */ |
| 1197 | if (status >= 0) { |
| 1198 | u8 val = (state->reg[MT2063_REG_CTRL_2C] & ~0x03) | |
| 1199 | (LNARIN[Mode] & 0x03); |
| 1200 | if (state->reg[MT2063_REG_CTRL_2C] != val) |
| 1201 | status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val); |
| 1202 | } |
| 1203 | |
| 1204 | /* FIFFQEN and FIFFQ */ |
| 1205 | if (status >= 0) { |
| 1206 | val = |
| 1207 | (state-> |
| 1208 | reg[MT2063_REG_FIFF_CTRL2] & ~0xF0) | |
| 1209 | (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4); |
| 1210 | if (state->reg[MT2063_REG_FIFF_CTRL2] != val) { |
| 1211 | status |= |
| 1212 | mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val); |
| 1213 | /* trigger FIFF calibration, needed after changing FIFFQ */ |
| 1214 | val = |
| 1215 | (state->reg[MT2063_REG_FIFF_CTRL] | 0x01); |
| 1216 | status |= |
| 1217 | mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val); |
| 1218 | val = |
| 1219 | (state-> |
| 1220 | reg[MT2063_REG_FIFF_CTRL] & ~0x01); |
| 1221 | status |= |
| 1222 | mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val); |
| 1223 | } |
| 1224 | } |
| 1225 | |
| 1226 | /* DNC1GC & DNC2GC */ |
| 1227 | status |= mt2063_get_dnc_output_enable(state, &longval); |
| 1228 | status |= mt2063_set_dnc_output_enable(state, longval); |
| 1229 | |
| 1230 | /* acLNAmax */ |
| 1231 | if (status >= 0) { |
| 1232 | u8 val = (state->reg[MT2063_REG_LNA_OV] & ~0x1F) | |
| 1233 | (ACLNAMAX[Mode] & 0x1F); |
| 1234 | if (state->reg[MT2063_REG_LNA_OV] != val) |
| 1235 | status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val); |
| 1236 | } |
| 1237 | |
| 1238 | /* LNATGT */ |
| 1239 | if (status >= 0) { |
| 1240 | u8 val = (state->reg[MT2063_REG_LNA_TGT] & ~0x3F) | |
| 1241 | (LNATGT[Mode] & 0x3F); |
| 1242 | if (state->reg[MT2063_REG_LNA_TGT] != val) |
| 1243 | status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val); |
| 1244 | } |
| 1245 | |
| 1246 | /* ACRF */ |
| 1247 | if (status >= 0) { |
| 1248 | u8 val = (state->reg[MT2063_REG_RF_OV] & ~0x1F) | |
| 1249 | (ACRFMAX[Mode] & 0x1F); |
| 1250 | if (state->reg[MT2063_REG_RF_OV] != val) |
| 1251 | status |= mt2063_setreg(state, MT2063_REG_RF_OV, val); |
| 1252 | } |
| 1253 | |
| 1254 | /* PD1TGT */ |
| 1255 | if (status >= 0) { |
| 1256 | u8 val = (state->reg[MT2063_REG_PD1_TGT] & ~0x3F) | |
| 1257 | (PD1TGT[Mode] & 0x3F); |
| 1258 | if (state->reg[MT2063_REG_PD1_TGT] != val) |
| 1259 | status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); |
| 1260 | } |
| 1261 | |
| 1262 | /* FIFATN */ |
| 1263 | if (status >= 0) { |
| 1264 | u8 val = ACFIFMAX[Mode]; |
| 1265 | if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5) |
| 1266 | val = 5; |
| 1267 | val = (state->reg[MT2063_REG_FIF_OV] & ~0x1F) | |
| 1268 | (val & 0x1F); |
| 1269 | if (state->reg[MT2063_REG_FIF_OV] != val) |
| 1270 | status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val); |
| 1271 | } |
| 1272 | |
| 1273 | /* PD2TGT */ |
| 1274 | if (status >= 0) { |
| 1275 | u8 val = (state->reg[MT2063_REG_PD2_TGT] & ~0x3F) | |
| 1276 | (PD2TGT[Mode] & 0x3F); |
| 1277 | if (state->reg[MT2063_REG_PD2_TGT] != val) |
| 1278 | status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val); |
| 1279 | } |
| 1280 | |
| 1281 | /* Ignore ATN Overload */ |
| 1282 | if (status >= 0) { |
| 1283 | val = (state->reg[MT2063_REG_LNA_TGT] & ~0x80) | |
| 1284 | (RFOVDIS[Mode] ? 0x80 : 0x00); |
| 1285 | if (state->reg[MT2063_REG_LNA_TGT] != val) |
| 1286 | status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val); |
| 1287 | } |
| 1288 | |
| 1289 | /* Ignore FIF Overload */ |
| 1290 | if (status >= 0) { |
| 1291 | val = (state->reg[MT2063_REG_PD1_TGT] & ~0x80) | |
| 1292 | (FIFOVDIS[Mode] ? 0x80 : 0x00); |
| 1293 | if (state->reg[MT2063_REG_PD1_TGT] != val) |
| 1294 | status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); |
| 1295 | } |
| 1296 | |
| 1297 | if (status >= 0) { |
| 1298 | state->rcvr_mode = Mode; |
| 1299 | dprintk(1, "mt2063 mode changed to %s\n", |
| 1300 | mt2063_mode_name[state->rcvr_mode]); |
| 1301 | } |
| 1302 | |
| 1303 | return status; |
| 1304 | } |
| 1305 | |
| 1306 | /* |
| 1307 | * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various |
| 1308 | * sections of the MT2063 |
| 1309 | * |
| 1310 | * @Bits: Mask bits to be cleared. |
| 1311 | * |
| 1312 | * See definition of MT2063_Mask_Bits type for description |
| 1313 | * of each of the power bits. |
| 1314 | */ |
| 1315 | static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state, |
| 1316 | enum MT2063_Mask_Bits Bits) |
| 1317 | { |
| 1318 | int status = 0; |
| 1319 | |
| 1320 | dprintk(2, "\n"); |
| 1321 | Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD); /* Only valid bits for this tuner */ |
| 1322 | if ((Bits & 0xFF00) != 0) { |
| 1323 | state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8); |
| 1324 | status |= |
| 1325 | mt2063_write(state, |
| 1326 | MT2063_REG_PWR_2, |
| 1327 | &state->reg[MT2063_REG_PWR_2], 1); |
| 1328 | } |
| 1329 | if ((Bits & 0xFF) != 0) { |
| 1330 | state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF); |
| 1331 | status |= |
| 1332 | mt2063_write(state, |
| 1333 | MT2063_REG_PWR_1, |
| 1334 | &state->reg[MT2063_REG_PWR_1], 1); |
| 1335 | } |
| 1336 | |
| 1337 | return status; |
| 1338 | } |
| 1339 | |
| 1340 | /* |
| 1341 | * MT2063_SoftwareShutdown() - Enables or disables software shutdown function. |
| 1342 | * When Shutdown is 1, any section whose power |
| 1343 | * mask is set will be shutdown. |
| 1344 | */ |
| 1345 | static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown) |
| 1346 | { |
| 1347 | int status; |
| 1348 | |
| 1349 | dprintk(2, "\n"); |
| 1350 | if (Shutdown == 1) |
| 1351 | state->reg[MT2063_REG_PWR_1] |= 0x04; |
| 1352 | else |
| 1353 | state->reg[MT2063_REG_PWR_1] &= ~0x04; |
| 1354 | |
| 1355 | status = mt2063_write(state, |
| 1356 | MT2063_REG_PWR_1, |
| 1357 | &state->reg[MT2063_REG_PWR_1], 1); |
| 1358 | |
| 1359 | if (Shutdown != 1) { |
| 1360 | state->reg[MT2063_REG_BYP_CTRL] = |
| 1361 | (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40; |
| 1362 | status |= |
| 1363 | mt2063_write(state, |
| 1364 | MT2063_REG_BYP_CTRL, |
| 1365 | &state->reg[MT2063_REG_BYP_CTRL], |
| 1366 | 1); |
| 1367 | state->reg[MT2063_REG_BYP_CTRL] = |
| 1368 | (state->reg[MT2063_REG_BYP_CTRL] & 0x9F); |
| 1369 | status |= |
| 1370 | mt2063_write(state, |
| 1371 | MT2063_REG_BYP_CTRL, |
| 1372 | &state->reg[MT2063_REG_BYP_CTRL], |
| 1373 | 1); |
| 1374 | } |
| 1375 | |
| 1376 | return status; |
| 1377 | } |
| 1378 | |
| 1379 | static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref) |
| 1380 | { |
| 1381 | return f_ref * (f_LO / f_ref) |
| 1382 | + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step); |
| 1383 | } |
| 1384 | |
| 1385 | /** |
| 1386 | * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom. |
| 1387 | * This function preserves maximum precision without |
| 1388 | * risk of overflow. It accurately calculates |
| 1389 | * f_ref * num / denom to within 1 HZ with fixed math. |
| 1390 | * |
| 1391 | * @f_ref: SRO frequency. |
| 1392 | * @num: Fractional portion of the multiplier |
| 1393 | * @denom: denominator portion of the ratio |
| 1394 | * |
| 1395 | * This calculation handles f_ref as two separate 14-bit fields. |
| 1396 | * Therefore, a maximum value of 2^28-1 may safely be used for f_ref. |
| 1397 | * This is the genesis of the magic number "14" and the magic mask value of |
| 1398 | * 0x03FFF. |
| 1399 | * |
| 1400 | * This routine successfully handles denom values up to and including 2^18. |
| 1401 | * Returns: f_ref * num / denom |
| 1402 | */ |
| 1403 | static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom) |
| 1404 | { |
| 1405 | u32 t1 = (f_ref >> 14) * num; |
| 1406 | u32 term1 = t1 / denom; |
| 1407 | u32 loss = t1 % denom; |
| 1408 | u32 term2 = |
| 1409 | (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom; |
| 1410 | return (term1 << 14) + term2; |
| 1411 | } |
| 1412 | |
| 1413 | /* |
| 1414 | * CalcLO1Mult()- Calculates Integer divider value and the numerator |
| 1415 | * value for a FracN PLL. |
| 1416 | * |
| 1417 | * This function assumes that the f_LO and f_Ref are |
| 1418 | * evenly divisible by f_LO_Step. |
| 1419 | * |
| 1420 | * @Div: OUTPUT: Whole number portion of the multiplier |
| 1421 | * @FracN: OUTPUT: Fractional portion of the multiplier |
| 1422 | * @f_LO: desired LO frequency. |
| 1423 | * @f_LO_Step: Minimum step size for the LO (in Hz). |
| 1424 | * @f_Ref: SRO frequency. |
| 1425 | * @f_Avoid: Range of PLL frequencies to avoid near integer multiples |
| 1426 | * of f_Ref (in Hz). |
| 1427 | * |
| 1428 | * Returns: Recalculated LO frequency. |
| 1429 | */ |
| 1430 | static u32 MT2063_CalcLO1Mult(u32 *Div, |
| 1431 | u32 *FracN, |
| 1432 | u32 f_LO, |
| 1433 | u32 f_LO_Step, u32 f_Ref) |
| 1434 | { |
| 1435 | /* Calculate the whole number portion of the divider */ |
| 1436 | *Div = f_LO / f_Ref; |
| 1437 | |
| 1438 | /* Calculate the numerator value (round to nearest f_LO_Step) */ |
| 1439 | *FracN = |
| 1440 | (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) + |
| 1441 | (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step); |
| 1442 | |
| 1443 | return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64); |
| 1444 | } |
| 1445 | |
| 1446 | /** |
| 1447 | * CalcLO2Mult() - Calculates Integer divider value and the numerator |
| 1448 | * value for a FracN PLL. |
| 1449 | * |
| 1450 | * This function assumes that the f_LO and f_Ref are |
| 1451 | * evenly divisible by f_LO_Step. |
| 1452 | * |
| 1453 | * @Div: OUTPUT: Whole number portion of the multiplier |
| 1454 | * @FracN: OUTPUT: Fractional portion of the multiplier |
| 1455 | * @f_LO: desired LO frequency. |
| 1456 | * @f_LO_Step: Minimum step size for the LO (in Hz). |
| 1457 | * @f_Ref: SRO frequency. |
| 1458 | * |
| 1459 | * Returns: Recalculated LO frequency. |
| 1460 | */ |
| 1461 | static u32 MT2063_CalcLO2Mult(u32 *Div, |
| 1462 | u32 *FracN, |
| 1463 | u32 f_LO, |
| 1464 | u32 f_LO_Step, u32 f_Ref) |
| 1465 | { |
| 1466 | /* Calculate the whole number portion of the divider */ |
| 1467 | *Div = f_LO / f_Ref; |
| 1468 | |
| 1469 | /* Calculate the numerator value (round to nearest f_LO_Step) */ |
| 1470 | *FracN = |
| 1471 | (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) + |
| 1472 | (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step); |
| 1473 | |
| 1474 | return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, |
| 1475 | 8191); |
| 1476 | } |
| 1477 | |
| 1478 | /* |
| 1479 | * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be |
| 1480 | * used for a given input frequency. |
| 1481 | * |
| 1482 | * @state: ptr to tuner data structure |
| 1483 | * @f_in: RF input center frequency (in Hz). |
| 1484 | * |
| 1485 | * Returns: ClearTune filter number (0-31) |
| 1486 | */ |
| 1487 | static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in) |
| 1488 | { |
| 1489 | u32 RFBand; |
| 1490 | u32 idx; /* index loop */ |
| 1491 | |
| 1492 | /* |
| 1493 | ** Find RF Band setting |
| 1494 | */ |
| 1495 | RFBand = 31; /* def when f_in > all */ |
| 1496 | for (idx = 0; idx < 31; ++idx) { |
| 1497 | if (state->CTFiltMax[idx] >= f_in) { |
| 1498 | RFBand = idx; |
| 1499 | break; |
| 1500 | } |
| 1501 | } |
| 1502 | return RFBand; |
| 1503 | } |
| 1504 | |
| 1505 | /* |
| 1506 | * MT2063_Tune() - Change the tuner's tuned frequency to RFin. |
| 1507 | */ |
| 1508 | static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in) |
| 1509 | { /* RF input center frequency */ |
| 1510 | |
| 1511 | int status = 0; |
| 1512 | u32 LO1; /* 1st LO register value */ |
| 1513 | u32 Num1; /* Numerator for LO1 reg. value */ |
| 1514 | u32 f_IF1; /* 1st IF requested */ |
| 1515 | u32 LO2; /* 2nd LO register value */ |
| 1516 | u32 Num2; /* Numerator for LO2 reg. value */ |
| 1517 | u32 ofLO1, ofLO2; /* last time's LO frequencies */ |
| 1518 | u8 fiffc = 0x80; /* FIFF center freq from tuner */ |
| 1519 | u32 fiffof; /* Offset from FIFF center freq */ |
| 1520 | const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */ |
| 1521 | u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */ |
| 1522 | u8 val; |
| 1523 | u32 RFBand; |
| 1524 | |
| 1525 | dprintk(2, "\n"); |
| 1526 | /* Check the input and output frequency ranges */ |
| 1527 | if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ)) |
| 1528 | return -EINVAL; |
| 1529 | |
| 1530 | if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ) |
| 1531 | || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ)) |
| 1532 | return -EINVAL; |
| 1533 | |
| 1534 | /* |
| 1535 | * Save original LO1 and LO2 register values |
| 1536 | */ |
| 1537 | ofLO1 = state->AS_Data.f_LO1; |
| 1538 | ofLO2 = state->AS_Data.f_LO2; |
| 1539 | |
| 1540 | /* |
| 1541 | * Find and set RF Band setting |
| 1542 | */ |
| 1543 | if (state->ctfilt_sw == 1) { |
| 1544 | val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08); |
| 1545 | if (state->reg[MT2063_REG_CTUNE_CTRL] != val) { |
| 1546 | status |= |
| 1547 | mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val); |
| 1548 | } |
| 1549 | val = state->reg[MT2063_REG_CTUNE_OV]; |
| 1550 | RFBand = FindClearTuneFilter(state, f_in); |
| 1551 | state->reg[MT2063_REG_CTUNE_OV] = |
| 1552 | (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F) |
| 1553 | | RFBand); |
| 1554 | if (state->reg[MT2063_REG_CTUNE_OV] != val) { |
| 1555 | status |= |
| 1556 | mt2063_setreg(state, MT2063_REG_CTUNE_OV, val); |
| 1557 | } |
| 1558 | } |
| 1559 | |
| 1560 | /* |
| 1561 | * Read the FIFF Center Frequency from the tuner |
| 1562 | */ |
| 1563 | if (status >= 0) { |
| 1564 | status |= |
| 1565 | mt2063_read(state, |
| 1566 | MT2063_REG_FIFFC, |
| 1567 | &state->reg[MT2063_REG_FIFFC], 1); |
| 1568 | fiffc = state->reg[MT2063_REG_FIFFC]; |
| 1569 | } |
| 1570 | /* |
| 1571 | * Assign in the requested values |
| 1572 | */ |
| 1573 | state->AS_Data.f_in = f_in; |
| 1574 | /* Request a 1st IF such that LO1 is on a step size */ |
| 1575 | state->AS_Data.f_if1_Request = |
| 1576 | MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in, |
| 1577 | state->AS_Data.f_LO1_Step, |
| 1578 | state->AS_Data.f_ref) - f_in; |
| 1579 | |
| 1580 | /* |
| 1581 | * Calculate frequency settings. f_IF1_FREQ + f_in is the |
| 1582 | * desired LO1 frequency |
| 1583 | */ |
| 1584 | MT2063_ResetExclZones(&state->AS_Data); |
| 1585 | |
| 1586 | f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data); |
| 1587 | |
| 1588 | state->AS_Data.f_LO1 = |
| 1589 | MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step, |
| 1590 | state->AS_Data.f_ref); |
| 1591 | |
| 1592 | state->AS_Data.f_LO2 = |
| 1593 | MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in, |
| 1594 | state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); |
| 1595 | |
| 1596 | /* |
| 1597 | * Check for any LO spurs in the output bandwidth and adjust |
| 1598 | * the LO settings to avoid them if needed |
| 1599 | */ |
| 1600 | status |= MT2063_AvoidSpurs(&state->AS_Data); |
| 1601 | /* |
| 1602 | * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values. |
| 1603 | * Recalculate the LO frequencies and the values to be placed |
| 1604 | * in the tuning registers. |
| 1605 | */ |
| 1606 | state->AS_Data.f_LO1 = |
| 1607 | MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1, |
| 1608 | state->AS_Data.f_LO1_Step, state->AS_Data.f_ref); |
| 1609 | state->AS_Data.f_LO2 = |
| 1610 | MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in, |
| 1611 | state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); |
| 1612 | state->AS_Data.f_LO2 = |
| 1613 | MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2, |
| 1614 | state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); |
| 1615 | |
| 1616 | /* |
| 1617 | * Check the upconverter and downconverter frequency ranges |
| 1618 | */ |
| 1619 | if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ) |
| 1620 | || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ)) |
| 1621 | status |= MT2063_UPC_RANGE; |
| 1622 | if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ) |
| 1623 | || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ)) |
| 1624 | status |= MT2063_DNC_RANGE; |
| 1625 | /* LO2 Lock bit was in a different place for B0 version */ |
| 1626 | if (state->tuner_id == MT2063_B0) |
| 1627 | LO2LK = 0x40; |
| 1628 | |
| 1629 | /* |
| 1630 | * If we have the same LO frequencies and we're already locked, |
| 1631 | * then skip re-programming the LO registers. |
| 1632 | */ |
| 1633 | if ((ofLO1 != state->AS_Data.f_LO1) |
| 1634 | || (ofLO2 != state->AS_Data.f_LO2) |
| 1635 | || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) != |
| 1636 | (LO1LK | LO2LK))) { |
| 1637 | /* |
| 1638 | * Calculate the FIFFOF register value |
| 1639 | * |
| 1640 | * IF1_Actual |
| 1641 | * FIFFOF = ------------ - 8 * FIFFC - 4992 |
| 1642 | * f_ref/64 |
| 1643 | */ |
| 1644 | fiffof = |
| 1645 | (state->AS_Data.f_LO1 - |
| 1646 | f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc - |
| 1647 | 4992; |
| 1648 | if (fiffof > 0xFF) |
| 1649 | fiffof = 0xFF; |
| 1650 | |
| 1651 | /* |
| 1652 | * Place all of the calculated values into the local tuner |
| 1653 | * register fields. |
| 1654 | */ |
| 1655 | if (status >= 0) { |
| 1656 | state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF); /* DIV1q */ |
| 1657 | state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F); /* NUM1q */ |
| 1658 | state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1) /* DIV2q */ |
| 1659 | |(Num2 >> 12)); /* NUM2q (hi) */ |
| 1660 | state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4); /* NUM2q (mid) */ |
| 1661 | state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */ |
| 1662 | |
| 1663 | /* |
| 1664 | * Now write out the computed register values |
| 1665 | * IMPORTANT: There is a required order for writing |
| 1666 | * (0x05 must follow all the others). |
| 1667 | */ |
| 1668 | status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */ |
| 1669 | if (state->tuner_id == MT2063_B0) { |
| 1670 | /* Re-write the one-shot bits to trigger the tune operation */ |
| 1671 | status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */ |
| 1672 | } |
| 1673 | /* Write out the FIFF offset only if it's changing */ |
| 1674 | if (state->reg[MT2063_REG_FIFF_OFFSET] != |
| 1675 | (u8) fiffof) { |
| 1676 | state->reg[MT2063_REG_FIFF_OFFSET] = |
| 1677 | (u8) fiffof; |
| 1678 | status |= |
| 1679 | mt2063_write(state, |
| 1680 | MT2063_REG_FIFF_OFFSET, |
| 1681 | &state-> |
| 1682 | reg[MT2063_REG_FIFF_OFFSET], |
| 1683 | 1); |
| 1684 | } |
| 1685 | } |
| 1686 | |
| 1687 | /* |
| 1688 | * Check for LO's locking |
| 1689 | */ |
| 1690 | |
| 1691 | if (status < 0) |
| 1692 | return status; |
| 1693 | |
| 1694 | status = mt2063_lockStatus(state); |
| 1695 | if (status < 0) |
| 1696 | return status; |
| 1697 | if (!status) |
| 1698 | return -EINVAL; /* Couldn't lock */ |
| 1699 | |
| 1700 | /* |
| 1701 | * If we locked OK, assign calculated data to mt2063_state structure |
| 1702 | */ |
| 1703 | state->f_IF1_actual = state->AS_Data.f_LO1 - f_in; |
| 1704 | } |
| 1705 | |
| 1706 | return status; |
| 1707 | } |
| 1708 | |
| 1709 | static const u8 MT2063B0_defaults[] = { |
| 1710 | /* Reg, Value */ |
| 1711 | 0x19, 0x05, |
| 1712 | 0x1B, 0x1D, |
| 1713 | 0x1C, 0x1F, |
| 1714 | 0x1D, 0x0F, |
| 1715 | 0x1E, 0x3F, |
| 1716 | 0x1F, 0x0F, |
| 1717 | 0x20, 0x3F, |
| 1718 | 0x22, 0x21, |
| 1719 | 0x23, 0x3F, |
| 1720 | 0x24, 0x20, |
| 1721 | 0x25, 0x3F, |
| 1722 | 0x27, 0xEE, |
| 1723 | 0x2C, 0x27, /* bit at 0x20 is cleared below */ |
| 1724 | 0x30, 0x03, |
| 1725 | 0x2C, 0x07, /* bit at 0x20 is cleared here */ |
| 1726 | 0x2D, 0x87, |
| 1727 | 0x2E, 0xAA, |
| 1728 | 0x28, 0xE1, /* Set the FIFCrst bit here */ |
| 1729 | 0x28, 0xE0, /* Clear the FIFCrst bit here */ |
| 1730 | 0x00 |
| 1731 | }; |
| 1732 | |
| 1733 | /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */ |
| 1734 | static const u8 MT2063B1_defaults[] = { |
| 1735 | /* Reg, Value */ |
| 1736 | 0x05, 0xF0, |
| 1737 | 0x11, 0x10, /* New Enable AFCsd */ |
| 1738 | 0x19, 0x05, |
| 1739 | 0x1A, 0x6C, |
| 1740 | 0x1B, 0x24, |
| 1741 | 0x1C, 0x28, |
| 1742 | 0x1D, 0x8F, |
| 1743 | 0x1E, 0x14, |
| 1744 | 0x1F, 0x8F, |
| 1745 | 0x20, 0x57, |
| 1746 | 0x22, 0x21, /* New - ver 1.03 */ |
| 1747 | 0x23, 0x3C, /* New - ver 1.10 */ |
| 1748 | 0x24, 0x20, /* New - ver 1.03 */ |
| 1749 | 0x2C, 0x24, /* bit at 0x20 is cleared below */ |
| 1750 | 0x2D, 0x87, /* FIFFQ=0 */ |
| 1751 | 0x2F, 0xF3, |
| 1752 | 0x30, 0x0C, /* New - ver 1.11 */ |
| 1753 | 0x31, 0x1B, /* New - ver 1.11 */ |
| 1754 | 0x2C, 0x04, /* bit at 0x20 is cleared here */ |
| 1755 | 0x28, 0xE1, /* Set the FIFCrst bit here */ |
| 1756 | 0x28, 0xE0, /* Clear the FIFCrst bit here */ |
| 1757 | 0x00 |
| 1758 | }; |
| 1759 | |
| 1760 | /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */ |
| 1761 | static const u8 MT2063B3_defaults[] = { |
| 1762 | /* Reg, Value */ |
| 1763 | 0x05, 0xF0, |
| 1764 | 0x19, 0x3D, |
| 1765 | 0x2C, 0x24, /* bit at 0x20 is cleared below */ |
| 1766 | 0x2C, 0x04, /* bit at 0x20 is cleared here */ |
| 1767 | 0x28, 0xE1, /* Set the FIFCrst bit here */ |
| 1768 | 0x28, 0xE0, /* Clear the FIFCrst bit here */ |
| 1769 | 0x00 |
| 1770 | }; |
| 1771 | |
| 1772 | static int mt2063_init(struct dvb_frontend *fe) |
| 1773 | { |
| 1774 | int status; |
| 1775 | struct mt2063_state *state = fe->tuner_priv; |
| 1776 | u8 all_resets = 0xF0; /* reset/load bits */ |
| 1777 | const u8 *def = NULL; |
| 1778 | char *step; |
| 1779 | u32 FCRUN; |
| 1780 | s32 maxReads; |
| 1781 | u32 fcu_osc; |
| 1782 | u32 i; |
| 1783 | |
| 1784 | dprintk(2, "\n"); |
| 1785 | |
| 1786 | state->rcvr_mode = MT2063_CABLE_QAM; |
| 1787 | |
| 1788 | /* Read the Part/Rev code from the tuner */ |
| 1789 | status = mt2063_read(state, MT2063_REG_PART_REV, |
| 1790 | &state->reg[MT2063_REG_PART_REV], 1); |
| 1791 | if (status < 0) { |
| 1792 | printk(KERN_ERR "Can't read mt2063 part ID\n"); |
| 1793 | return status; |
| 1794 | } |
| 1795 | |
| 1796 | /* Check the part/rev code */ |
| 1797 | switch (state->reg[MT2063_REG_PART_REV]) { |
| 1798 | case MT2063_B0: |
| 1799 | step = "B0"; |
| 1800 | break; |
| 1801 | case MT2063_B1: |
| 1802 | step = "B1"; |
| 1803 | break; |
| 1804 | case MT2063_B2: |
| 1805 | step = "B2"; |
| 1806 | break; |
| 1807 | case MT2063_B3: |
| 1808 | step = "B3"; |
| 1809 | break; |
| 1810 | default: |
| 1811 | printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n", |
| 1812 | state->reg[MT2063_REG_PART_REV]); |
| 1813 | return -ENODEV; /* Wrong tuner Part/Rev code */ |
| 1814 | } |
| 1815 | |
| 1816 | /* Check the 2nd byte of the Part/Rev code from the tuner */ |
| 1817 | status = mt2063_read(state, MT2063_REG_RSVD_3B, |
| 1818 | &state->reg[MT2063_REG_RSVD_3B], 1); |
| 1819 | |
| 1820 | /* b7 != 0 ==> NOT MT2063 */ |
| 1821 | if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) { |
| 1822 | printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n", |
| 1823 | state->reg[MT2063_REG_PART_REV], |
| 1824 | state->reg[MT2063_REG_RSVD_3B]); |
| 1825 | return -ENODEV; /* Wrong tuner Part/Rev code */ |
| 1826 | } |
| 1827 | |
| 1828 | printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step); |
| 1829 | |
| 1830 | /* Reset the tuner */ |
| 1831 | status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1); |
| 1832 | if (status < 0) |
| 1833 | return status; |
| 1834 | |
| 1835 | /* change all of the default values that vary from the HW reset values */ |
| 1836 | /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */ |
| 1837 | switch (state->reg[MT2063_REG_PART_REV]) { |
| 1838 | case MT2063_B3: |
| 1839 | def = MT2063B3_defaults; |
| 1840 | break; |
| 1841 | |
| 1842 | case MT2063_B1: |
| 1843 | def = MT2063B1_defaults; |
| 1844 | break; |
| 1845 | |
| 1846 | case MT2063_B0: |
| 1847 | def = MT2063B0_defaults; |
| 1848 | break; |
| 1849 | |
| 1850 | default: |
| 1851 | return -ENODEV; |
| 1852 | break; |
| 1853 | } |
| 1854 | |
| 1855 | while (status >= 0 && *def) { |
| 1856 | u8 reg = *def++; |
| 1857 | u8 val = *def++; |
| 1858 | status = mt2063_write(state, reg, &val, 1); |
| 1859 | } |
| 1860 | if (status < 0) |
| 1861 | return status; |
| 1862 | |
| 1863 | /* Wait for FIFF location to complete. */ |
| 1864 | FCRUN = 1; |
| 1865 | maxReads = 10; |
| 1866 | while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) { |
| 1867 | msleep(2); |
| 1868 | status = mt2063_read(state, |
| 1869 | MT2063_REG_XO_STATUS, |
| 1870 | &state-> |
| 1871 | reg[MT2063_REG_XO_STATUS], 1); |
| 1872 | FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6; |
| 1873 | } |
| 1874 | |
| 1875 | if (FCRUN != 0 || status < 0) |
| 1876 | return -ENODEV; |
| 1877 | |
| 1878 | status = mt2063_read(state, |
| 1879 | MT2063_REG_FIFFC, |
| 1880 | &state->reg[MT2063_REG_FIFFC], 1); |
| 1881 | if (status < 0) |
| 1882 | return status; |
| 1883 | |
| 1884 | /* Read back all the registers from the tuner */ |
| 1885 | status = mt2063_read(state, |
| 1886 | MT2063_REG_PART_REV, |
| 1887 | state->reg, MT2063_REG_END_REGS); |
| 1888 | if (status < 0) |
| 1889 | return status; |
| 1890 | |
| 1891 | /* Initialize the tuner state. */ |
| 1892 | state->tuner_id = state->reg[MT2063_REG_PART_REV]; |
| 1893 | state->AS_Data.f_ref = MT2063_REF_FREQ; |
| 1894 | state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) * |
| 1895 | ((u32) state->reg[MT2063_REG_FIFFC] + 640); |
| 1896 | state->AS_Data.f_if1_bw = MT2063_IF1_BW; |
| 1897 | state->AS_Data.f_out = 43750000UL; |
| 1898 | state->AS_Data.f_out_bw = 6750000UL; |
| 1899 | state->AS_Data.f_zif_bw = MT2063_ZIF_BW; |
| 1900 | state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64; |
| 1901 | state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE; |
| 1902 | state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1; |
| 1903 | state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2; |
| 1904 | state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP; |
| 1905 | state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center; |
| 1906 | state->AS_Data.f_LO1 = 2181000000UL; |
| 1907 | state->AS_Data.f_LO2 = 1486249786UL; |
| 1908 | state->f_IF1_actual = state->AS_Data.f_if1_Center; |
| 1909 | state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual; |
| 1910 | state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID; |
| 1911 | state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID; |
| 1912 | state->num_regs = MT2063_REG_END_REGS; |
| 1913 | state->AS_Data.avoidDECT = MT2063_AVOID_BOTH; |
| 1914 | state->ctfilt_sw = 0; |
| 1915 | |
| 1916 | state->CTFiltMax[0] = 69230000; |
| 1917 | state->CTFiltMax[1] = 105770000; |
| 1918 | state->CTFiltMax[2] = 140350000; |
| 1919 | state->CTFiltMax[3] = 177110000; |
| 1920 | state->CTFiltMax[4] = 212860000; |
| 1921 | state->CTFiltMax[5] = 241130000; |
| 1922 | state->CTFiltMax[6] = 274370000; |
| 1923 | state->CTFiltMax[7] = 309820000; |
| 1924 | state->CTFiltMax[8] = 342450000; |
| 1925 | state->CTFiltMax[9] = 378870000; |
| 1926 | state->CTFiltMax[10] = 416210000; |
| 1927 | state->CTFiltMax[11] = 456500000; |
| 1928 | state->CTFiltMax[12] = 495790000; |
| 1929 | state->CTFiltMax[13] = 534530000; |
| 1930 | state->CTFiltMax[14] = 572610000; |
| 1931 | state->CTFiltMax[15] = 598970000; |
| 1932 | state->CTFiltMax[16] = 635910000; |
| 1933 | state->CTFiltMax[17] = 672130000; |
| 1934 | state->CTFiltMax[18] = 714840000; |
| 1935 | state->CTFiltMax[19] = 739660000; |
| 1936 | state->CTFiltMax[20] = 770410000; |
| 1937 | state->CTFiltMax[21] = 814660000; |
| 1938 | state->CTFiltMax[22] = 846950000; |
| 1939 | state->CTFiltMax[23] = 867820000; |
| 1940 | state->CTFiltMax[24] = 915980000; |
| 1941 | state->CTFiltMax[25] = 947450000; |
| 1942 | state->CTFiltMax[26] = 983110000; |
| 1943 | state->CTFiltMax[27] = 1021630000; |
| 1944 | state->CTFiltMax[28] = 1061870000; |
| 1945 | state->CTFiltMax[29] = 1098330000; |
| 1946 | state->CTFiltMax[30] = 1138990000; |
| 1947 | |
| 1948 | /* |
| 1949 | ** Fetch the FCU osc value and use it and the fRef value to |
| 1950 | ** scale all of the Band Max values |
| 1951 | */ |
| 1952 | |
| 1953 | state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A; |
| 1954 | status = mt2063_write(state, MT2063_REG_CTUNE_CTRL, |
| 1955 | &state->reg[MT2063_REG_CTUNE_CTRL], 1); |
| 1956 | if (status < 0) |
| 1957 | return status; |
| 1958 | |
| 1959 | /* Read the ClearTune filter calibration value */ |
| 1960 | status = mt2063_read(state, MT2063_REG_FIFFC, |
| 1961 | &state->reg[MT2063_REG_FIFFC], 1); |
| 1962 | if (status < 0) |
| 1963 | return status; |
| 1964 | |
| 1965 | fcu_osc = state->reg[MT2063_REG_FIFFC]; |
| 1966 | |
| 1967 | state->reg[MT2063_REG_CTUNE_CTRL] = 0x00; |
| 1968 | status = mt2063_write(state, MT2063_REG_CTUNE_CTRL, |
| 1969 | &state->reg[MT2063_REG_CTUNE_CTRL], 1); |
| 1970 | if (status < 0) |
| 1971 | return status; |
| 1972 | |
| 1973 | /* Adjust each of the values in the ClearTune filter cross-over table */ |
| 1974 | for (i = 0; i < 31; i++) |
| 1975 | state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640); |
| 1976 | |
| 1977 | status = MT2063_SoftwareShutdown(state, 1); |
| 1978 | if (status < 0) |
| 1979 | return status; |
| 1980 | status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD); |
| 1981 | if (status < 0) |
| 1982 | return status; |
| 1983 | |
| 1984 | state->init = true; |
| 1985 | |
| 1986 | return 0; |
| 1987 | } |
| 1988 | |
| 1989 | static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status) |
| 1990 | { |
| 1991 | struct mt2063_state *state = fe->tuner_priv; |
| 1992 | int status; |
| 1993 | |
| 1994 | dprintk(2, "\n"); |
| 1995 | |
| 1996 | if (!state->init) |
| 1997 | return -ENODEV; |
| 1998 | |
| 1999 | *tuner_status = 0; |
| 2000 | status = mt2063_lockStatus(state); |
| 2001 | if (status < 0) |
| 2002 | return status; |
| 2003 | if (status) |
| 2004 | *tuner_status = TUNER_STATUS_LOCKED; |
| 2005 | |
| 2006 | dprintk(1, "Tuner status: %d", *tuner_status); |
| 2007 | |
| 2008 | return 0; |
| 2009 | } |
| 2010 | |
| 2011 | static void mt2063_release(struct dvb_frontend *fe) |
| 2012 | { |
| 2013 | struct mt2063_state *state = fe->tuner_priv; |
| 2014 | |
| 2015 | dprintk(2, "\n"); |
| 2016 | |
| 2017 | fe->tuner_priv = NULL; |
| 2018 | kfree(state); |
| 2019 | } |
| 2020 | |
| 2021 | static int mt2063_set_analog_params(struct dvb_frontend *fe, |
| 2022 | struct analog_parameters *params) |
| 2023 | { |
| 2024 | struct mt2063_state *state = fe->tuner_priv; |
| 2025 | s32 pict_car; |
| 2026 | s32 pict2chanb_vsb; |
| 2027 | s32 ch_bw; |
| 2028 | s32 if_mid; |
| 2029 | s32 rcvr_mode; |
| 2030 | int status; |
| 2031 | |
| 2032 | dprintk(2, "\n"); |
| 2033 | |
| 2034 | if (!state->init) { |
| 2035 | status = mt2063_init(fe); |
| 2036 | if (status < 0) |
| 2037 | return status; |
| 2038 | } |
| 2039 | |
| 2040 | switch (params->mode) { |
| 2041 | case V4L2_TUNER_RADIO: |
| 2042 | pict_car = 38900000; |
| 2043 | ch_bw = 8000000; |
| 2044 | pict2chanb_vsb = -(ch_bw / 2); |
| 2045 | rcvr_mode = MT2063_OFFAIR_ANALOG; |
| 2046 | break; |
| 2047 | case V4L2_TUNER_ANALOG_TV: |
| 2048 | rcvr_mode = MT2063_CABLE_ANALOG; |
| 2049 | if (params->std & ~V4L2_STD_MN) { |
| 2050 | pict_car = 38900000; |
| 2051 | ch_bw = 6000000; |
| 2052 | pict2chanb_vsb = -1250000; |
| 2053 | } else if (params->std & V4L2_STD_PAL_G) { |
| 2054 | pict_car = 38900000; |
| 2055 | ch_bw = 7000000; |
| 2056 | pict2chanb_vsb = -1250000; |
| 2057 | } else { /* PAL/SECAM standards */ |
| 2058 | pict_car = 38900000; |
| 2059 | ch_bw = 8000000; |
| 2060 | pict2chanb_vsb = -1250000; |
| 2061 | } |
| 2062 | break; |
| 2063 | default: |
| 2064 | return -EINVAL; |
| 2065 | } |
| 2066 | if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2)); |
| 2067 | |
| 2068 | state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */ |
| 2069 | state->AS_Data.f_out = if_mid; |
| 2070 | state->AS_Data.f_out_bw = ch_bw + 750000; |
| 2071 | status = MT2063_SetReceiverMode(state, rcvr_mode); |
| 2072 | if (status < 0) |
| 2073 | return status; |
| 2074 | |
| 2075 | dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n", |
| 2076 | params->frequency, ch_bw, pict2chanb_vsb); |
| 2077 | |
| 2078 | status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2)))); |
| 2079 | if (status < 0) |
| 2080 | return status; |
| 2081 | |
| 2082 | state->frequency = params->frequency; |
| 2083 | return 0; |
| 2084 | } |
| 2085 | |
| 2086 | /* |
| 2087 | * As defined on EN 300 429, the DVB-C roll-off factor is 0.15. |
| 2088 | * So, the amount of the needed bandwidth is given by: |
| 2089 | * Bw = Symbol_rate * (1 + 0.15) |
| 2090 | * As such, the maximum symbol rate supported by 6 MHz is given by: |
| 2091 | * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds |
| 2092 | */ |
| 2093 | #define MAX_SYMBOL_RATE_6MHz 5217391 |
| 2094 | |
| 2095 | static int mt2063_set_params(struct dvb_frontend *fe) |
| 2096 | { |
| 2097 | struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| 2098 | struct mt2063_state *state = fe->tuner_priv; |
| 2099 | int status; |
| 2100 | s32 pict_car; |
| 2101 | s32 pict2chanb_vsb; |
| 2102 | s32 ch_bw; |
| 2103 | s32 if_mid; |
| 2104 | s32 rcvr_mode; |
| 2105 | |
| 2106 | if (!state->init) { |
| 2107 | status = mt2063_init(fe); |
| 2108 | if (status < 0) |
| 2109 | return status; |
| 2110 | } |
| 2111 | |
| 2112 | dprintk(2, "\n"); |
| 2113 | |
| 2114 | if (c->bandwidth_hz == 0) |
| 2115 | return -EINVAL; |
| 2116 | if (c->bandwidth_hz <= 6000000) |
| 2117 | ch_bw = 6000000; |
| 2118 | else if (c->bandwidth_hz <= 7000000) |
| 2119 | ch_bw = 7000000; |
| 2120 | else |
| 2121 | ch_bw = 8000000; |
| 2122 | |
| 2123 | switch (c->delivery_system) { |
| 2124 | case SYS_DVBT: |
| 2125 | rcvr_mode = MT2063_OFFAIR_COFDM; |
| 2126 | pict_car = 36125000; |
| 2127 | pict2chanb_vsb = -(ch_bw / 2); |
| 2128 | break; |
| 2129 | case SYS_DVBC_ANNEX_A: |
| 2130 | case SYS_DVBC_ANNEX_C: |
| 2131 | rcvr_mode = MT2063_CABLE_QAM; |
| 2132 | pict_car = 36125000; |
| 2133 | pict2chanb_vsb = -(ch_bw / 2); |
| 2134 | break; |
| 2135 | default: |
| 2136 | return -EINVAL; |
| 2137 | } |
| 2138 | if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2)); |
| 2139 | |
| 2140 | state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */ |
| 2141 | state->AS_Data.f_out = if_mid; |
| 2142 | state->AS_Data.f_out_bw = ch_bw + 750000; |
| 2143 | status = MT2063_SetReceiverMode(state, rcvr_mode); |
| 2144 | if (status < 0) |
| 2145 | return status; |
| 2146 | |
| 2147 | dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n", |
| 2148 | c->frequency, ch_bw, pict2chanb_vsb); |
| 2149 | |
| 2150 | status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2)))); |
| 2151 | |
| 2152 | if (status < 0) |
| 2153 | return status; |
| 2154 | |
| 2155 | state->frequency = c->frequency; |
| 2156 | return 0; |
| 2157 | } |
| 2158 | |
| 2159 | static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq) |
| 2160 | { |
| 2161 | struct mt2063_state *state = fe->tuner_priv; |
| 2162 | |
| 2163 | dprintk(2, "\n"); |
| 2164 | |
| 2165 | if (!state->init) |
| 2166 | return -ENODEV; |
| 2167 | |
| 2168 | *freq = state->AS_Data.f_out; |
| 2169 | |
| 2170 | dprintk(1, "IF frequency: %d\n", *freq); |
| 2171 | |
| 2172 | return 0; |
| 2173 | } |
| 2174 | |
| 2175 | static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw) |
| 2176 | { |
| 2177 | struct mt2063_state *state = fe->tuner_priv; |
| 2178 | |
| 2179 | dprintk(2, "\n"); |
| 2180 | |
| 2181 | if (!state->init) |
| 2182 | return -ENODEV; |
| 2183 | |
| 2184 | *bw = state->AS_Data.f_out_bw - 750000; |
| 2185 | |
| 2186 | dprintk(1, "bandwidth: %d\n", *bw); |
| 2187 | |
| 2188 | return 0; |
| 2189 | } |
| 2190 | |
| 2191 | static const struct dvb_tuner_ops mt2063_ops = { |
| 2192 | .info = { |
| 2193 | .name = "MT2063 Silicon Tuner", |
| 2194 | .frequency_min_hz = 45 * MHz, |
| 2195 | .frequency_max_hz = 865 * MHz, |
| 2196 | }, |
| 2197 | |
| 2198 | .init = mt2063_init, |
| 2199 | .sleep = MT2063_Sleep, |
| 2200 | .get_status = mt2063_get_status, |
| 2201 | .set_analog_params = mt2063_set_analog_params, |
| 2202 | .set_params = mt2063_set_params, |
| 2203 | .get_if_frequency = mt2063_get_if_frequency, |
| 2204 | .get_bandwidth = mt2063_get_bandwidth, |
| 2205 | .release = mt2063_release, |
| 2206 | }; |
| 2207 | |
| 2208 | struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe, |
| 2209 | struct mt2063_config *config, |
| 2210 | struct i2c_adapter *i2c) |
| 2211 | { |
| 2212 | struct mt2063_state *state = NULL; |
| 2213 | |
| 2214 | dprintk(2, "\n"); |
| 2215 | |
| 2216 | state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL); |
| 2217 | if (!state) |
| 2218 | return NULL; |
| 2219 | |
| 2220 | state->config = config; |
| 2221 | state->i2c = i2c; |
| 2222 | state->frontend = fe; |
| 2223 | state->reference = config->refclock / 1000; /* kHz */ |
| 2224 | fe->tuner_priv = state; |
| 2225 | fe->ops.tuner_ops = mt2063_ops; |
| 2226 | |
| 2227 | printk(KERN_INFO "%s: Attaching MT2063\n", __func__); |
| 2228 | return fe; |
| 2229 | } |
| 2230 | EXPORT_SYMBOL_GPL(mt2063_attach); |
| 2231 | |
| 2232 | #if 0 |
| 2233 | /* |
| 2234 | * Ancillary routines visible outside mt2063 |
| 2235 | * FIXME: Remove them in favor of using standard tuner callbacks |
| 2236 | */ |
| 2237 | static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe) |
| 2238 | { |
| 2239 | struct mt2063_state *state = fe->tuner_priv; |
| 2240 | int err = 0; |
| 2241 | |
| 2242 | dprintk(2, "\n"); |
| 2243 | |
| 2244 | err = MT2063_SoftwareShutdown(state, 1); |
| 2245 | if (err < 0) |
| 2246 | printk(KERN_ERR "%s: Couldn't shutdown\n", __func__); |
| 2247 | |
| 2248 | return err; |
| 2249 | } |
| 2250 | |
| 2251 | static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe) |
| 2252 | { |
| 2253 | struct mt2063_state *state = fe->tuner_priv; |
| 2254 | int err = 0; |
| 2255 | |
| 2256 | dprintk(2, "\n"); |
| 2257 | |
| 2258 | err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD); |
| 2259 | if (err < 0) |
| 2260 | printk(KERN_ERR "%s: Invalid parameter\n", __func__); |
| 2261 | |
| 2262 | return err; |
| 2263 | } |
| 2264 | #endif |
| 2265 | |
| 2266 | MODULE_AUTHOR("Mauro Carvalho Chehab"); |
| 2267 | MODULE_DESCRIPTION("MT2063 Silicon tuner"); |
| 2268 | MODULE_LICENSE("GPL"); |