v4.19.13 snapshot.
diff --git a/drivers/media/tuners/mt2063.c b/drivers/media/tuners/mt2063.c
new file mode 100644
index 0000000..f4c8a72
--- /dev/null
+++ b/drivers/media/tuners/mt2063.c
@@ -0,0 +1,2277 @@
+/*
+ * Driver for mt2063 Micronas tuner
+ *
+ * Copyright (c) 2011 Mauro Carvalho Chehab
+ *
+ * This driver came from a driver originally written by:
+ *		Henry Wang <Henry.wang@AzureWave.com>
+ * Made publicly available by Terratec, at:
+ *	http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
+ * The original driver's license is GPL, as declared with MODULE_LICENSE()
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation under version 2 of the License.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/string.h>
+#include <linux/videodev2.h>
+#include <linux/gcd.h>
+
+#include "mt2063.h"
+
+static unsigned int debug;
+module_param(debug, int, 0644);
+MODULE_PARM_DESC(debug, "Set Verbosity level");
+
+#define dprintk(level, fmt, arg...) do {				\
+if (debug >= level)							\
+	printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg);	\
+} while (0)
+
+
+/* positive error codes used internally */
+
+/*  Info: Unavoidable LO-related spur may be present in the output  */
+#define MT2063_SPUR_PRESENT_ERR             (0x00800000)
+
+/*  Info: Mask of bits used for # of LO-related spurs that were avoided during tuning  */
+#define MT2063_SPUR_CNT_MASK                (0x001f0000)
+#define MT2063_SPUR_SHIFT                   (16)
+
+/*  Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
+#define MT2063_UPC_RANGE                    (0x04000000)
+
+/*  Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
+#define MT2063_DNC_RANGE                    (0x08000000)
+
+/*
+ *  Constant defining the version of the following structure
+ *  and therefore the API for this code.
+ *
+ *  When compiling the tuner driver, the preprocessor will
+ *  check against this version number to make sure that
+ *  it matches the version that the tuner driver knows about.
+ */
+
+/* DECT Frequency Avoidance */
+#define MT2063_DECT_AVOID_US_FREQS      0x00000001
+
+#define MT2063_DECT_AVOID_EURO_FREQS    0x00000002
+
+#define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0)
+
+#define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0)
+
+enum MT2063_DECT_Avoid_Type {
+	MT2063_NO_DECT_AVOIDANCE = 0,				/* Do not create DECT exclusion zones.     */
+	MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS,	/* Avoid US DECT frequencies.              */
+	MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS,	/* Avoid European DECT frequencies.        */
+	MT2063_AVOID_BOTH					/* Avoid both regions. Not typically used. */
+};
+
+#define MT2063_MAX_ZONES 48
+
+struct MT2063_ExclZone_t {
+	u32 min_;
+	u32 max_;
+	struct MT2063_ExclZone_t *next_;
+};
+
+/*
+ *  Structure of data needed for Spur Avoidance
+ */
+struct MT2063_AvoidSpursData_t {
+	u32 f_ref;
+	u32 f_in;
+	u32 f_LO1;
+	u32 f_if1_Center;
+	u32 f_if1_Request;
+	u32 f_if1_bw;
+	u32 f_LO2;
+	u32 f_out;
+	u32 f_out_bw;
+	u32 f_LO1_Step;
+	u32 f_LO2_Step;
+	u32 f_LO1_FracN_Avoid;
+	u32 f_LO2_FracN_Avoid;
+	u32 f_zif_bw;
+	u32 f_min_LO_Separation;
+	u32 maxH1;
+	u32 maxH2;
+	enum MT2063_DECT_Avoid_Type avoidDECT;
+	u32 bSpurPresent;
+	u32 bSpurAvoided;
+	u32 nSpursFound;
+	u32 nZones;
+	struct MT2063_ExclZone_t *freeZones;
+	struct MT2063_ExclZone_t *usedZones;
+	struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES];
+};
+
+/*
+ * Parameter for function MT2063_SetPowerMask that specifies the power down
+ * of various sections of the MT2063.
+ */
+enum MT2063_Mask_Bits {
+	MT2063_REG_SD = 0x0040,		/* Shutdown regulator                 */
+	MT2063_SRO_SD = 0x0020,		/* Shutdown SRO                       */
+	MT2063_AFC_SD = 0x0010,		/* Shutdown AFC A/D                   */
+	MT2063_PD_SD = 0x0002,		/* Enable power detector shutdown     */
+	MT2063_PDADC_SD = 0x0001,	/* Enable power detector A/D shutdown */
+	MT2063_VCO_SD = 0x8000,		/* Enable VCO shutdown                */
+	MT2063_LTX_SD = 0x4000,		/* Enable LTX shutdown                */
+	MT2063_LT1_SD = 0x2000,		/* Enable LT1 shutdown                */
+	MT2063_LNA_SD = 0x1000,		/* Enable LNA shutdown                */
+	MT2063_UPC_SD = 0x0800,		/* Enable upconverter shutdown        */
+	MT2063_DNC_SD = 0x0400,		/* Enable downconverter shutdown      */
+	MT2063_VGA_SD = 0x0200,		/* Enable VGA shutdown                */
+	MT2063_AMP_SD = 0x0100,		/* Enable AMP shutdown                */
+	MT2063_ALL_SD = 0xFF73,		/* All shutdown bits for this tuner   */
+	MT2063_NONE_SD = 0x0000		/* No shutdown bits                   */
+};
+
+/*
+ *  Possible values for MT2063_DNC_OUTPUT
+ */
+enum MT2063_DNC_Output_Enable {
+	MT2063_DNC_NONE = 0,
+	MT2063_DNC_1,
+	MT2063_DNC_2,
+	MT2063_DNC_BOTH
+};
+
+/*
+ *  Two-wire serial bus subaddresses of the tuner registers.
+ *  Also known as the tuner's register addresses.
+ */
+enum MT2063_Register_Offsets {
+	MT2063_REG_PART_REV = 0,	/*  0x00: Part/Rev Code         */
+	MT2063_REG_LO1CQ_1,		/*  0x01: LO1C Queued Byte 1    */
+	MT2063_REG_LO1CQ_2,		/*  0x02: LO1C Queued Byte 2    */
+	MT2063_REG_LO2CQ_1,		/*  0x03: LO2C Queued Byte 1    */
+	MT2063_REG_LO2CQ_2,		/*  0x04: LO2C Queued Byte 2    */
+	MT2063_REG_LO2CQ_3,		/*  0x05: LO2C Queued Byte 3    */
+	MT2063_REG_RSVD_06,		/*  0x06: Reserved              */
+	MT2063_REG_LO_STATUS,		/*  0x07: LO Status             */
+	MT2063_REG_FIFFC,		/*  0x08: FIFF Center           */
+	MT2063_REG_CLEARTUNE,		/*  0x09: ClearTune Filter      */
+	MT2063_REG_ADC_OUT,		/*  0x0A: ADC_OUT               */
+	MT2063_REG_LO1C_1,		/*  0x0B: LO1C Byte 1           */
+	MT2063_REG_LO1C_2,		/*  0x0C: LO1C Byte 2           */
+	MT2063_REG_LO2C_1,		/*  0x0D: LO2C Byte 1           */
+	MT2063_REG_LO2C_2,		/*  0x0E: LO2C Byte 2           */
+	MT2063_REG_LO2C_3,		/*  0x0F: LO2C Byte 3           */
+	MT2063_REG_RSVD_10,		/*  0x10: Reserved              */
+	MT2063_REG_PWR_1,		/*  0x11: PWR Byte 1            */
+	MT2063_REG_PWR_2,		/*  0x12: PWR Byte 2            */
+	MT2063_REG_TEMP_STATUS,		/*  0x13: Temp Status           */
+	MT2063_REG_XO_STATUS,		/*  0x14: Crystal Status        */
+	MT2063_REG_RF_STATUS,		/*  0x15: RF Attn Status        */
+	MT2063_REG_FIF_STATUS,		/*  0x16: FIF Attn Status       */
+	MT2063_REG_LNA_OV,		/*  0x17: LNA Attn Override     */
+	MT2063_REG_RF_OV,		/*  0x18: RF Attn Override      */
+	MT2063_REG_FIF_OV,		/*  0x19: FIF Attn Override     */
+	MT2063_REG_LNA_TGT,		/*  0x1A: Reserved              */
+	MT2063_REG_PD1_TGT,		/*  0x1B: Pwr Det 1 Target      */
+	MT2063_REG_PD2_TGT,		/*  0x1C: Pwr Det 2 Target      */
+	MT2063_REG_RSVD_1D,		/*  0x1D: Reserved              */
+	MT2063_REG_RSVD_1E,		/*  0x1E: Reserved              */
+	MT2063_REG_RSVD_1F,		/*  0x1F: Reserved              */
+	MT2063_REG_RSVD_20,		/*  0x20: Reserved              */
+	MT2063_REG_BYP_CTRL,		/*  0x21: Bypass Control        */
+	MT2063_REG_RSVD_22,		/*  0x22: Reserved              */
+	MT2063_REG_RSVD_23,		/*  0x23: Reserved              */
+	MT2063_REG_RSVD_24,		/*  0x24: Reserved              */
+	MT2063_REG_RSVD_25,		/*  0x25: Reserved              */
+	MT2063_REG_RSVD_26,		/*  0x26: Reserved              */
+	MT2063_REG_RSVD_27,		/*  0x27: Reserved              */
+	MT2063_REG_FIFF_CTRL,		/*  0x28: FIFF Control          */
+	MT2063_REG_FIFF_OFFSET,		/*  0x29: FIFF Offset           */
+	MT2063_REG_CTUNE_CTRL,		/*  0x2A: Reserved              */
+	MT2063_REG_CTUNE_OV,		/*  0x2B: Reserved              */
+	MT2063_REG_CTRL_2C,		/*  0x2C: Reserved              */
+	MT2063_REG_FIFF_CTRL2,		/*  0x2D: Fiff Control          */
+	MT2063_REG_RSVD_2E,		/*  0x2E: Reserved              */
+	MT2063_REG_DNC_GAIN,		/*  0x2F: DNC Control           */
+	MT2063_REG_VGA_GAIN,		/*  0x30: VGA Gain Ctrl         */
+	MT2063_REG_RSVD_31,		/*  0x31: Reserved              */
+	MT2063_REG_TEMP_SEL,		/*  0x32: Temperature Selection */
+	MT2063_REG_RSVD_33,		/*  0x33: Reserved              */
+	MT2063_REG_RSVD_34,		/*  0x34: Reserved              */
+	MT2063_REG_RSVD_35,		/*  0x35: Reserved              */
+	MT2063_REG_RSVD_36,		/*  0x36: Reserved              */
+	MT2063_REG_RSVD_37,		/*  0x37: Reserved              */
+	MT2063_REG_RSVD_38,		/*  0x38: Reserved              */
+	MT2063_REG_RSVD_39,		/*  0x39: Reserved              */
+	MT2063_REG_RSVD_3A,		/*  0x3A: Reserved              */
+	MT2063_REG_RSVD_3B,		/*  0x3B: Reserved              */
+	MT2063_REG_RSVD_3C,		/*  0x3C: Reserved              */
+	MT2063_REG_END_REGS
+};
+
+struct mt2063_state {
+	struct i2c_adapter *i2c;
+
+	bool init;
+
+	const struct mt2063_config *config;
+	struct dvb_tuner_ops ops;
+	struct dvb_frontend *frontend;
+
+	u32 frequency;
+	u32 srate;
+	u32 bandwidth;
+	u32 reference;
+
+	u32 tuner_id;
+	struct MT2063_AvoidSpursData_t AS_Data;
+	u32 f_IF1_actual;
+	u32 rcvr_mode;
+	u32 ctfilt_sw;
+	u32 CTFiltMax[31];
+	u32 num_regs;
+	u8 reg[MT2063_REG_END_REGS];
+};
+
+/*
+ * mt2063_write - Write data into the I2C bus
+ */
+static int mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len)
+{
+	struct dvb_frontend *fe = state->frontend;
+	int ret;
+	u8 buf[60];
+	struct i2c_msg msg = {
+		.addr = state->config->tuner_address,
+		.flags = 0,
+		.buf = buf,
+		.len = len + 1
+	};
+
+	dprintk(2, "\n");
+
+	msg.buf[0] = reg;
+	memcpy(msg.buf + 1, data, len);
+
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 1);
+	ret = i2c_transfer(state->i2c, &msg, 1);
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 0);
+
+	if (ret < 0)
+		printk(KERN_ERR "%s error ret=%d\n", __func__, ret);
+
+	return ret;
+}
+
+/*
+ * mt2063_write - Write register data into the I2C bus, caching the value
+ */
+static int mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val)
+{
+	int status;
+
+	dprintk(2, "\n");
+
+	if (reg >= MT2063_REG_END_REGS)
+		return -ERANGE;
+
+	status = mt2063_write(state, reg, &val, 1);
+	if (status < 0)
+		return status;
+
+	state->reg[reg] = val;
+
+	return 0;
+}
+
+/*
+ * mt2063_read - Read data from the I2C bus
+ */
+static int mt2063_read(struct mt2063_state *state,
+			   u8 subAddress, u8 *pData, u32 cnt)
+{
+	int status = 0;	/* Status to be returned        */
+	struct dvb_frontend *fe = state->frontend;
+	u32 i = 0;
+
+	dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt);
+
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 1);
+
+	for (i = 0; i < cnt; i++) {
+		u8 b0[] = { subAddress + i };
+		struct i2c_msg msg[] = {
+			{
+				.addr = state->config->tuner_address,
+				.flags = 0,
+				.buf = b0,
+				.len = 1
+			}, {
+				.addr = state->config->tuner_address,
+				.flags = I2C_M_RD,
+				.buf = pData + i,
+				.len = 1
+			}
+		};
+
+		status = i2c_transfer(state->i2c, msg, 2);
+		dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n",
+			   subAddress + i, status, *(pData + i));
+		if (status < 0)
+			break;
+	}
+	if (fe->ops.i2c_gate_ctrl)
+		fe->ops.i2c_gate_ctrl(fe, 0);
+
+	if (status < 0)
+		printk(KERN_ERR "Can't read from address 0x%02x,\n",
+		       subAddress + i);
+
+	return status;
+}
+
+/*
+ * FIXME: Is this really needed?
+ */
+static int MT2063_Sleep(struct dvb_frontend *fe)
+{
+	/*
+	 *  ToDo:  Add code here to implement a OS blocking
+	 */
+	msleep(100);
+
+	return 0;
+}
+
+/*
+ * Microtune spur avoidance
+ */
+
+/*  Implement ceiling, floor functions.  */
+#define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
+#define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))
+
+struct MT2063_FIFZone_t {
+	s32 min_;
+	s32 max_;
+};
+
+static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t
+					    *pAS_Info,
+					    struct MT2063_ExclZone_t *pPrevNode)
+{
+	struct MT2063_ExclZone_t *pNode;
+
+	dprintk(2, "\n");
+
+	/*  Check for a node in the free list  */
+	if (pAS_Info->freeZones != NULL) {
+		/*  Use one from the free list  */
+		pNode = pAS_Info->freeZones;
+		pAS_Info->freeZones = pNode->next_;
+	} else {
+		/*  Grab a node from the array  */
+		pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones];
+	}
+
+	if (pPrevNode != NULL) {
+		pNode->next_ = pPrevNode->next_;
+		pPrevNode->next_ = pNode;
+	} else {		/*  insert at the beginning of the list  */
+
+		pNode->next_ = pAS_Info->usedZones;
+		pAS_Info->usedZones = pNode;
+	}
+
+	pAS_Info->nZones++;
+	return pNode;
+}
+
+static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t
+					    *pAS_Info,
+					    struct MT2063_ExclZone_t *pPrevNode,
+					    struct MT2063_ExclZone_t
+					    *pNodeToRemove)
+{
+	struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_;
+
+	dprintk(2, "\n");
+
+	/*  Make previous node point to the subsequent node  */
+	if (pPrevNode != NULL)
+		pPrevNode->next_ = pNext;
+
+	/*  Add pNodeToRemove to the beginning of the freeZones  */
+	pNodeToRemove->next_ = pAS_Info->freeZones;
+	pAS_Info->freeZones = pNodeToRemove;
+
+	/*  Decrement node count  */
+	pAS_Info->nZones--;
+
+	return pNext;
+}
+
+/*
+ * MT_AddExclZone()
+ *
+ * Add (and merge) an exclusion zone into the list.
+ * If the range (f_min, f_max) is totally outside the
+ * 1st IF BW, ignore the entry.
+ * If the range (f_min, f_max) is negative, ignore the entry.
+ */
+static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
+			       u32 f_min, u32 f_max)
+{
+	struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
+	struct MT2063_ExclZone_t *pPrev = NULL;
+	struct MT2063_ExclZone_t *pNext = NULL;
+
+	dprintk(2, "\n");
+
+	/*  Check to see if this overlaps the 1st IF filter  */
+	if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2)))
+	    && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2)))
+	    && (f_min < f_max)) {
+		/*
+		 *                1        2         3      4       5        6
+		 *
+		 *   New entry:  |---|    |--|      |--|    |-|    |---|    |--|
+		 *                or       or        or     or      or
+		 *   Existing:  |--|      |--|      |--|    |---|  |-|      |--|
+		 */
+
+		/*  Check for our place in the list  */
+		while ((pNode != NULL) && (pNode->max_ < f_min)) {
+			pPrev = pNode;
+			pNode = pNode->next_;
+		}
+
+		if ((pNode != NULL) && (pNode->min_ < f_max)) {
+			/*  Combine me with pNode  */
+			if (f_min < pNode->min_)
+				pNode->min_ = f_min;
+			if (f_max > pNode->max_)
+				pNode->max_ = f_max;
+		} else {
+			pNode = InsertNode(pAS_Info, pPrev);
+			pNode->min_ = f_min;
+			pNode->max_ = f_max;
+		}
+
+		/*  Look for merging possibilities  */
+		pNext = pNode->next_;
+		while ((pNext != NULL) && (pNext->min_ < pNode->max_)) {
+			if (pNext->max_ > pNode->max_)
+				pNode->max_ = pNext->max_;
+			/*  Remove pNext, return ptr to pNext->next  */
+			pNext = RemoveNode(pAS_Info, pNode, pNext);
+		}
+	}
+}
+
+/*
+ *  Reset all exclusion zones.
+ *  Add zones to protect the PLL FracN regions near zero
+ */
+static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info)
+{
+	u32 center;
+
+	dprintk(2, "\n");
+
+	pAS_Info->nZones = 0;	/*  this clears the used list  */
+	pAS_Info->usedZones = NULL;	/*  reset ptr                  */
+	pAS_Info->freeZones = NULL;	/*  reset ptr                  */
+
+	center =
+	    pAS_Info->f_ref *
+	    ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 +
+	      pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in;
+	while (center <
+	       pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
+	       pAS_Info->f_LO1_FracN_Avoid) {
+		/*  Exclude LO1 FracN  */
+		MT2063_AddExclZone(pAS_Info,
+				   center - pAS_Info->f_LO1_FracN_Avoid,
+				   center - 1);
+		MT2063_AddExclZone(pAS_Info, center + 1,
+				   center + pAS_Info->f_LO1_FracN_Avoid);
+		center += pAS_Info->f_ref;
+	}
+
+	center =
+	    pAS_Info->f_ref *
+	    ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 -
+	      pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out;
+	while (center <
+	       pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
+	       pAS_Info->f_LO2_FracN_Avoid) {
+		/*  Exclude LO2 FracN  */
+		MT2063_AddExclZone(pAS_Info,
+				   center - pAS_Info->f_LO2_FracN_Avoid,
+				   center - 1);
+		MT2063_AddExclZone(pAS_Info, center + 1,
+				   center + pAS_Info->f_LO2_FracN_Avoid);
+		center += pAS_Info->f_ref;
+	}
+
+	if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
+		/*  Exclude LO1 values that conflict with DECT channels */
+		MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in);	/* Ctr = 1921.536 */
+		MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in);	/* Ctr = 1923.264 */
+		MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in);	/* Ctr = 1924.992 */
+		MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in);	/* Ctr = 1926.720 */
+		MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in);	/* Ctr = 1928.448 */
+	}
+
+	if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
+		MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in);	/* Ctr = 1897.344 */
+		MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in);	/* Ctr = 1895.616 */
+		MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in);	/* Ctr = 1893.888 */
+		MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in);	/* Ctr = 1892.16  */
+		MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in);	/* Ctr = 1890.432 */
+		MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in);	/* Ctr = 1888.704 */
+		MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in);	/* Ctr = 1886.976 */
+		MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in);	/* Ctr = 1885.248 */
+		MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in);	/* Ctr = 1883.52  */
+		MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in);	/* Ctr = 1881.792 */
+	}
+}
+
+/*
+ * MT_ChooseFirstIF - Choose the best available 1st IF
+ *                    If f_Desired is not excluded, choose that first.
+ *                    Otherwise, return the value closest to f_Center that is
+ *                    not excluded
+ */
+static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info)
+{
+	/*
+	 * Update "f_Desired" to be the nearest "combinational-multiple" of
+	 * "f_LO1_Step".
+	 * The resulting number, F_LO1 must be a multiple of f_LO1_Step.
+	 * And F_LO1 is the arithmetic sum of f_in + f_Center.
+	 * Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
+	 * However, the sum must be.
+	 */
+	const u32 f_Desired =
+	    pAS_Info->f_LO1_Step *
+	    ((pAS_Info->f_if1_Request + pAS_Info->f_in +
+	      pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) -
+	    pAS_Info->f_in;
+	const u32 f_Step =
+	    (pAS_Info->f_LO1_Step >
+	     pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info->
+	    f_LO2_Step;
+	u32 f_Center;
+	s32 i;
+	s32 j = 0;
+	u32 bDesiredExcluded = 0;
+	u32 bZeroExcluded = 0;
+	s32 tmpMin, tmpMax;
+	s32 bestDiff;
+	struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
+	struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES];
+
+	dprintk(2, "\n");
+
+	if (pAS_Info->nZones == 0)
+		return f_Desired;
+
+	/*
+	 *  f_Center needs to be an integer multiple of f_Step away
+	 *  from f_Desired
+	 */
+	if (pAS_Info->f_if1_Center > f_Desired)
+		f_Center =
+		    f_Desired +
+		    f_Step *
+		    ((pAS_Info->f_if1_Center - f_Desired +
+		      f_Step / 2) / f_Step);
+	else
+		f_Center =
+		    f_Desired -
+		    f_Step *
+		    ((f_Desired - pAS_Info->f_if1_Center +
+		      f_Step / 2) / f_Step);
+
+	/*
+	 * Take MT_ExclZones, center around f_Center and change the
+	 * resolution to f_Step
+	 */
+	while (pNode != NULL) {
+		/*  floor function  */
+		tmpMin =
+		    floor((s32) (pNode->min_ - f_Center), (s32) f_Step);
+
+		/*  ceil function  */
+		tmpMax =
+		    ceil((s32) (pNode->max_ - f_Center), (s32) f_Step);
+
+		if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired))
+			bDesiredExcluded = 1;
+
+		if ((tmpMin < 0) && (tmpMax > 0))
+			bZeroExcluded = 1;
+
+		/*  See if this zone overlaps the previous  */
+		if ((j > 0) && (tmpMin < zones[j - 1].max_))
+			zones[j - 1].max_ = tmpMax;
+		else {
+			/*  Add new zone  */
+			zones[j].min_ = tmpMin;
+			zones[j].max_ = tmpMax;
+			j++;
+		}
+		pNode = pNode->next_;
+	}
+
+	/*
+	 *  If the desired is okay, return with it
+	 */
+	if (bDesiredExcluded == 0)
+		return f_Desired;
+
+	/*
+	 *  If the desired is excluded and the center is okay, return with it
+	 */
+	if (bZeroExcluded == 0)
+		return f_Center;
+
+	/*  Find the value closest to 0 (f_Center)  */
+	bestDiff = zones[0].min_;
+	for (i = 0; i < j; i++) {
+		if (abs(zones[i].min_) < abs(bestDiff))
+			bestDiff = zones[i].min_;
+		if (abs(zones[i].max_) < abs(bestDiff))
+			bestDiff = zones[i].max_;
+	}
+
+	if (bestDiff < 0)
+		return f_Center - ((u32) (-bestDiff) * f_Step);
+
+	return f_Center + (bestDiff * f_Step);
+}
+
+/**
+ * IsSpurInBand() - Checks to see if a spur will be present within the IF's
+ *                  bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
+ *
+ *                    ma   mb                                     mc   md
+ *                  <--+-+-+-------------------+-------------------+-+-+-->
+ *                     |   ^                   0                   ^   |
+ *                     ^   b=-fIFOut+fIFBW/2      -b=+fIFOut-fIFBW/2   ^
+ *                     a=-fIFOut-fIFBW/2              -a=+fIFOut+fIFBW/2
+ *
+ *                  Note that some equations are doubled to prevent round-off
+ *                  problems when calculating fIFBW/2
+ *
+ * @pAS_Info:	Avoid Spurs information block
+ * @fm:		If spur, amount f_IF1 has to move negative
+ * @fp:		If spur, amount f_IF1 has to move positive
+ *
+ *  Returns 1 if an LO spur would be present, otherwise 0.
+ */
+static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info,
+			u32 *fm, u32 * fp)
+{
+	/*
+	 **  Calculate LO frequency settings.
+	 */
+	u32 n, n0;
+	const u32 f_LO1 = pAS_Info->f_LO1;
+	const u32 f_LO2 = pAS_Info->f_LO2;
+	const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2;
+	const u32 c = d - pAS_Info->f_out_bw;
+	const u32 f = pAS_Info->f_zif_bw / 2;
+	const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1;
+	s32 f_nsLO1, f_nsLO2;
+	s32 f_Spur;
+	u32 ma, mb, mc, md, me, mf;
+	u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs;
+
+	dprintk(2, "\n");
+
+	*fm = 0;
+
+	/*
+	 ** For each edge (d, c & f), calculate a scale, based on the gcd
+	 ** of f_LO1, f_LO2 and the edge value.  Use the larger of this
+	 ** gcd-based scale factor or f_Scale.
+	 */
+	lo_gcd = gcd(f_LO1, f_LO2);
+	gd_Scale = max((u32) gcd(lo_gcd, d), f_Scale);
+	hgds = gd_Scale / 2;
+	gc_Scale = max((u32) gcd(lo_gcd, c), f_Scale);
+	hgcs = gc_Scale / 2;
+	gf_Scale = max((u32) gcd(lo_gcd, f), f_Scale);
+	hgfs = gf_Scale / 2;
+
+	n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2);
+
+	/*  Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic  */
+	for (n = n0; n <= pAS_Info->maxH1; ++n) {
+		md = (n * ((f_LO1 + hgds) / gd_Scale) -
+		      ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
+
+		/*  If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present  */
+		if (md >= pAS_Info->maxH1)
+			break;
+
+		ma = (n * ((f_LO1 + hgds) / gd_Scale) +
+		      ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
+
+		/*  If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic  */
+		if (md == ma)
+			continue;
+
+		mc = (n * ((f_LO1 + hgcs) / gc_Scale) -
+		      ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
+		if (mc != md) {
+			f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale));
+			f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale));
+			f_Spur =
+			    (gc_Scale * (f_nsLO1 - f_nsLO2)) +
+			    n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale);
+
+			*fp = ((f_Spur - (s32) c) / (mc - n)) + 1;
+			*fm = (((s32) d - f_Spur) / (mc - n)) + 1;
+			return 1;
+		}
+
+		/*  Location of Zero-IF-spur to be checked  */
+		me = (n * ((f_LO1 + hgfs) / gf_Scale) +
+		      ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
+		mf = (n * ((f_LO1 + hgfs) / gf_Scale) -
+		      ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
+		if (me != mf) {
+			f_nsLO1 = n * (f_LO1 / gf_Scale);
+			f_nsLO2 = me * (f_LO2 / gf_Scale);
+			f_Spur =
+			    (gf_Scale * (f_nsLO1 - f_nsLO2)) +
+			    n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale);
+
+			*fp = ((f_Spur + (s32) f) / (me - n)) + 1;
+			*fm = (((s32) f - f_Spur) / (me - n)) + 1;
+			return 1;
+		}
+
+		mb = (n * ((f_LO1 + hgcs) / gc_Scale) +
+		      ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
+		if (ma != mb) {
+			f_nsLO1 = n * (f_LO1 / gc_Scale);
+			f_nsLO2 = ma * (f_LO2 / gc_Scale);
+			f_Spur =
+			    (gc_Scale * (f_nsLO1 - f_nsLO2)) +
+			    n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale);
+
+			*fp = (((s32) d + f_Spur) / (ma - n)) + 1;
+			*fm = (-(f_Spur + (s32) c) / (ma - n)) + 1;
+			return 1;
+		}
+	}
+
+	/*  No spurs found  */
+	return 0;
+}
+
+/*
+ * MT_AvoidSpurs() - Main entry point to avoid spurs.
+ *                   Checks for existing spurs in present LO1, LO2 freqs
+ *                   and if present, chooses spur-free LO1, LO2 combination
+ *                   that tunes the same input/output frequencies.
+ */
+static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info)
+{
+	int status = 0;
+	u32 fm, fp;		/*  restricted range on LO's        */
+	pAS_Info->bSpurAvoided = 0;
+	pAS_Info->nSpursFound = 0;
+
+	dprintk(2, "\n");
+
+	if (pAS_Info->maxH1 == 0)
+		return 0;
+
+	/*
+	 * Avoid LO Generated Spurs
+	 *
+	 * Make sure that have no LO-related spurs within the IF output
+	 * bandwidth.
+	 *
+	 * If there is an LO spur in this band, start at the current IF1 frequency
+	 * and work out until we find a spur-free frequency or run up against the
+	 * 1st IF SAW band edge.  Use temporary copies of fLO1 and fLO2 so that they
+	 * will be unchanged if a spur-free setting is not found.
+	 */
+	pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
+	if (pAS_Info->bSpurPresent) {
+		u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in;	/*  current attempt at a 1st IF  */
+		u32 zfLO1 = pAS_Info->f_LO1;	/*  current attempt at an LO1 freq  */
+		u32 zfLO2 = pAS_Info->f_LO2;	/*  current attempt at an LO2 freq  */
+		u32 delta_IF1;
+		u32 new_IF1;
+
+		/*
+		 **  Spur was found, attempt to find a spur-free 1st IF
+		 */
+		do {
+			pAS_Info->nSpursFound++;
+
+			/*  Raise f_IF1_upper, if needed  */
+			MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp);
+
+			/*  Choose next IF1 that is closest to f_IF1_CENTER              */
+			new_IF1 = MT2063_ChooseFirstIF(pAS_Info);
+
+			if (new_IF1 > zfIF1) {
+				pAS_Info->f_LO1 += (new_IF1 - zfIF1);
+				pAS_Info->f_LO2 += (new_IF1 - zfIF1);
+			} else {
+				pAS_Info->f_LO1 -= (zfIF1 - new_IF1);
+				pAS_Info->f_LO2 -= (zfIF1 - new_IF1);
+			}
+			zfIF1 = new_IF1;
+
+			if (zfIF1 > pAS_Info->f_if1_Center)
+				delta_IF1 = zfIF1 - pAS_Info->f_if1_Center;
+			else
+				delta_IF1 = pAS_Info->f_if1_Center - zfIF1;
+
+			pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
+		/*
+		 *  Continue while the new 1st IF is still within the 1st IF bandwidth
+		 *  and there is a spur in the band (again)
+		 */
+		} while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent);
+
+		/*
+		 * Use the LO-spur free values found.  If the search went all
+		 * the way to the 1st IF band edge and always found spurs, just
+		 * leave the original choice.  It's as "good" as any other.
+		 */
+		if (pAS_Info->bSpurPresent == 1) {
+			status |= MT2063_SPUR_PRESENT_ERR;
+			pAS_Info->f_LO1 = zfLO1;
+			pAS_Info->f_LO2 = zfLO2;
+		} else
+			pAS_Info->bSpurAvoided = 1;
+	}
+
+	status |=
+	    ((pAS_Info->
+	      nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK);
+
+	return status;
+}
+
+/*
+ * Constants used by the tuning algorithm
+ */
+#define MT2063_REF_FREQ          (16000000UL)	/* Reference oscillator Frequency (in Hz) */
+#define MT2063_IF1_BW            (22000000UL)	/* The IF1 filter bandwidth (in Hz) */
+#define MT2063_TUNE_STEP_SIZE       (50000UL)	/* Tune in steps of 50 kHz */
+#define MT2063_SPUR_STEP_HZ        (250000UL)	/* Step size (in Hz) to move IF1 when avoiding spurs */
+#define MT2063_ZIF_BW             (2000000UL)	/* Zero-IF spur-free bandwidth (in Hz) */
+#define MT2063_MAX_HARMONICS_1         (15UL)	/* Highest intra-tuner LO Spur Harmonic to be avoided */
+#define MT2063_MAX_HARMONICS_2          (5UL)	/* Highest inter-tuner LO Spur Harmonic to be avoided */
+#define MT2063_MIN_LO_SEP         (1000000UL)	/* Minimum inter-tuner LO frequency separation */
+#define MT2063_LO1_FRACN_AVOID          (0UL)	/* LO1 FracN numerator avoid region (in Hz) */
+#define MT2063_LO2_FRACN_AVOID     (199999UL)	/* LO2 FracN numerator avoid region (in Hz) */
+#define MT2063_MIN_FIN_FREQ      (44000000UL)	/* Minimum input frequency (in Hz) */
+#define MT2063_MAX_FIN_FREQ    (1100000000UL)	/* Maximum input frequency (in Hz) */
+#define MT2063_MIN_FOUT_FREQ     (36000000UL)	/* Minimum output frequency (in Hz) */
+#define MT2063_MAX_FOUT_FREQ     (57000000UL)	/* Maximum output frequency (in Hz) */
+#define MT2063_MIN_DNC_FREQ    (1293000000UL)	/* Minimum LO2 frequency (in Hz) */
+#define MT2063_MAX_DNC_FREQ    (1614000000UL)	/* Maximum LO2 frequency (in Hz) */
+#define MT2063_MIN_UPC_FREQ    (1396000000UL)	/* Minimum LO1 frequency (in Hz) */
+#define MT2063_MAX_UPC_FREQ    (2750000000UL)	/* Maximum LO1 frequency (in Hz) */
+
+/*
+ *  Define the supported Part/Rev codes for the MT2063
+ */
+#define MT2063_B0       (0x9B)
+#define MT2063_B1       (0x9C)
+#define MT2063_B2       (0x9D)
+#define MT2063_B3       (0x9E)
+
+/**
+ * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
+ *
+ * @state:	struct mt2063_state pointer
+ *
+ * This function returns 0, if no lock, 1 if locked and a value < 1 if error
+ */
+static int mt2063_lockStatus(struct mt2063_state *state)
+{
+	const u32 nMaxWait = 100;	/*  wait a maximum of 100 msec   */
+	const u32 nPollRate = 2;	/*  poll status bits every 2 ms */
+	const u32 nMaxLoops = nMaxWait / nPollRate;
+	const u8 LO1LK = 0x80;
+	u8 LO2LK = 0x08;
+	int status;
+	u32 nDelays = 0;
+
+	dprintk(2, "\n");
+
+	/*  LO2 Lock bit was in a different place for B0 version  */
+	if (state->tuner_id == MT2063_B0)
+		LO2LK = 0x40;
+
+	do {
+		status = mt2063_read(state, MT2063_REG_LO_STATUS,
+				     &state->reg[MT2063_REG_LO_STATUS], 1);
+
+		if (status < 0)
+			return status;
+
+		if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) ==
+		    (LO1LK | LO2LK)) {
+			return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO;
+		}
+		msleep(nPollRate);	/*  Wait between retries  */
+	} while (++nDelays < nMaxLoops);
+
+	/*
+	 * Got no lock or partial lock
+	 */
+	return 0;
+}
+
+/*
+ *  Constants for setting receiver modes.
+ *  (6 modes defined at this time, enumerated by mt2063_delivery_sys)
+ *  (DNC1GC & DNC2GC are the values, which are used, when the specific
+ *   DNC Output is selected, the other is always off)
+ *
+ *                enum mt2063_delivery_sys
+ * -------------+----------------------------------------------
+ * Mode 0 :     | MT2063_CABLE_QAM
+ * Mode 1 :     | MT2063_CABLE_ANALOG
+ * Mode 2 :     | MT2063_OFFAIR_COFDM
+ * Mode 3 :     | MT2063_OFFAIR_COFDM_SAWLESS
+ * Mode 4 :     | MT2063_OFFAIR_ANALOG
+ * Mode 5 :     | MT2063_OFFAIR_8VSB
+ * --------------+----------------------------------------------
+ *
+ *                |<----------   Mode  -------------->|
+ *    Reg Field   |  0  |  1  |  2  |  3  |  4  |  5  |
+ *    ------------+-----+-----+-----+-----+-----+-----+
+ *    RFAGCen     | OFF | OFF | OFF | OFF | OFF | OFF
+ *    LNARin      |   0 |   0 |   3 |   3 |  3  |  3
+ *    FIFFQen     |   1 |   1 |   1 |   1 |  1  |  1
+ *    FIFFq       |   0 |   0 |   0 |   0 |  0  |  0
+ *    DNC1gc      |   0 |   0 |   0 |   0 |  0  |  0
+ *    DNC2gc      |   0 |   0 |   0 |   0 |  0  |  0
+ *    GCU Auto    |   1 |   1 |   1 |   1 |  1  |  1
+ *    LNA max Atn |  31 |  31 |  31 |  31 | 31  | 31
+ *    LNA Target  |  44 |  43 |  43 |  43 | 43  | 43
+ *    ign  RF Ovl |   0 |   0 |   0 |   0 |  0  |  0
+ *    RF  max Atn |  31 |  31 |  31 |  31 | 31  | 31
+ *    PD1 Target  |  36 |  36 |  38 |  38 | 36  | 38
+ *    ign FIF Ovl |   0 |   0 |   0 |   0 |  0  |  0
+ *    FIF max Atn |   5 |   5 |   5 |   5 |  5  |  5
+ *    PD2 Target  |  40 |  33 |  42 |  42 | 33  | 42
+ */
+
+enum mt2063_delivery_sys {
+	MT2063_CABLE_QAM = 0,
+	MT2063_CABLE_ANALOG,
+	MT2063_OFFAIR_COFDM,
+	MT2063_OFFAIR_COFDM_SAWLESS,
+	MT2063_OFFAIR_ANALOG,
+	MT2063_OFFAIR_8VSB,
+	MT2063_NUM_RCVR_MODES
+};
+
+static const char *mt2063_mode_name[] = {
+	[MT2063_CABLE_QAM]		= "digital cable",
+	[MT2063_CABLE_ANALOG]		= "analog cable",
+	[MT2063_OFFAIR_COFDM]		= "digital offair",
+	[MT2063_OFFAIR_COFDM_SAWLESS]	= "digital offair without SAW",
+	[MT2063_OFFAIR_ANALOG]		= "analog offair",
+	[MT2063_OFFAIR_8VSB]		= "analog offair 8vsb",
+};
+
+static const u8 RFAGCEN[]	= {  0,  0,  0,  0,  0,  0 };
+static const u8 LNARIN[]	= {  0,  0,  3,  3,  3,  3 };
+static const u8 FIFFQEN[]	= {  1,  1,  1,  1,  1,  1 };
+static const u8 FIFFQ[]		= {  0,  0,  0,  0,  0,  0 };
+static const u8 DNC1GC[]	= {  0,  0,  0,  0,  0,  0 };
+static const u8 DNC2GC[]	= {  0,  0,  0,  0,  0,  0 };
+static const u8 ACLNAMAX[]	= { 31, 31, 31, 31, 31, 31 };
+static const u8 LNATGT[]	= { 44, 43, 43, 43, 43, 43 };
+static const u8 RFOVDIS[]	= {  0,  0,  0,  0,  0,  0 };
+static const u8 ACRFMAX[]	= { 31, 31, 31, 31, 31, 31 };
+static const u8 PD1TGT[]	= { 36, 36, 38, 38, 36, 38 };
+static const u8 FIFOVDIS[]	= {  0,  0,  0,  0,  0,  0 };
+static const u8 ACFIFMAX[]	= { 29, 29, 29, 29, 29, 29 };
+static const u8 PD2TGT[]	= { 40, 33, 38, 42, 30, 38 };
+
+/*
+ * mt2063_set_dnc_output_enable()
+ */
+static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state,
+					enum MT2063_DNC_Output_Enable *pValue)
+{
+	dprintk(2, "\n");
+
+	if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) {	/* if DNC1 is off */
+		if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03)	/* if DNC2 is off */
+			*pValue = MT2063_DNC_NONE;
+		else
+			*pValue = MT2063_DNC_2;
+	} else {	/* DNC1 is on */
+		if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03)	/* if DNC2 is off */
+			*pValue = MT2063_DNC_1;
+		else
+			*pValue = MT2063_DNC_BOTH;
+	}
+	return 0;
+}
+
+/*
+ * mt2063_set_dnc_output_enable()
+ */
+static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state,
+					enum MT2063_DNC_Output_Enable nValue)
+{
+	int status = 0;	/* Status to be returned        */
+	u8 val = 0;
+
+	dprintk(2, "\n");
+
+	/* selects, which DNC output is used */
+	switch (nValue) {
+	case MT2063_DNC_NONE:
+		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03;	/* Set DNC1GC=3 */
+		if (state->reg[MT2063_REG_DNC_GAIN] !=
+		    val)
+			status |=
+			    mt2063_setreg(state,
+					  MT2063_REG_DNC_GAIN,
+					  val);
+
+		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03;	/* Set DNC2GC=3 */
+		if (state->reg[MT2063_REG_VGA_GAIN] !=
+		    val)
+			status |=
+			    mt2063_setreg(state,
+					  MT2063_REG_VGA_GAIN,
+					  val);
+
+		val = (state->reg[MT2063_REG_RSVD_20] & ~0x40);	/* Set PD2MUX=0 */
+		if (state->reg[MT2063_REG_RSVD_20] !=
+		    val)
+			status |=
+			    mt2063_setreg(state,
+					  MT2063_REG_RSVD_20,
+					  val);
+
+		break;
+	case MT2063_DNC_1:
+		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03);	/* Set DNC1GC=x */
+		if (state->reg[MT2063_REG_DNC_GAIN] !=
+		    val)
+			status |=
+			    mt2063_setreg(state,
+					  MT2063_REG_DNC_GAIN,
+					  val);
+
+		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03;	/* Set DNC2GC=3 */
+		if (state->reg[MT2063_REG_VGA_GAIN] !=
+		    val)
+			status |=
+			    mt2063_setreg(state,
+					  MT2063_REG_VGA_GAIN,
+					  val);
+
+		val = (state->reg[MT2063_REG_RSVD_20] & ~0x40);	/* Set PD2MUX=0 */
+		if (state->reg[MT2063_REG_RSVD_20] !=
+		    val)
+			status |=
+			    mt2063_setreg(state,
+					  MT2063_REG_RSVD_20,
+					  val);
+
+		break;
+	case MT2063_DNC_2:
+		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03;	/* Set DNC1GC=3 */
+		if (state->reg[MT2063_REG_DNC_GAIN] !=
+		    val)
+			status |=
+			    mt2063_setreg(state,
+					  MT2063_REG_DNC_GAIN,
+					  val);
+
+		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03);	/* Set DNC2GC=x */
+		if (state->reg[MT2063_REG_VGA_GAIN] !=
+		    val)
+			status |=
+			    mt2063_setreg(state,
+					  MT2063_REG_VGA_GAIN,
+					  val);
+
+		val = (state->reg[MT2063_REG_RSVD_20] | 0x40);	/* Set PD2MUX=1 */
+		if (state->reg[MT2063_REG_RSVD_20] !=
+		    val)
+			status |=
+			    mt2063_setreg(state,
+					  MT2063_REG_RSVD_20,
+					  val);
+
+		break;
+	case MT2063_DNC_BOTH:
+		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03);	/* Set DNC1GC=x */
+		if (state->reg[MT2063_REG_DNC_GAIN] !=
+		    val)
+			status |=
+			    mt2063_setreg(state,
+					  MT2063_REG_DNC_GAIN,
+					  val);
+
+		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03);	/* Set DNC2GC=x */
+		if (state->reg[MT2063_REG_VGA_GAIN] !=
+		    val)
+			status |=
+			    mt2063_setreg(state,
+					  MT2063_REG_VGA_GAIN,
+					  val);
+
+		val = (state->reg[MT2063_REG_RSVD_20] | 0x40);	/* Set PD2MUX=1 */
+		if (state->reg[MT2063_REG_RSVD_20] !=
+		    val)
+			status |=
+			    mt2063_setreg(state,
+					  MT2063_REG_RSVD_20,
+					  val);
+
+		break;
+	default:
+		break;
+	}
+
+	return status;
+}
+
+/*
+ * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
+ *			      the selected enum mt2063_delivery_sys type.
+ *
+ *  (DNC1GC & DNC2GC are the values, which are used, when the specific
+ *   DNC Output is selected, the other is always off)
+ *
+ * @state:	ptr to mt2063_state structure
+ * @Mode:	desired receiver delivery system
+ *
+ * Note: Register cache must be valid for it to work
+ */
+
+static u32 MT2063_SetReceiverMode(struct mt2063_state *state,
+				  enum mt2063_delivery_sys Mode)
+{
+	int status = 0;	/* Status to be returned        */
+	u8 val;
+	u32 longval;
+
+	dprintk(2, "\n");
+
+	if (Mode >= MT2063_NUM_RCVR_MODES)
+		status = -ERANGE;
+
+	/* RFAGCen */
+	if (status >= 0) {
+		val =
+		    (state->
+		     reg[MT2063_REG_PD1_TGT] & ~0x40) | (RFAGCEN[Mode]
+								   ? 0x40 :
+								   0x00);
+		if (state->reg[MT2063_REG_PD1_TGT] != val)
+			status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
+	}
+
+	/* LNARin */
+	if (status >= 0) {
+		u8 val = (state->reg[MT2063_REG_CTRL_2C] & ~0x03) |
+			 (LNARIN[Mode] & 0x03);
+		if (state->reg[MT2063_REG_CTRL_2C] != val)
+			status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val);
+	}
+
+	/* FIFFQEN and FIFFQ */
+	if (status >= 0) {
+		val =
+		    (state->
+		     reg[MT2063_REG_FIFF_CTRL2] & ~0xF0) |
+		    (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4);
+		if (state->reg[MT2063_REG_FIFF_CTRL2] != val) {
+			status |=
+			    mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val);
+			/* trigger FIFF calibration, needed after changing FIFFQ */
+			val =
+			    (state->reg[MT2063_REG_FIFF_CTRL] | 0x01);
+			status |=
+			    mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
+			val =
+			    (state->
+			     reg[MT2063_REG_FIFF_CTRL] & ~0x01);
+			status |=
+			    mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
+		}
+	}
+
+	/* DNC1GC & DNC2GC */
+	status |= mt2063_get_dnc_output_enable(state, &longval);
+	status |= mt2063_set_dnc_output_enable(state, longval);
+
+	/* acLNAmax */
+	if (status >= 0) {
+		u8 val = (state->reg[MT2063_REG_LNA_OV] & ~0x1F) |
+			 (ACLNAMAX[Mode] & 0x1F);
+		if (state->reg[MT2063_REG_LNA_OV] != val)
+			status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val);
+	}
+
+	/* LNATGT */
+	if (status >= 0) {
+		u8 val = (state->reg[MT2063_REG_LNA_TGT] & ~0x3F) |
+			 (LNATGT[Mode] & 0x3F);
+		if (state->reg[MT2063_REG_LNA_TGT] != val)
+			status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
+	}
+
+	/* ACRF */
+	if (status >= 0) {
+		u8 val = (state->reg[MT2063_REG_RF_OV] & ~0x1F) |
+			 (ACRFMAX[Mode] & 0x1F);
+		if (state->reg[MT2063_REG_RF_OV] != val)
+			status |= mt2063_setreg(state, MT2063_REG_RF_OV, val);
+	}
+
+	/* PD1TGT */
+	if (status >= 0) {
+		u8 val = (state->reg[MT2063_REG_PD1_TGT] & ~0x3F) |
+			 (PD1TGT[Mode] & 0x3F);
+		if (state->reg[MT2063_REG_PD1_TGT] != val)
+			status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
+	}
+
+	/* FIFATN */
+	if (status >= 0) {
+		u8 val = ACFIFMAX[Mode];
+		if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5)
+			val = 5;
+		val = (state->reg[MT2063_REG_FIF_OV] & ~0x1F) |
+		      (val & 0x1F);
+		if (state->reg[MT2063_REG_FIF_OV] != val)
+			status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val);
+	}
+
+	/* PD2TGT */
+	if (status >= 0) {
+		u8 val = (state->reg[MT2063_REG_PD2_TGT] & ~0x3F) |
+		    (PD2TGT[Mode] & 0x3F);
+		if (state->reg[MT2063_REG_PD2_TGT] != val)
+			status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val);
+	}
+
+	/* Ignore ATN Overload */
+	if (status >= 0) {
+		val = (state->reg[MT2063_REG_LNA_TGT] & ~0x80) |
+		      (RFOVDIS[Mode] ? 0x80 : 0x00);
+		if (state->reg[MT2063_REG_LNA_TGT] != val)
+			status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
+	}
+
+	/* Ignore FIF Overload */
+	if (status >= 0) {
+		val = (state->reg[MT2063_REG_PD1_TGT] & ~0x80) |
+		      (FIFOVDIS[Mode] ? 0x80 : 0x00);
+		if (state->reg[MT2063_REG_PD1_TGT] != val)
+			status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
+	}
+
+	if (status >= 0) {
+		state->rcvr_mode = Mode;
+		dprintk(1, "mt2063 mode changed to %s\n",
+			mt2063_mode_name[state->rcvr_mode]);
+	}
+
+	return status;
+}
+
+/*
+ * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
+ *				  sections of the MT2063
+ *
+ * @Bits:		Mask bits to be cleared.
+ *
+ * See definition of MT2063_Mask_Bits type for description
+ * of each of the power bits.
+ */
+static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state,
+				     enum MT2063_Mask_Bits Bits)
+{
+	int status = 0;
+
+	dprintk(2, "\n");
+	Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD);	/* Only valid bits for this tuner */
+	if ((Bits & 0xFF00) != 0) {
+		state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8);
+		status |=
+		    mt2063_write(state,
+				    MT2063_REG_PWR_2,
+				    &state->reg[MT2063_REG_PWR_2], 1);
+	}
+	if ((Bits & 0xFF) != 0) {
+		state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF);
+		status |=
+		    mt2063_write(state,
+				    MT2063_REG_PWR_1,
+				    &state->reg[MT2063_REG_PWR_1], 1);
+	}
+
+	return status;
+}
+
+/*
+ * MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
+ *			       When Shutdown is 1, any section whose power
+ *			       mask is set will be shutdown.
+ */
+static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown)
+{
+	int status;
+
+	dprintk(2, "\n");
+	if (Shutdown == 1)
+		state->reg[MT2063_REG_PWR_1] |= 0x04;
+	else
+		state->reg[MT2063_REG_PWR_1] &= ~0x04;
+
+	status = mt2063_write(state,
+			    MT2063_REG_PWR_1,
+			    &state->reg[MT2063_REG_PWR_1], 1);
+
+	if (Shutdown != 1) {
+		state->reg[MT2063_REG_BYP_CTRL] =
+		    (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40;
+		status |=
+		    mt2063_write(state,
+				    MT2063_REG_BYP_CTRL,
+				    &state->reg[MT2063_REG_BYP_CTRL],
+				    1);
+		state->reg[MT2063_REG_BYP_CTRL] =
+		    (state->reg[MT2063_REG_BYP_CTRL] & 0x9F);
+		status |=
+		    mt2063_write(state,
+				    MT2063_REG_BYP_CTRL,
+				    &state->reg[MT2063_REG_BYP_CTRL],
+				    1);
+	}
+
+	return status;
+}
+
+static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref)
+{
+	return f_ref * (f_LO / f_ref)
+	    + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step);
+}
+
+/**
+ * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
+ *                        This function preserves maximum precision without
+ *                        risk of overflow.  It accurately calculates
+ *                        f_ref * num / denom to within 1 HZ with fixed math.
+ *
+ * @f_ref:	SRO frequency.
+ * @num:	Fractional portion of the multiplier
+ * @denom:	denominator portion of the ratio
+ *
+ * This calculation handles f_ref as two separate 14-bit fields.
+ * Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
+ * This is the genesis of the magic number "14" and the magic mask value of
+ * 0x03FFF.
+ *
+ * This routine successfully handles denom values up to and including 2^18.
+ *  Returns:        f_ref * num / denom
+ */
+static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom)
+{
+	u32 t1 = (f_ref >> 14) * num;
+	u32 term1 = t1 / denom;
+	u32 loss = t1 % denom;
+	u32 term2 =
+	    (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom;
+	return (term1 << 14) + term2;
+}
+
+/*
+ * CalcLO1Mult()- Calculates Integer divider value and the numerator
+ *                value for a FracN PLL.
+ *
+ *                This function assumes that the f_LO and f_Ref are
+ *                evenly divisible by f_LO_Step.
+ *
+ * @Div:	OUTPUT: Whole number portion of the multiplier
+ * @FracN:	OUTPUT: Fractional portion of the multiplier
+ * @f_LO:	desired LO frequency.
+ * @f_LO_Step:	Minimum step size for the LO (in Hz).
+ * @f_Ref:	SRO frequency.
+ * @f_Avoid:	Range of PLL frequencies to avoid near integer multiples
+ *		of f_Ref (in Hz).
+ *
+ * Returns:        Recalculated LO frequency.
+ */
+static u32 MT2063_CalcLO1Mult(u32 *Div,
+			      u32 *FracN,
+			      u32 f_LO,
+			      u32 f_LO_Step, u32 f_Ref)
+{
+	/*  Calculate the whole number portion of the divider */
+	*Div = f_LO / f_Ref;
+
+	/*  Calculate the numerator value (round to nearest f_LO_Step) */
+	*FracN =
+	    (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
+	     (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
+
+	return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64);
+}
+
+/**
+ * CalcLO2Mult() - Calculates Integer divider value and the numerator
+ *                 value for a FracN PLL.
+ *
+ *                  This function assumes that the f_LO and f_Ref are
+ *                  evenly divisible by f_LO_Step.
+ *
+ * @Div:	OUTPUT: Whole number portion of the multiplier
+ * @FracN:	OUTPUT: Fractional portion of the multiplier
+ * @f_LO:	desired LO frequency.
+ * @f_LO_Step:	Minimum step size for the LO (in Hz).
+ * @f_Ref:	SRO frequency.
+ *
+ * Returns: Recalculated LO frequency.
+ */
+static u32 MT2063_CalcLO2Mult(u32 *Div,
+			      u32 *FracN,
+			      u32 f_LO,
+			      u32 f_LO_Step, u32 f_Ref)
+{
+	/*  Calculate the whole number portion of the divider */
+	*Div = f_LO / f_Ref;
+
+	/*  Calculate the numerator value (round to nearest f_LO_Step) */
+	*FracN =
+	    (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
+	     (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
+
+	return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN,
+							    8191);
+}
+
+/*
+ * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
+ *			   used for a given input frequency.
+ *
+ * @state:	ptr to tuner data structure
+ * @f_in:	RF input center frequency (in Hz).
+ *
+ * Returns: ClearTune filter number (0-31)
+ */
+static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in)
+{
+	u32 RFBand;
+	u32 idx;		/*  index loop                      */
+
+	/*
+	 **  Find RF Band setting
+	 */
+	RFBand = 31;		/*  def when f_in > all    */
+	for (idx = 0; idx < 31; ++idx) {
+		if (state->CTFiltMax[idx] >= f_in) {
+			RFBand = idx;
+			break;
+		}
+	}
+	return RFBand;
+}
+
+/*
+ * MT2063_Tune() - Change the tuner's tuned frequency to RFin.
+ */
+static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in)
+{				/* RF input center frequency   */
+
+	int status = 0;
+	u32 LO1;		/*  1st LO register value           */
+	u32 Num1;		/*  Numerator for LO1 reg. value    */
+	u32 f_IF1;		/*  1st IF requested                */
+	u32 LO2;		/*  2nd LO register value           */
+	u32 Num2;		/*  Numerator for LO2 reg. value    */
+	u32 ofLO1, ofLO2;	/*  last time's LO frequencies      */
+	u8 fiffc = 0x80;	/*  FIFF center freq from tuner     */
+	u32 fiffof;		/*  Offset from FIFF center freq    */
+	const u8 LO1LK = 0x80;	/*  Mask for LO1 Lock bit           */
+	u8 LO2LK = 0x08;	/*  Mask for LO2 Lock bit           */
+	u8 val;
+	u32 RFBand;
+
+	dprintk(2, "\n");
+	/*  Check the input and output frequency ranges                   */
+	if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ))
+		return -EINVAL;
+
+	if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ)
+	    || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ))
+		return -EINVAL;
+
+	/*
+	 * Save original LO1 and LO2 register values
+	 */
+	ofLO1 = state->AS_Data.f_LO1;
+	ofLO2 = state->AS_Data.f_LO2;
+
+	/*
+	 * Find and set RF Band setting
+	 */
+	if (state->ctfilt_sw == 1) {
+		val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08);
+		if (state->reg[MT2063_REG_CTUNE_CTRL] != val) {
+			status |=
+			    mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val);
+		}
+		val = state->reg[MT2063_REG_CTUNE_OV];
+		RFBand = FindClearTuneFilter(state, f_in);
+		state->reg[MT2063_REG_CTUNE_OV] =
+		    (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F)
+			      | RFBand);
+		if (state->reg[MT2063_REG_CTUNE_OV] != val) {
+			status |=
+			    mt2063_setreg(state, MT2063_REG_CTUNE_OV, val);
+		}
+	}
+
+	/*
+	 * Read the FIFF Center Frequency from the tuner
+	 */
+	if (status >= 0) {
+		status |=
+		    mt2063_read(state,
+				   MT2063_REG_FIFFC,
+				   &state->reg[MT2063_REG_FIFFC], 1);
+		fiffc = state->reg[MT2063_REG_FIFFC];
+	}
+	/*
+	 * Assign in the requested values
+	 */
+	state->AS_Data.f_in = f_in;
+	/*  Request a 1st IF such that LO1 is on a step size */
+	state->AS_Data.f_if1_Request =
+	    MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in,
+			     state->AS_Data.f_LO1_Step,
+			     state->AS_Data.f_ref) - f_in;
+
+	/*
+	 * Calculate frequency settings.  f_IF1_FREQ + f_in is the
+	 * desired LO1 frequency
+	 */
+	MT2063_ResetExclZones(&state->AS_Data);
+
+	f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data);
+
+	state->AS_Data.f_LO1 =
+	    MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step,
+			     state->AS_Data.f_ref);
+
+	state->AS_Data.f_LO2 =
+	    MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
+			     state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
+
+	/*
+	 * Check for any LO spurs in the output bandwidth and adjust
+	 * the LO settings to avoid them if needed
+	 */
+	status |= MT2063_AvoidSpurs(&state->AS_Data);
+	/*
+	 * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
+	 * Recalculate the LO frequencies and the values to be placed
+	 * in the tuning registers.
+	 */
+	state->AS_Data.f_LO1 =
+	    MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1,
+			       state->AS_Data.f_LO1_Step, state->AS_Data.f_ref);
+	state->AS_Data.f_LO2 =
+	    MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
+			     state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
+	state->AS_Data.f_LO2 =
+	    MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2,
+			       state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
+
+	/*
+	 *  Check the upconverter and downconverter frequency ranges
+	 */
+	if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ)
+	    || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ))
+		status |= MT2063_UPC_RANGE;
+	if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ)
+	    || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ))
+		status |= MT2063_DNC_RANGE;
+	/*  LO2 Lock bit was in a different place for B0 version  */
+	if (state->tuner_id == MT2063_B0)
+		LO2LK = 0x40;
+
+	/*
+	 *  If we have the same LO frequencies and we're already locked,
+	 *  then skip re-programming the LO registers.
+	 */
+	if ((ofLO1 != state->AS_Data.f_LO1)
+	    || (ofLO2 != state->AS_Data.f_LO2)
+	    || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) !=
+		(LO1LK | LO2LK))) {
+		/*
+		 * Calculate the FIFFOF register value
+		 *
+		 *           IF1_Actual
+		 * FIFFOF = ------------ - 8 * FIFFC - 4992
+		 *            f_ref/64
+		 */
+		fiffof =
+		    (state->AS_Data.f_LO1 -
+		     f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc -
+		    4992;
+		if (fiffof > 0xFF)
+			fiffof = 0xFF;
+
+		/*
+		 * Place all of the calculated values into the local tuner
+		 * register fields.
+		 */
+		if (status >= 0) {
+			state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF);	/* DIV1q */
+			state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F);	/* NUM1q */
+			state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1)	/* DIV2q */
+								   |(Num2 >> 12));	/* NUM2q (hi) */
+			state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4);	/* NUM2q (mid) */
+			state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F));	/* NUM2q (lo) */
+
+			/*
+			 * Now write out the computed register values
+			 * IMPORTANT: There is a required order for writing
+			 *            (0x05 must follow all the others).
+			 */
+			status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5);	/* 0x01 - 0x05 */
+			if (state->tuner_id == MT2063_B0) {
+				/* Re-write the one-shot bits to trigger the tune operation */
+				status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1);	/* 0x05 */
+			}
+			/* Write out the FIFF offset only if it's changing */
+			if (state->reg[MT2063_REG_FIFF_OFFSET] !=
+			    (u8) fiffof) {
+				state->reg[MT2063_REG_FIFF_OFFSET] =
+				    (u8) fiffof;
+				status |=
+				    mt2063_write(state,
+						    MT2063_REG_FIFF_OFFSET,
+						    &state->
+						    reg[MT2063_REG_FIFF_OFFSET],
+						    1);
+			}
+		}
+
+		/*
+		 * Check for LO's locking
+		 */
+
+		if (status < 0)
+			return status;
+
+		status = mt2063_lockStatus(state);
+		if (status < 0)
+			return status;
+		if (!status)
+			return -EINVAL;		/* Couldn't lock */
+
+		/*
+		 * If we locked OK, assign calculated data to mt2063_state structure
+		 */
+		state->f_IF1_actual = state->AS_Data.f_LO1 - f_in;
+	}
+
+	return status;
+}
+
+static const u8 MT2063B0_defaults[] = {
+	/* Reg,  Value */
+	0x19, 0x05,
+	0x1B, 0x1D,
+	0x1C, 0x1F,
+	0x1D, 0x0F,
+	0x1E, 0x3F,
+	0x1F, 0x0F,
+	0x20, 0x3F,
+	0x22, 0x21,
+	0x23, 0x3F,
+	0x24, 0x20,
+	0x25, 0x3F,
+	0x27, 0xEE,
+	0x2C, 0x27,	/*  bit at 0x20 is cleared below  */
+	0x30, 0x03,
+	0x2C, 0x07,	/*  bit at 0x20 is cleared here   */
+	0x2D, 0x87,
+	0x2E, 0xAA,
+	0x28, 0xE1,	/*  Set the FIFCrst bit here      */
+	0x28, 0xE0,	/*  Clear the FIFCrst bit here    */
+	0x00
+};
+
+/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
+static const u8 MT2063B1_defaults[] = {
+	/* Reg,  Value */
+	0x05, 0xF0,
+	0x11, 0x10,	/* New Enable AFCsd */
+	0x19, 0x05,
+	0x1A, 0x6C,
+	0x1B, 0x24,
+	0x1C, 0x28,
+	0x1D, 0x8F,
+	0x1E, 0x14,
+	0x1F, 0x8F,
+	0x20, 0x57,
+	0x22, 0x21,	/* New - ver 1.03 */
+	0x23, 0x3C,	/* New - ver 1.10 */
+	0x24, 0x20,	/* New - ver 1.03 */
+	0x2C, 0x24,	/*  bit at 0x20 is cleared below  */
+	0x2D, 0x87,	/*  FIFFQ=0  */
+	0x2F, 0xF3,
+	0x30, 0x0C,	/* New - ver 1.11 */
+	0x31, 0x1B,	/* New - ver 1.11 */
+	0x2C, 0x04,	/*  bit at 0x20 is cleared here  */
+	0x28, 0xE1,	/*  Set the FIFCrst bit here      */
+	0x28, 0xE0,	/*  Clear the FIFCrst bit here    */
+	0x00
+};
+
+/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
+static const u8 MT2063B3_defaults[] = {
+	/* Reg,  Value */
+	0x05, 0xF0,
+	0x19, 0x3D,
+	0x2C, 0x24,	/*  bit at 0x20 is cleared below  */
+	0x2C, 0x04,	/*  bit at 0x20 is cleared here  */
+	0x28, 0xE1,	/*  Set the FIFCrst bit here      */
+	0x28, 0xE0,	/*  Clear the FIFCrst bit here    */
+	0x00
+};
+
+static int mt2063_init(struct dvb_frontend *fe)
+{
+	int status;
+	struct mt2063_state *state = fe->tuner_priv;
+	u8 all_resets = 0xF0;	/* reset/load bits */
+	const u8 *def = NULL;
+	char *step;
+	u32 FCRUN;
+	s32 maxReads;
+	u32 fcu_osc;
+	u32 i;
+
+	dprintk(2, "\n");
+
+	state->rcvr_mode = MT2063_CABLE_QAM;
+
+	/*  Read the Part/Rev code from the tuner */
+	status = mt2063_read(state, MT2063_REG_PART_REV,
+			     &state->reg[MT2063_REG_PART_REV], 1);
+	if (status < 0) {
+		printk(KERN_ERR "Can't read mt2063 part ID\n");
+		return status;
+	}
+
+	/* Check the part/rev code */
+	switch (state->reg[MT2063_REG_PART_REV]) {
+	case MT2063_B0:
+		step = "B0";
+		break;
+	case MT2063_B1:
+		step = "B1";
+		break;
+	case MT2063_B2:
+		step = "B2";
+		break;
+	case MT2063_B3:
+		step = "B3";
+		break;
+	default:
+		printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
+		       state->reg[MT2063_REG_PART_REV]);
+		return -ENODEV;	/*  Wrong tuner Part/Rev code */
+	}
+
+	/*  Check the 2nd byte of the Part/Rev code from the tuner */
+	status = mt2063_read(state, MT2063_REG_RSVD_3B,
+			     &state->reg[MT2063_REG_RSVD_3B], 1);
+
+	/* b7 != 0 ==> NOT MT2063 */
+	if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) {
+		printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
+		       state->reg[MT2063_REG_PART_REV],
+		       state->reg[MT2063_REG_RSVD_3B]);
+		return -ENODEV;	/*  Wrong tuner Part/Rev code */
+	}
+
+	printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step);
+
+	/*  Reset the tuner  */
+	status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1);
+	if (status < 0)
+		return status;
+
+	/* change all of the default values that vary from the HW reset values */
+	/*  def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
+	switch (state->reg[MT2063_REG_PART_REV]) {
+	case MT2063_B3:
+		def = MT2063B3_defaults;
+		break;
+
+	case MT2063_B1:
+		def = MT2063B1_defaults;
+		break;
+
+	case MT2063_B0:
+		def = MT2063B0_defaults;
+		break;
+
+	default:
+		return -ENODEV;
+		break;
+	}
+
+	while (status >= 0 && *def) {
+		u8 reg = *def++;
+		u8 val = *def++;
+		status = mt2063_write(state, reg, &val, 1);
+	}
+	if (status < 0)
+		return status;
+
+	/*  Wait for FIFF location to complete.  */
+	FCRUN = 1;
+	maxReads = 10;
+	while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) {
+		msleep(2);
+		status = mt2063_read(state,
+					 MT2063_REG_XO_STATUS,
+					 &state->
+					 reg[MT2063_REG_XO_STATUS], 1);
+		FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6;
+	}
+
+	if (FCRUN != 0 || status < 0)
+		return -ENODEV;
+
+	status = mt2063_read(state,
+			   MT2063_REG_FIFFC,
+			   &state->reg[MT2063_REG_FIFFC], 1);
+	if (status < 0)
+		return status;
+
+	/* Read back all the registers from the tuner */
+	status = mt2063_read(state,
+				MT2063_REG_PART_REV,
+				state->reg, MT2063_REG_END_REGS);
+	if (status < 0)
+		return status;
+
+	/*  Initialize the tuner state.  */
+	state->tuner_id = state->reg[MT2063_REG_PART_REV];
+	state->AS_Data.f_ref = MT2063_REF_FREQ;
+	state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) *
+				      ((u32) state->reg[MT2063_REG_FIFFC] + 640);
+	state->AS_Data.f_if1_bw = MT2063_IF1_BW;
+	state->AS_Data.f_out = 43750000UL;
+	state->AS_Data.f_out_bw = 6750000UL;
+	state->AS_Data.f_zif_bw = MT2063_ZIF_BW;
+	state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64;
+	state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE;
+	state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1;
+	state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2;
+	state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP;
+	state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center;
+	state->AS_Data.f_LO1 = 2181000000UL;
+	state->AS_Data.f_LO2 = 1486249786UL;
+	state->f_IF1_actual = state->AS_Data.f_if1_Center;
+	state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual;
+	state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID;
+	state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID;
+	state->num_regs = MT2063_REG_END_REGS;
+	state->AS_Data.avoidDECT = MT2063_AVOID_BOTH;
+	state->ctfilt_sw = 0;
+
+	state->CTFiltMax[0] = 69230000;
+	state->CTFiltMax[1] = 105770000;
+	state->CTFiltMax[2] = 140350000;
+	state->CTFiltMax[3] = 177110000;
+	state->CTFiltMax[4] = 212860000;
+	state->CTFiltMax[5] = 241130000;
+	state->CTFiltMax[6] = 274370000;
+	state->CTFiltMax[7] = 309820000;
+	state->CTFiltMax[8] = 342450000;
+	state->CTFiltMax[9] = 378870000;
+	state->CTFiltMax[10] = 416210000;
+	state->CTFiltMax[11] = 456500000;
+	state->CTFiltMax[12] = 495790000;
+	state->CTFiltMax[13] = 534530000;
+	state->CTFiltMax[14] = 572610000;
+	state->CTFiltMax[15] = 598970000;
+	state->CTFiltMax[16] = 635910000;
+	state->CTFiltMax[17] = 672130000;
+	state->CTFiltMax[18] = 714840000;
+	state->CTFiltMax[19] = 739660000;
+	state->CTFiltMax[20] = 770410000;
+	state->CTFiltMax[21] = 814660000;
+	state->CTFiltMax[22] = 846950000;
+	state->CTFiltMax[23] = 867820000;
+	state->CTFiltMax[24] = 915980000;
+	state->CTFiltMax[25] = 947450000;
+	state->CTFiltMax[26] = 983110000;
+	state->CTFiltMax[27] = 1021630000;
+	state->CTFiltMax[28] = 1061870000;
+	state->CTFiltMax[29] = 1098330000;
+	state->CTFiltMax[30] = 1138990000;
+
+	/*
+	 **   Fetch the FCU osc value and use it and the fRef value to
+	 **   scale all of the Band Max values
+	 */
+
+	state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A;
+	status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
+			      &state->reg[MT2063_REG_CTUNE_CTRL], 1);
+	if (status < 0)
+		return status;
+
+	/*  Read the ClearTune filter calibration value  */
+	status = mt2063_read(state, MT2063_REG_FIFFC,
+			     &state->reg[MT2063_REG_FIFFC], 1);
+	if (status < 0)
+		return status;
+
+	fcu_osc = state->reg[MT2063_REG_FIFFC];
+
+	state->reg[MT2063_REG_CTUNE_CTRL] = 0x00;
+	status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
+			      &state->reg[MT2063_REG_CTUNE_CTRL], 1);
+	if (status < 0)
+		return status;
+
+	/*  Adjust each of the values in the ClearTune filter cross-over table  */
+	for (i = 0; i < 31; i++)
+		state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640);
+
+	status = MT2063_SoftwareShutdown(state, 1);
+	if (status < 0)
+		return status;
+	status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
+	if (status < 0)
+		return status;
+
+	state->init = true;
+
+	return 0;
+}
+
+static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status)
+{
+	struct mt2063_state *state = fe->tuner_priv;
+	int status;
+
+	dprintk(2, "\n");
+
+	if (!state->init)
+		return -ENODEV;
+
+	*tuner_status = 0;
+	status = mt2063_lockStatus(state);
+	if (status < 0)
+		return status;
+	if (status)
+		*tuner_status = TUNER_STATUS_LOCKED;
+
+	dprintk(1, "Tuner status: %d", *tuner_status);
+
+	return 0;
+}
+
+static void mt2063_release(struct dvb_frontend *fe)
+{
+	struct mt2063_state *state = fe->tuner_priv;
+
+	dprintk(2, "\n");
+
+	fe->tuner_priv = NULL;
+	kfree(state);
+}
+
+static int mt2063_set_analog_params(struct dvb_frontend *fe,
+				    struct analog_parameters *params)
+{
+	struct mt2063_state *state = fe->tuner_priv;
+	s32 pict_car;
+	s32 pict2chanb_vsb;
+	s32 ch_bw;
+	s32 if_mid;
+	s32 rcvr_mode;
+	int status;
+
+	dprintk(2, "\n");
+
+	if (!state->init) {
+		status = mt2063_init(fe);
+		if (status < 0)
+			return status;
+	}
+
+	switch (params->mode) {
+	case V4L2_TUNER_RADIO:
+		pict_car = 38900000;
+		ch_bw = 8000000;
+		pict2chanb_vsb = -(ch_bw / 2);
+		rcvr_mode = MT2063_OFFAIR_ANALOG;
+		break;
+	case V4L2_TUNER_ANALOG_TV:
+		rcvr_mode = MT2063_CABLE_ANALOG;
+		if (params->std & ~V4L2_STD_MN) {
+			pict_car = 38900000;
+			ch_bw = 6000000;
+			pict2chanb_vsb = -1250000;
+		} else if (params->std & V4L2_STD_PAL_G) {
+			pict_car = 38900000;
+			ch_bw = 7000000;
+			pict2chanb_vsb = -1250000;
+		} else {		/* PAL/SECAM standards */
+			pict_car = 38900000;
+			ch_bw = 8000000;
+			pict2chanb_vsb = -1250000;
+		}
+		break;
+	default:
+		return -EINVAL;
+	}
+	if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
+
+	state->AS_Data.f_LO2_Step = 125000;	/* FIXME: probably 5000 for FM */
+	state->AS_Data.f_out = if_mid;
+	state->AS_Data.f_out_bw = ch_bw + 750000;
+	status = MT2063_SetReceiverMode(state, rcvr_mode);
+	if (status < 0)
+		return status;
+
+	dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
+		params->frequency, ch_bw, pict2chanb_vsb);
+
+	status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2))));
+	if (status < 0)
+		return status;
+
+	state->frequency = params->frequency;
+	return 0;
+}
+
+/*
+ * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
+ * So, the amount of the needed bandwidth is given by:
+ *	Bw = Symbol_rate * (1 + 0.15)
+ * As such, the maximum symbol rate supported by 6 MHz is given by:
+ *	max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
+ */
+#define MAX_SYMBOL_RATE_6MHz	5217391
+
+static int mt2063_set_params(struct dvb_frontend *fe)
+{
+	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+	struct mt2063_state *state = fe->tuner_priv;
+	int status;
+	s32 pict_car;
+	s32 pict2chanb_vsb;
+	s32 ch_bw;
+	s32 if_mid;
+	s32 rcvr_mode;
+
+	if (!state->init) {
+		status = mt2063_init(fe);
+		if (status < 0)
+			return status;
+	}
+
+	dprintk(2, "\n");
+
+	if (c->bandwidth_hz == 0)
+		return -EINVAL;
+	if (c->bandwidth_hz <= 6000000)
+		ch_bw = 6000000;
+	else if (c->bandwidth_hz <= 7000000)
+		ch_bw = 7000000;
+	else
+		ch_bw = 8000000;
+
+	switch (c->delivery_system) {
+	case SYS_DVBT:
+		rcvr_mode = MT2063_OFFAIR_COFDM;
+		pict_car = 36125000;
+		pict2chanb_vsb = -(ch_bw / 2);
+		break;
+	case SYS_DVBC_ANNEX_A:
+	case SYS_DVBC_ANNEX_C:
+		rcvr_mode = MT2063_CABLE_QAM;
+		pict_car = 36125000;
+		pict2chanb_vsb = -(ch_bw / 2);
+		break;
+	default:
+		return -EINVAL;
+	}
+	if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
+
+	state->AS_Data.f_LO2_Step = 125000;	/* FIXME: probably 5000 for FM */
+	state->AS_Data.f_out = if_mid;
+	state->AS_Data.f_out_bw = ch_bw + 750000;
+	status = MT2063_SetReceiverMode(state, rcvr_mode);
+	if (status < 0)
+		return status;
+
+	dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
+		c->frequency, ch_bw, pict2chanb_vsb);
+
+	status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2))));
+
+	if (status < 0)
+		return status;
+
+	state->frequency = c->frequency;
+	return 0;
+}
+
+static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
+{
+	struct mt2063_state *state = fe->tuner_priv;
+
+	dprintk(2, "\n");
+
+	if (!state->init)
+		return -ENODEV;
+
+	*freq = state->AS_Data.f_out;
+
+	dprintk(1, "IF frequency: %d\n", *freq);
+
+	return 0;
+}
+
+static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
+{
+	struct mt2063_state *state = fe->tuner_priv;
+
+	dprintk(2, "\n");
+
+	if (!state->init)
+		return -ENODEV;
+
+	*bw = state->AS_Data.f_out_bw - 750000;
+
+	dprintk(1, "bandwidth: %d\n", *bw);
+
+	return 0;
+}
+
+static const struct dvb_tuner_ops mt2063_ops = {
+	.info = {
+		 .name = "MT2063 Silicon Tuner",
+		 .frequency_min_hz  =  45 * MHz,
+		 .frequency_max_hz  = 865 * MHz,
+	 },
+
+	.init = mt2063_init,
+	.sleep = MT2063_Sleep,
+	.get_status = mt2063_get_status,
+	.set_analog_params = mt2063_set_analog_params,
+	.set_params    = mt2063_set_params,
+	.get_if_frequency = mt2063_get_if_frequency,
+	.get_bandwidth = mt2063_get_bandwidth,
+	.release = mt2063_release,
+};
+
+struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
+				   struct mt2063_config *config,
+				   struct i2c_adapter *i2c)
+{
+	struct mt2063_state *state = NULL;
+
+	dprintk(2, "\n");
+
+	state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL);
+	if (!state)
+		return NULL;
+
+	state->config = config;
+	state->i2c = i2c;
+	state->frontend = fe;
+	state->reference = config->refclock / 1000;	/* kHz */
+	fe->tuner_priv = state;
+	fe->ops.tuner_ops = mt2063_ops;
+
+	printk(KERN_INFO "%s: Attaching MT2063\n", __func__);
+	return fe;
+}
+EXPORT_SYMBOL_GPL(mt2063_attach);
+
+#if 0
+/*
+ * Ancillary routines visible outside mt2063
+ * FIXME: Remove them in favor of using standard tuner callbacks
+ */
+static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe)
+{
+	struct mt2063_state *state = fe->tuner_priv;
+	int err = 0;
+
+	dprintk(2, "\n");
+
+	err = MT2063_SoftwareShutdown(state, 1);
+	if (err < 0)
+		printk(KERN_ERR "%s: Couldn't shutdown\n", __func__);
+
+	return err;
+}
+
+static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe)
+{
+	struct mt2063_state *state = fe->tuner_priv;
+	int err = 0;
+
+	dprintk(2, "\n");
+
+	err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
+	if (err < 0)
+		printk(KERN_ERR "%s: Invalid parameter\n", __func__);
+
+	return err;
+}
+#endif
+
+MODULE_AUTHOR("Mauro Carvalho Chehab");
+MODULE_DESCRIPTION("MT2063 Silicon tuner");
+MODULE_LICENSE("GPL");