Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright(c) 2015 - 2018 Intel Corporation. |
| 3 | * |
| 4 | * This file is provided under a dual BSD/GPLv2 license. When using or |
| 5 | * redistributing this file, you may do so under either license. |
| 6 | * |
| 7 | * GPL LICENSE SUMMARY |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of version 2 of the GNU General Public License as |
| 11 | * published by the Free Software Foundation. |
| 12 | * |
| 13 | * This program is distributed in the hope that it will be useful, but |
| 14 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 16 | * General Public License for more details. |
| 17 | * |
| 18 | * BSD LICENSE |
| 19 | * |
| 20 | * Redistribution and use in source and binary forms, with or without |
| 21 | * modification, are permitted provided that the following conditions |
| 22 | * are met: |
| 23 | * |
| 24 | * - Redistributions of source code must retain the above copyright |
| 25 | * notice, this list of conditions and the following disclaimer. |
| 26 | * - Redistributions in binary form must reproduce the above copyright |
| 27 | * notice, this list of conditions and the following disclaimer in |
| 28 | * the documentation and/or other materials provided with the |
| 29 | * distribution. |
| 30 | * - Neither the name of Intel Corporation nor the names of its |
| 31 | * contributors may be used to endorse or promote products derived |
| 32 | * from this software without specific prior written permission. |
| 33 | * |
| 34 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 35 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 36 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 37 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 38 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 39 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 40 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 41 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 42 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 43 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 44 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 45 | * |
| 46 | */ |
| 47 | |
| 48 | #include <linux/pci.h> |
| 49 | #include <linux/netdevice.h> |
| 50 | #include <linux/vmalloc.h> |
| 51 | #include <linux/delay.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 52 | #include <linux/xarray.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 53 | #include <linux/module.h> |
| 54 | #include <linux/printk.h> |
| 55 | #include <linux/hrtimer.h> |
| 56 | #include <linux/bitmap.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 57 | #include <linux/numa.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 58 | #include <rdma/rdma_vt.h> |
| 59 | |
| 60 | #include "hfi.h" |
| 61 | #include "device.h" |
| 62 | #include "common.h" |
| 63 | #include "trace.h" |
| 64 | #include "mad.h" |
| 65 | #include "sdma.h" |
| 66 | #include "debugfs.h" |
| 67 | #include "verbs.h" |
| 68 | #include "aspm.h" |
| 69 | #include "affinity.h" |
| 70 | #include "vnic.h" |
| 71 | #include "exp_rcv.h" |
| 72 | |
| 73 | #undef pr_fmt |
| 74 | #define pr_fmt(fmt) DRIVER_NAME ": " fmt |
| 75 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 76 | /* |
| 77 | * min buffers we want to have per context, after driver |
| 78 | */ |
| 79 | #define HFI1_MIN_USER_CTXT_BUFCNT 7 |
| 80 | |
| 81 | #define HFI1_MIN_HDRQ_EGRBUF_CNT 2 |
| 82 | #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352 |
| 83 | #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */ |
| 84 | #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */ |
| 85 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 86 | #define NUM_IB_PORTS 1 |
| 87 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 88 | /* |
| 89 | * Number of user receive contexts we are configured to use (to allow for more |
| 90 | * pio buffers per ctxt, etc.) Zero means use one user context per CPU. |
| 91 | */ |
| 92 | int num_user_contexts = -1; |
| 93 | module_param_named(num_user_contexts, num_user_contexts, int, 0444); |
| 94 | MODULE_PARM_DESC( |
| 95 | num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)"); |
| 96 | |
| 97 | uint krcvqs[RXE_NUM_DATA_VL]; |
| 98 | int krcvqsset; |
| 99 | module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO); |
| 100 | MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL"); |
| 101 | |
| 102 | /* computed based on above array */ |
| 103 | unsigned long n_krcvqs; |
| 104 | |
| 105 | static unsigned hfi1_rcvarr_split = 25; |
| 106 | module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO); |
| 107 | MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers"); |
| 108 | |
| 109 | static uint eager_buffer_size = (8 << 20); /* 8MB */ |
| 110 | module_param(eager_buffer_size, uint, S_IRUGO); |
| 111 | MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB"); |
| 112 | |
| 113 | static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */ |
| 114 | module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO); |
| 115 | MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)"); |
| 116 | |
| 117 | static uint hfi1_hdrq_entsize = 32; |
| 118 | module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444); |
| 119 | MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)"); |
| 120 | |
| 121 | unsigned int user_credit_return_threshold = 33; /* default is 33% */ |
| 122 | module_param(user_credit_return_threshold, uint, S_IRUGO); |
| 123 | MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)"); |
| 124 | |
| 125 | static inline u64 encode_rcv_header_entry_size(u16 size); |
| 126 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 127 | DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 128 | |
| 129 | static int hfi1_create_kctxt(struct hfi1_devdata *dd, |
| 130 | struct hfi1_pportdata *ppd) |
| 131 | { |
| 132 | struct hfi1_ctxtdata *rcd; |
| 133 | int ret; |
| 134 | |
| 135 | /* Control context has to be always 0 */ |
| 136 | BUILD_BUG_ON(HFI1_CTRL_CTXT != 0); |
| 137 | |
| 138 | ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd); |
| 139 | if (ret < 0) { |
| 140 | dd_dev_err(dd, "Kernel receive context allocation failed\n"); |
| 141 | return ret; |
| 142 | } |
| 143 | |
| 144 | /* |
| 145 | * Set up the kernel context flags here and now because they use |
| 146 | * default values for all receive side memories. User contexts will |
| 147 | * be handled as they are created. |
| 148 | */ |
| 149 | rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) | |
| 150 | HFI1_CAP_KGET(NODROP_RHQ_FULL) | |
| 151 | HFI1_CAP_KGET(NODROP_EGR_FULL) | |
| 152 | HFI1_CAP_KGET(DMA_RTAIL); |
| 153 | |
| 154 | /* Control context must use DMA_RTAIL */ |
| 155 | if (rcd->ctxt == HFI1_CTRL_CTXT) |
| 156 | rcd->flags |= HFI1_CAP_DMA_RTAIL; |
| 157 | rcd->seq_cnt = 1; |
| 158 | |
| 159 | rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node); |
| 160 | if (!rcd->sc) { |
| 161 | dd_dev_err(dd, "Kernel send context allocation failed\n"); |
| 162 | return -ENOMEM; |
| 163 | } |
| 164 | hfi1_init_ctxt(rcd->sc); |
| 165 | |
| 166 | return 0; |
| 167 | } |
| 168 | |
| 169 | /* |
| 170 | * Create the receive context array and one or more kernel contexts |
| 171 | */ |
| 172 | int hfi1_create_kctxts(struct hfi1_devdata *dd) |
| 173 | { |
| 174 | u16 i; |
| 175 | int ret; |
| 176 | |
| 177 | dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd), |
| 178 | GFP_KERNEL, dd->node); |
| 179 | if (!dd->rcd) |
| 180 | return -ENOMEM; |
| 181 | |
| 182 | for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { |
| 183 | ret = hfi1_create_kctxt(dd, dd->pport); |
| 184 | if (ret) |
| 185 | goto bail; |
| 186 | } |
| 187 | |
| 188 | return 0; |
| 189 | bail: |
| 190 | for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) |
| 191 | hfi1_free_ctxt(dd->rcd[i]); |
| 192 | |
| 193 | /* All the contexts should be freed, free the array */ |
| 194 | kfree(dd->rcd); |
| 195 | dd->rcd = NULL; |
| 196 | return ret; |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * Helper routines for the receive context reference count (rcd and uctxt). |
| 201 | */ |
| 202 | static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd) |
| 203 | { |
| 204 | kref_init(&rcd->kref); |
| 205 | } |
| 206 | |
| 207 | /** |
| 208 | * hfi1_rcd_free - When reference is zero clean up. |
| 209 | * @kref: pointer to an initialized rcd data structure |
| 210 | * |
| 211 | */ |
| 212 | static void hfi1_rcd_free(struct kref *kref) |
| 213 | { |
| 214 | unsigned long flags; |
| 215 | struct hfi1_ctxtdata *rcd = |
| 216 | container_of(kref, struct hfi1_ctxtdata, kref); |
| 217 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 218 | spin_lock_irqsave(&rcd->dd->uctxt_lock, flags); |
| 219 | rcd->dd->rcd[rcd->ctxt] = NULL; |
| 220 | spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags); |
| 221 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 222 | hfi1_free_ctxtdata(rcd->dd, rcd); |
| 223 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 224 | kfree(rcd); |
| 225 | } |
| 226 | |
| 227 | /** |
| 228 | * hfi1_rcd_put - decrement reference for rcd |
| 229 | * @rcd: pointer to an initialized rcd data structure |
| 230 | * |
| 231 | * Use this to put a reference after the init. |
| 232 | */ |
| 233 | int hfi1_rcd_put(struct hfi1_ctxtdata *rcd) |
| 234 | { |
| 235 | if (rcd) |
| 236 | return kref_put(&rcd->kref, hfi1_rcd_free); |
| 237 | |
| 238 | return 0; |
| 239 | } |
| 240 | |
| 241 | /** |
| 242 | * hfi1_rcd_get - increment reference for rcd |
| 243 | * @rcd: pointer to an initialized rcd data structure |
| 244 | * |
| 245 | * Use this to get a reference after the init. |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 246 | * |
| 247 | * Return : reflect kref_get_unless_zero(), which returns non-zero on |
| 248 | * increment, otherwise 0. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 249 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 250 | int hfi1_rcd_get(struct hfi1_ctxtdata *rcd) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 251 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 252 | return kref_get_unless_zero(&rcd->kref); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 253 | } |
| 254 | |
| 255 | /** |
| 256 | * allocate_rcd_index - allocate an rcd index from the rcd array |
| 257 | * @dd: pointer to a valid devdata structure |
| 258 | * @rcd: rcd data structure to assign |
| 259 | * @index: pointer to index that is allocated |
| 260 | * |
| 261 | * Find an empty index in the rcd array, and assign the given rcd to it. |
| 262 | * If the array is full, we are EBUSY. |
| 263 | * |
| 264 | */ |
| 265 | static int allocate_rcd_index(struct hfi1_devdata *dd, |
| 266 | struct hfi1_ctxtdata *rcd, u16 *index) |
| 267 | { |
| 268 | unsigned long flags; |
| 269 | u16 ctxt; |
| 270 | |
| 271 | spin_lock_irqsave(&dd->uctxt_lock, flags); |
| 272 | for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++) |
| 273 | if (!dd->rcd[ctxt]) |
| 274 | break; |
| 275 | |
| 276 | if (ctxt < dd->num_rcv_contexts) { |
| 277 | rcd->ctxt = ctxt; |
| 278 | dd->rcd[ctxt] = rcd; |
| 279 | hfi1_rcd_init(rcd); |
| 280 | } |
| 281 | spin_unlock_irqrestore(&dd->uctxt_lock, flags); |
| 282 | |
| 283 | if (ctxt >= dd->num_rcv_contexts) |
| 284 | return -EBUSY; |
| 285 | |
| 286 | *index = ctxt; |
| 287 | |
| 288 | return 0; |
| 289 | } |
| 290 | |
| 291 | /** |
| 292 | * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the |
| 293 | * array |
| 294 | * @dd: pointer to a valid devdata structure |
| 295 | * @ctxt: the index of an possilbe rcd |
| 296 | * |
| 297 | * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given |
| 298 | * ctxt index is valid. |
| 299 | * |
| 300 | * The caller is responsible for making the _put(). |
| 301 | * |
| 302 | */ |
| 303 | struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, |
| 304 | u16 ctxt) |
| 305 | { |
| 306 | if (ctxt < dd->num_rcv_contexts) |
| 307 | return hfi1_rcd_get_by_index(dd, ctxt); |
| 308 | |
| 309 | return NULL; |
| 310 | } |
| 311 | |
| 312 | /** |
| 313 | * hfi1_rcd_get_by_index |
| 314 | * @dd: pointer to a valid devdata structure |
| 315 | * @ctxt: the index of an possilbe rcd |
| 316 | * |
| 317 | * We need to protect access to the rcd array. If access is needed to |
| 318 | * one or more index, get the protecting spinlock and then increment the |
| 319 | * kref. |
| 320 | * |
| 321 | * The caller is responsible for making the _put(). |
| 322 | * |
| 323 | */ |
| 324 | struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt) |
| 325 | { |
| 326 | unsigned long flags; |
| 327 | struct hfi1_ctxtdata *rcd = NULL; |
| 328 | |
| 329 | spin_lock_irqsave(&dd->uctxt_lock, flags); |
| 330 | if (dd->rcd[ctxt]) { |
| 331 | rcd = dd->rcd[ctxt]; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 332 | if (!hfi1_rcd_get(rcd)) |
| 333 | rcd = NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 334 | } |
| 335 | spin_unlock_irqrestore(&dd->uctxt_lock, flags); |
| 336 | |
| 337 | return rcd; |
| 338 | } |
| 339 | |
| 340 | /* |
| 341 | * Common code for user and kernel context create and setup. |
| 342 | * NOTE: the initial kref is done here (hf1_rcd_init()). |
| 343 | */ |
| 344 | int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, |
| 345 | struct hfi1_ctxtdata **context) |
| 346 | { |
| 347 | struct hfi1_devdata *dd = ppd->dd; |
| 348 | struct hfi1_ctxtdata *rcd; |
| 349 | unsigned kctxt_ngroups = 0; |
| 350 | u32 base; |
| 351 | |
| 352 | if (dd->rcv_entries.nctxt_extra > |
| 353 | dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt) |
| 354 | kctxt_ngroups = (dd->rcv_entries.nctxt_extra - |
| 355 | (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)); |
| 356 | rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa); |
| 357 | if (rcd) { |
| 358 | u32 rcvtids, max_entries; |
| 359 | u16 ctxt; |
| 360 | int ret; |
| 361 | |
| 362 | ret = allocate_rcd_index(dd, rcd, &ctxt); |
| 363 | if (ret) { |
| 364 | *context = NULL; |
| 365 | kfree(rcd); |
| 366 | return ret; |
| 367 | } |
| 368 | |
| 369 | INIT_LIST_HEAD(&rcd->qp_wait_list); |
| 370 | hfi1_exp_tid_group_init(rcd); |
| 371 | rcd->ppd = ppd; |
| 372 | rcd->dd = dd; |
| 373 | rcd->numa_id = numa; |
| 374 | rcd->rcv_array_groups = dd->rcv_entries.ngroups; |
| 375 | rcd->rhf_rcv_function_map = normal_rhf_rcv_functions; |
| 376 | |
| 377 | mutex_init(&rcd->exp_mutex); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 378 | spin_lock_init(&rcd->exp_lock); |
| 379 | INIT_LIST_HEAD(&rcd->flow_queue.queue_head); |
| 380 | INIT_LIST_HEAD(&rcd->rarr_queue.queue_head); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 381 | |
| 382 | hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt); |
| 383 | |
| 384 | /* |
| 385 | * Calculate the context's RcvArray entry starting point. |
| 386 | * We do this here because we have to take into account all |
| 387 | * the RcvArray entries that previous context would have |
| 388 | * taken and we have to account for any extra groups assigned |
| 389 | * to the static (kernel) or dynamic (vnic/user) contexts. |
| 390 | */ |
| 391 | if (ctxt < dd->first_dyn_alloc_ctxt) { |
| 392 | if (ctxt < kctxt_ngroups) { |
| 393 | base = ctxt * (dd->rcv_entries.ngroups + 1); |
| 394 | rcd->rcv_array_groups++; |
| 395 | } else { |
| 396 | base = kctxt_ngroups + |
| 397 | (ctxt * dd->rcv_entries.ngroups); |
| 398 | } |
| 399 | } else { |
| 400 | u16 ct = ctxt - dd->first_dyn_alloc_ctxt; |
| 401 | |
| 402 | base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) + |
| 403 | kctxt_ngroups); |
| 404 | if (ct < dd->rcv_entries.nctxt_extra) { |
| 405 | base += ct * (dd->rcv_entries.ngroups + 1); |
| 406 | rcd->rcv_array_groups++; |
| 407 | } else { |
| 408 | base += dd->rcv_entries.nctxt_extra + |
| 409 | (ct * dd->rcv_entries.ngroups); |
| 410 | } |
| 411 | } |
| 412 | rcd->eager_base = base * dd->rcv_entries.group_size; |
| 413 | |
| 414 | rcd->rcvhdrq_cnt = rcvhdrcnt; |
| 415 | rcd->rcvhdrqentsize = hfi1_hdrq_entsize; |
| 416 | rcd->rhf_offset = |
| 417 | rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32); |
| 418 | /* |
| 419 | * Simple Eager buffer allocation: we have already pre-allocated |
| 420 | * the number of RcvArray entry groups. Each ctxtdata structure |
| 421 | * holds the number of groups for that context. |
| 422 | * |
| 423 | * To follow CSR requirements and maintain cacheline alignment, |
| 424 | * make sure all sizes and bases are multiples of group_size. |
| 425 | * |
| 426 | * The expected entry count is what is left after assigning |
| 427 | * eager. |
| 428 | */ |
| 429 | max_entries = rcd->rcv_array_groups * |
| 430 | dd->rcv_entries.group_size; |
| 431 | rcvtids = ((max_entries * hfi1_rcvarr_split) / 100); |
| 432 | rcd->egrbufs.count = round_down(rcvtids, |
| 433 | dd->rcv_entries.group_size); |
| 434 | if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) { |
| 435 | dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n", |
| 436 | rcd->ctxt); |
| 437 | rcd->egrbufs.count = MAX_EAGER_ENTRIES; |
| 438 | } |
| 439 | hfi1_cdbg(PROC, |
| 440 | "ctxt%u: max Eager buffer RcvArray entries: %u\n", |
| 441 | rcd->ctxt, rcd->egrbufs.count); |
| 442 | |
| 443 | /* |
| 444 | * Allocate array that will hold the eager buffer accounting |
| 445 | * data. |
| 446 | * This will allocate the maximum possible buffer count based |
| 447 | * on the value of the RcvArray split parameter. |
| 448 | * The resulting value will be rounded down to the closest |
| 449 | * multiple of dd->rcv_entries.group_size. |
| 450 | */ |
| 451 | rcd->egrbufs.buffers = |
| 452 | kcalloc_node(rcd->egrbufs.count, |
| 453 | sizeof(*rcd->egrbufs.buffers), |
| 454 | GFP_KERNEL, numa); |
| 455 | if (!rcd->egrbufs.buffers) |
| 456 | goto bail; |
| 457 | rcd->egrbufs.rcvtids = |
| 458 | kcalloc_node(rcd->egrbufs.count, |
| 459 | sizeof(*rcd->egrbufs.rcvtids), |
| 460 | GFP_KERNEL, numa); |
| 461 | if (!rcd->egrbufs.rcvtids) |
| 462 | goto bail; |
| 463 | rcd->egrbufs.size = eager_buffer_size; |
| 464 | /* |
| 465 | * The size of the buffers programmed into the RcvArray |
| 466 | * entries needs to be big enough to handle the highest |
| 467 | * MTU supported. |
| 468 | */ |
| 469 | if (rcd->egrbufs.size < hfi1_max_mtu) { |
| 470 | rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu); |
| 471 | hfi1_cdbg(PROC, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 472 | "ctxt%u: eager bufs size too small. Adjusting to %u\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 473 | rcd->ctxt, rcd->egrbufs.size); |
| 474 | } |
| 475 | rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE; |
| 476 | |
| 477 | /* Applicable only for statically created kernel contexts */ |
| 478 | if (ctxt < dd->first_dyn_alloc_ctxt) { |
| 479 | rcd->opstats = kzalloc_node(sizeof(*rcd->opstats), |
| 480 | GFP_KERNEL, numa); |
| 481 | if (!rcd->opstats) |
| 482 | goto bail; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 483 | |
| 484 | /* Initialize TID flow generations for the context */ |
| 485 | hfi1_kern_init_ctxt_generations(rcd); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 486 | } |
| 487 | |
| 488 | *context = rcd; |
| 489 | return 0; |
| 490 | } |
| 491 | |
| 492 | bail: |
| 493 | *context = NULL; |
| 494 | hfi1_free_ctxt(rcd); |
| 495 | return -ENOMEM; |
| 496 | } |
| 497 | |
| 498 | /** |
| 499 | * hfi1_free_ctxt |
| 500 | * @rcd: pointer to an initialized rcd data structure |
| 501 | * |
| 502 | * This wrapper is the free function that matches hfi1_create_ctxtdata(). |
| 503 | * When a context is done being used (kernel or user), this function is called |
| 504 | * for the "final" put to match the kref init from hf1i_create_ctxtdata(). |
| 505 | * Other users of the context do a get/put sequence to make sure that the |
| 506 | * structure isn't removed while in use. |
| 507 | */ |
| 508 | void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd) |
| 509 | { |
| 510 | hfi1_rcd_put(rcd); |
| 511 | } |
| 512 | |
| 513 | /* |
| 514 | * Convert a receive header entry size that to the encoding used in the CSR. |
| 515 | * |
| 516 | * Return a zero if the given size is invalid. |
| 517 | */ |
| 518 | static inline u64 encode_rcv_header_entry_size(u16 size) |
| 519 | { |
| 520 | /* there are only 3 valid receive header entry sizes */ |
| 521 | if (size == 2) |
| 522 | return 1; |
| 523 | if (size == 16) |
| 524 | return 2; |
| 525 | else if (size == 32) |
| 526 | return 4; |
| 527 | return 0; /* invalid */ |
| 528 | } |
| 529 | |
| 530 | /* |
| 531 | * Select the largest ccti value over all SLs to determine the intra- |
| 532 | * packet gap for the link. |
| 533 | * |
| 534 | * called with cca_timer_lock held (to protect access to cca_timer |
| 535 | * array), and rcu_read_lock() (to protect access to cc_state). |
| 536 | */ |
| 537 | void set_link_ipg(struct hfi1_pportdata *ppd) |
| 538 | { |
| 539 | struct hfi1_devdata *dd = ppd->dd; |
| 540 | struct cc_state *cc_state; |
| 541 | int i; |
| 542 | u16 cce, ccti_limit, max_ccti = 0; |
| 543 | u16 shift, mult; |
| 544 | u64 src; |
| 545 | u32 current_egress_rate; /* Mbits /sec */ |
| 546 | u32 max_pkt_time; |
| 547 | /* |
| 548 | * max_pkt_time is the maximum packet egress time in units |
| 549 | * of the fabric clock period 1/(805 MHz). |
| 550 | */ |
| 551 | |
| 552 | cc_state = get_cc_state(ppd); |
| 553 | |
| 554 | if (!cc_state) |
| 555 | /* |
| 556 | * This should _never_ happen - rcu_read_lock() is held, |
| 557 | * and set_link_ipg() should not be called if cc_state |
| 558 | * is NULL. |
| 559 | */ |
| 560 | return; |
| 561 | |
| 562 | for (i = 0; i < OPA_MAX_SLS; i++) { |
| 563 | u16 ccti = ppd->cca_timer[i].ccti; |
| 564 | |
| 565 | if (ccti > max_ccti) |
| 566 | max_ccti = ccti; |
| 567 | } |
| 568 | |
| 569 | ccti_limit = cc_state->cct.ccti_limit; |
| 570 | if (max_ccti > ccti_limit) |
| 571 | max_ccti = ccti_limit; |
| 572 | |
| 573 | cce = cc_state->cct.entries[max_ccti].entry; |
| 574 | shift = (cce & 0xc000) >> 14; |
| 575 | mult = (cce & 0x3fff); |
| 576 | |
| 577 | current_egress_rate = active_egress_rate(ppd); |
| 578 | |
| 579 | max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate); |
| 580 | |
| 581 | src = (max_pkt_time >> shift) * mult; |
| 582 | |
| 583 | src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK; |
| 584 | src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT; |
| 585 | |
| 586 | write_csr(dd, SEND_STATIC_RATE_CONTROL, src); |
| 587 | } |
| 588 | |
| 589 | static enum hrtimer_restart cca_timer_fn(struct hrtimer *t) |
| 590 | { |
| 591 | struct cca_timer *cca_timer; |
| 592 | struct hfi1_pportdata *ppd; |
| 593 | int sl; |
| 594 | u16 ccti_timer, ccti_min; |
| 595 | struct cc_state *cc_state; |
| 596 | unsigned long flags; |
| 597 | enum hrtimer_restart ret = HRTIMER_NORESTART; |
| 598 | |
| 599 | cca_timer = container_of(t, struct cca_timer, hrtimer); |
| 600 | ppd = cca_timer->ppd; |
| 601 | sl = cca_timer->sl; |
| 602 | |
| 603 | rcu_read_lock(); |
| 604 | |
| 605 | cc_state = get_cc_state(ppd); |
| 606 | |
| 607 | if (!cc_state) { |
| 608 | rcu_read_unlock(); |
| 609 | return HRTIMER_NORESTART; |
| 610 | } |
| 611 | |
| 612 | /* |
| 613 | * 1) decrement ccti for SL |
| 614 | * 2) calculate IPG for link (set_link_ipg()) |
| 615 | * 3) restart timer, unless ccti is at min value |
| 616 | */ |
| 617 | |
| 618 | ccti_min = cc_state->cong_setting.entries[sl].ccti_min; |
| 619 | ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer; |
| 620 | |
| 621 | spin_lock_irqsave(&ppd->cca_timer_lock, flags); |
| 622 | |
| 623 | if (cca_timer->ccti > ccti_min) { |
| 624 | cca_timer->ccti--; |
| 625 | set_link_ipg(ppd); |
| 626 | } |
| 627 | |
| 628 | if (cca_timer->ccti > ccti_min) { |
| 629 | unsigned long nsec = 1024 * ccti_timer; |
| 630 | /* ccti_timer is in units of 1.024 usec */ |
| 631 | hrtimer_forward_now(t, ns_to_ktime(nsec)); |
| 632 | ret = HRTIMER_RESTART; |
| 633 | } |
| 634 | |
| 635 | spin_unlock_irqrestore(&ppd->cca_timer_lock, flags); |
| 636 | rcu_read_unlock(); |
| 637 | return ret; |
| 638 | } |
| 639 | |
| 640 | /* |
| 641 | * Common code for initializing the physical port structure. |
| 642 | */ |
| 643 | void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, |
| 644 | struct hfi1_devdata *dd, u8 hw_pidx, u8 port) |
| 645 | { |
| 646 | int i; |
| 647 | uint default_pkey_idx; |
| 648 | struct cc_state *cc_state; |
| 649 | |
| 650 | ppd->dd = dd; |
| 651 | ppd->hw_pidx = hw_pidx; |
| 652 | ppd->port = port; /* IB port number, not index */ |
| 653 | ppd->prev_link_width = LINK_WIDTH_DEFAULT; |
| 654 | /* |
| 655 | * There are C_VL_COUNT number of PortVLXmitWait counters. |
| 656 | * Adding 1 to C_VL_COUNT to include the PortXmitWait counter. |
| 657 | */ |
| 658 | for (i = 0; i < C_VL_COUNT + 1; i++) { |
| 659 | ppd->port_vl_xmit_wait_last[i] = 0; |
| 660 | ppd->vl_xmit_flit_cnt[i] = 0; |
| 661 | } |
| 662 | |
| 663 | default_pkey_idx = 1; |
| 664 | |
| 665 | ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY; |
| 666 | ppd->part_enforce |= HFI1_PART_ENFORCE_IN; |
| 667 | |
| 668 | if (loopback) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 669 | dd_dev_err(dd, "Faking data partition 0x8001 in idx %u\n", |
| 670 | !default_pkey_idx); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 671 | ppd->pkeys[!default_pkey_idx] = 0x8001; |
| 672 | } |
| 673 | |
| 674 | INIT_WORK(&ppd->link_vc_work, handle_verify_cap); |
| 675 | INIT_WORK(&ppd->link_up_work, handle_link_up); |
| 676 | INIT_WORK(&ppd->link_down_work, handle_link_down); |
| 677 | INIT_WORK(&ppd->freeze_work, handle_freeze); |
| 678 | INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade); |
| 679 | INIT_WORK(&ppd->sma_message_work, handle_sma_message); |
| 680 | INIT_WORK(&ppd->link_bounce_work, handle_link_bounce); |
| 681 | INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link); |
| 682 | INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work); |
| 683 | INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event); |
| 684 | |
| 685 | mutex_init(&ppd->hls_lock); |
| 686 | spin_lock_init(&ppd->qsfp_info.qsfp_lock); |
| 687 | |
| 688 | ppd->qsfp_info.ppd = ppd; |
| 689 | ppd->sm_trap_qp = 0x0; |
| 690 | ppd->sa_qp = 0x1; |
| 691 | |
| 692 | ppd->hfi1_wq = NULL; |
| 693 | |
| 694 | spin_lock_init(&ppd->cca_timer_lock); |
| 695 | |
| 696 | for (i = 0; i < OPA_MAX_SLS; i++) { |
| 697 | hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC, |
| 698 | HRTIMER_MODE_REL); |
| 699 | ppd->cca_timer[i].ppd = ppd; |
| 700 | ppd->cca_timer[i].sl = i; |
| 701 | ppd->cca_timer[i].ccti = 0; |
| 702 | ppd->cca_timer[i].hrtimer.function = cca_timer_fn; |
| 703 | } |
| 704 | |
| 705 | ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT; |
| 706 | |
| 707 | spin_lock_init(&ppd->cc_state_lock); |
| 708 | spin_lock_init(&ppd->cc_log_lock); |
| 709 | cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL); |
| 710 | RCU_INIT_POINTER(ppd->cc_state, cc_state); |
| 711 | if (!cc_state) |
| 712 | goto bail; |
| 713 | return; |
| 714 | |
| 715 | bail: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 716 | dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 717 | } |
| 718 | |
| 719 | /* |
| 720 | * Do initialization for device that is only needed on |
| 721 | * first detect, not on resets. |
| 722 | */ |
| 723 | static int loadtime_init(struct hfi1_devdata *dd) |
| 724 | { |
| 725 | return 0; |
| 726 | } |
| 727 | |
| 728 | /** |
| 729 | * init_after_reset - re-initialize after a reset |
| 730 | * @dd: the hfi1_ib device |
| 731 | * |
| 732 | * sanity check at least some of the values after reset, and |
| 733 | * ensure no receive or transmit (explicitly, in case reset |
| 734 | * failed |
| 735 | */ |
| 736 | static int init_after_reset(struct hfi1_devdata *dd) |
| 737 | { |
| 738 | int i; |
| 739 | struct hfi1_ctxtdata *rcd; |
| 740 | /* |
| 741 | * Ensure chip does no sends or receives, tail updates, or |
| 742 | * pioavail updates while we re-initialize. This is mostly |
| 743 | * for the driver data structures, not chip registers. |
| 744 | */ |
| 745 | for (i = 0; i < dd->num_rcv_contexts; i++) { |
| 746 | rcd = hfi1_rcd_get_by_index(dd, i); |
| 747 | hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | |
| 748 | HFI1_RCVCTRL_INTRAVAIL_DIS | |
| 749 | HFI1_RCVCTRL_TAILUPD_DIS, rcd); |
| 750 | hfi1_rcd_put(rcd); |
| 751 | } |
| 752 | pio_send_control(dd, PSC_GLOBAL_DISABLE); |
| 753 | for (i = 0; i < dd->num_send_contexts; i++) |
| 754 | sc_disable(dd->send_contexts[i].sc); |
| 755 | |
| 756 | return 0; |
| 757 | } |
| 758 | |
| 759 | static void enable_chip(struct hfi1_devdata *dd) |
| 760 | { |
| 761 | struct hfi1_ctxtdata *rcd; |
| 762 | u32 rcvmask; |
| 763 | u16 i; |
| 764 | |
| 765 | /* enable PIO send */ |
| 766 | pio_send_control(dd, PSC_GLOBAL_ENABLE); |
| 767 | |
| 768 | /* |
| 769 | * Enable kernel ctxts' receive and receive interrupt. |
| 770 | * Other ctxts done as user opens and initializes them. |
| 771 | */ |
| 772 | for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { |
| 773 | rcd = hfi1_rcd_get_by_index(dd, i); |
| 774 | if (!rcd) |
| 775 | continue; |
| 776 | rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB; |
| 777 | rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? |
| 778 | HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; |
| 779 | if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) |
| 780 | rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; |
| 781 | if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL)) |
| 782 | rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; |
| 783 | if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL)) |
| 784 | rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 785 | if (HFI1_CAP_IS_KSET(TID_RDMA)) |
| 786 | rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 787 | hfi1_rcvctrl(dd, rcvmask, rcd); |
| 788 | sc_enable(rcd->sc); |
| 789 | hfi1_rcd_put(rcd); |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | /** |
| 794 | * create_workqueues - create per port workqueues |
| 795 | * @dd: the hfi1_ib device |
| 796 | */ |
| 797 | static int create_workqueues(struct hfi1_devdata *dd) |
| 798 | { |
| 799 | int pidx; |
| 800 | struct hfi1_pportdata *ppd; |
| 801 | |
| 802 | for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| 803 | ppd = dd->pport + pidx; |
| 804 | if (!ppd->hfi1_wq) { |
| 805 | ppd->hfi1_wq = |
| 806 | alloc_workqueue( |
| 807 | "hfi%d_%d", |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 808 | WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE | |
| 809 | WQ_MEM_RECLAIM, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 810 | HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES, |
| 811 | dd->unit, pidx); |
| 812 | if (!ppd->hfi1_wq) |
| 813 | goto wq_error; |
| 814 | } |
| 815 | if (!ppd->link_wq) { |
| 816 | /* |
| 817 | * Make the link workqueue single-threaded to enforce |
| 818 | * serialization. |
| 819 | */ |
| 820 | ppd->link_wq = |
| 821 | alloc_workqueue( |
| 822 | "hfi_link_%d_%d", |
| 823 | WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND, |
| 824 | 1, /* max_active */ |
| 825 | dd->unit, pidx); |
| 826 | if (!ppd->link_wq) |
| 827 | goto wq_error; |
| 828 | } |
| 829 | } |
| 830 | return 0; |
| 831 | wq_error: |
| 832 | pr_err("alloc_workqueue failed for port %d\n", pidx + 1); |
| 833 | for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| 834 | ppd = dd->pport + pidx; |
| 835 | if (ppd->hfi1_wq) { |
| 836 | destroy_workqueue(ppd->hfi1_wq); |
| 837 | ppd->hfi1_wq = NULL; |
| 838 | } |
| 839 | if (ppd->link_wq) { |
| 840 | destroy_workqueue(ppd->link_wq); |
| 841 | ppd->link_wq = NULL; |
| 842 | } |
| 843 | } |
| 844 | return -ENOMEM; |
| 845 | } |
| 846 | |
| 847 | /** |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 848 | * enable_general_intr() - Enable the IRQs that will be handled by the |
| 849 | * general interrupt handler. |
| 850 | * @dd: valid devdata |
| 851 | * |
| 852 | */ |
| 853 | static void enable_general_intr(struct hfi1_devdata *dd) |
| 854 | { |
| 855 | set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true); |
| 856 | set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true); |
| 857 | set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true); |
| 858 | set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true); |
| 859 | set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true); |
| 860 | set_intr_bits(dd, IS_DC_START, IS_DC_END, true); |
| 861 | set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true); |
| 862 | } |
| 863 | |
| 864 | /** |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 865 | * hfi1_init - do the actual initialization sequence on the chip |
| 866 | * @dd: the hfi1_ib device |
| 867 | * @reinit: re-initializing, so don't allocate new memory |
| 868 | * |
| 869 | * Do the actual initialization sequence on the chip. This is done |
| 870 | * both from the init routine called from the PCI infrastructure, and |
| 871 | * when we reset the chip, or detect that it was reset internally, |
| 872 | * or it's administratively re-enabled. |
| 873 | * |
| 874 | * Memory allocation here and in called routines is only done in |
| 875 | * the first case (reinit == 0). We have to be careful, because even |
| 876 | * without memory allocation, we need to re-write all the chip registers |
| 877 | * TIDs, etc. after the reset or enable has completed. |
| 878 | */ |
| 879 | int hfi1_init(struct hfi1_devdata *dd, int reinit) |
| 880 | { |
| 881 | int ret = 0, pidx, lastfail = 0; |
| 882 | unsigned long len; |
| 883 | u16 i; |
| 884 | struct hfi1_ctxtdata *rcd; |
| 885 | struct hfi1_pportdata *ppd; |
| 886 | |
| 887 | /* Set up send low level handlers */ |
| 888 | dd->process_pio_send = hfi1_verbs_send_pio; |
| 889 | dd->process_dma_send = hfi1_verbs_send_dma; |
| 890 | dd->pio_inline_send = pio_copy; |
| 891 | dd->process_vnic_dma_send = hfi1_vnic_send_dma; |
| 892 | |
| 893 | if (is_ax(dd)) { |
| 894 | atomic_set(&dd->drop_packet, DROP_PACKET_ON); |
| 895 | dd->do_drop = 1; |
| 896 | } else { |
| 897 | atomic_set(&dd->drop_packet, DROP_PACKET_OFF); |
| 898 | dd->do_drop = 0; |
| 899 | } |
| 900 | |
| 901 | /* make sure the link is not "up" */ |
| 902 | for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| 903 | ppd = dd->pport + pidx; |
| 904 | ppd->linkup = 0; |
| 905 | } |
| 906 | |
| 907 | if (reinit) |
| 908 | ret = init_after_reset(dd); |
| 909 | else |
| 910 | ret = loadtime_init(dd); |
| 911 | if (ret) |
| 912 | goto done; |
| 913 | |
| 914 | /* allocate dummy tail memory for all receive contexts */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 915 | dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev, |
| 916 | sizeof(u64), |
| 917 | &dd->rcvhdrtail_dummy_dma, |
| 918 | GFP_KERNEL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 919 | |
| 920 | if (!dd->rcvhdrtail_dummy_kvaddr) { |
| 921 | dd_dev_err(dd, "cannot allocate dummy tail memory\n"); |
| 922 | ret = -ENOMEM; |
| 923 | goto done; |
| 924 | } |
| 925 | |
| 926 | /* dd->rcd can be NULL if early initialization failed */ |
| 927 | for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) { |
| 928 | /* |
| 929 | * Set up the (kernel) rcvhdr queue and egr TIDs. If doing |
| 930 | * re-init, the simplest way to handle this is to free |
| 931 | * existing, and re-allocate. |
| 932 | * Need to re-create rest of ctxt 0 ctxtdata as well. |
| 933 | */ |
| 934 | rcd = hfi1_rcd_get_by_index(dd, i); |
| 935 | if (!rcd) |
| 936 | continue; |
| 937 | |
| 938 | rcd->do_interrupt = &handle_receive_interrupt; |
| 939 | |
| 940 | lastfail = hfi1_create_rcvhdrq(dd, rcd); |
| 941 | if (!lastfail) |
| 942 | lastfail = hfi1_setup_eagerbufs(rcd); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 943 | if (!lastfail) |
| 944 | lastfail = hfi1_kern_exp_rcv_init(rcd, reinit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 945 | if (lastfail) { |
| 946 | dd_dev_err(dd, |
| 947 | "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n"); |
| 948 | ret = lastfail; |
| 949 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 950 | /* enable IRQ */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 951 | hfi1_rcd_put(rcd); |
| 952 | } |
| 953 | |
| 954 | /* Allocate enough memory for user event notification. */ |
| 955 | len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS * |
| 956 | sizeof(*dd->events)); |
| 957 | dd->events = vmalloc_user(len); |
| 958 | if (!dd->events) |
| 959 | dd_dev_err(dd, "Failed to allocate user events page\n"); |
| 960 | /* |
| 961 | * Allocate a page for device and port status. |
| 962 | * Page will be shared amongst all user processes. |
| 963 | */ |
| 964 | dd->status = vmalloc_user(PAGE_SIZE); |
| 965 | if (!dd->status) |
| 966 | dd_dev_err(dd, "Failed to allocate dev status page\n"); |
| 967 | for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| 968 | ppd = dd->pport + pidx; |
| 969 | if (dd->status) |
| 970 | /* Currently, we only have one port */ |
| 971 | ppd->statusp = &dd->status->port; |
| 972 | |
| 973 | set_mtu(ppd); |
| 974 | } |
| 975 | |
| 976 | /* enable chip even if we have an error, so we can debug cause */ |
| 977 | enable_chip(dd); |
| 978 | |
| 979 | done: |
| 980 | /* |
| 981 | * Set status even if port serdes is not initialized |
| 982 | * so that diags will work. |
| 983 | */ |
| 984 | if (dd->status) |
| 985 | dd->status->dev |= HFI1_STATUS_CHIP_PRESENT | |
| 986 | HFI1_STATUS_INITTED; |
| 987 | if (!ret) { |
| 988 | /* enable all interrupts from the chip */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 989 | enable_general_intr(dd); |
| 990 | init_qsfp_int(dd); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 991 | |
| 992 | /* chip is OK for user apps; mark it as initialized */ |
| 993 | for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| 994 | ppd = dd->pport + pidx; |
| 995 | |
| 996 | /* |
| 997 | * start the serdes - must be after interrupts are |
| 998 | * enabled so we are notified when the link goes up |
| 999 | */ |
| 1000 | lastfail = bringup_serdes(ppd); |
| 1001 | if (lastfail) |
| 1002 | dd_dev_info(dd, |
| 1003 | "Failed to bring up port %u\n", |
| 1004 | ppd->port); |
| 1005 | |
| 1006 | /* |
| 1007 | * Set status even if port serdes is not initialized |
| 1008 | * so that diags will work. |
| 1009 | */ |
| 1010 | if (ppd->statusp) |
| 1011 | *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT | |
| 1012 | HFI1_STATUS_INITTED; |
| 1013 | if (!ppd->link_speed_enabled) |
| 1014 | continue; |
| 1015 | } |
| 1016 | } |
| 1017 | |
| 1018 | /* if ret is non-zero, we probably should do some cleanup here... */ |
| 1019 | return ret; |
| 1020 | } |
| 1021 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1022 | struct hfi1_devdata *hfi1_lookup(int unit) |
| 1023 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1024 | return xa_load(&hfi1_dev_table, unit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1025 | } |
| 1026 | |
| 1027 | /* |
| 1028 | * Stop the timers during unit shutdown, or after an error late |
| 1029 | * in initialization. |
| 1030 | */ |
| 1031 | static void stop_timers(struct hfi1_devdata *dd) |
| 1032 | { |
| 1033 | struct hfi1_pportdata *ppd; |
| 1034 | int pidx; |
| 1035 | |
| 1036 | for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| 1037 | ppd = dd->pport + pidx; |
| 1038 | if (ppd->led_override_timer.function) { |
| 1039 | del_timer_sync(&ppd->led_override_timer); |
| 1040 | atomic_set(&ppd->led_override_timer_active, 0); |
| 1041 | } |
| 1042 | } |
| 1043 | } |
| 1044 | |
| 1045 | /** |
| 1046 | * shutdown_device - shut down a device |
| 1047 | * @dd: the hfi1_ib device |
| 1048 | * |
| 1049 | * This is called to make the device quiet when we are about to |
| 1050 | * unload the driver, and also when the device is administratively |
| 1051 | * disabled. It does not free any data structures. |
| 1052 | * Everything it does has to be setup again by hfi1_init(dd, 1) |
| 1053 | */ |
| 1054 | static void shutdown_device(struct hfi1_devdata *dd) |
| 1055 | { |
| 1056 | struct hfi1_pportdata *ppd; |
| 1057 | struct hfi1_ctxtdata *rcd; |
| 1058 | unsigned pidx; |
| 1059 | int i; |
| 1060 | |
| 1061 | if (dd->flags & HFI1_SHUTDOWN) |
| 1062 | return; |
| 1063 | dd->flags |= HFI1_SHUTDOWN; |
| 1064 | |
| 1065 | for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| 1066 | ppd = dd->pport + pidx; |
| 1067 | |
| 1068 | ppd->linkup = 0; |
| 1069 | if (ppd->statusp) |
| 1070 | *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | |
| 1071 | HFI1_STATUS_IB_READY); |
| 1072 | } |
| 1073 | dd->flags &= ~HFI1_INITTED; |
| 1074 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1075 | /* mask and clean up interrupts */ |
| 1076 | set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false); |
| 1077 | msix_clean_up_interrupts(dd); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1078 | |
| 1079 | for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| 1080 | ppd = dd->pport + pidx; |
| 1081 | for (i = 0; i < dd->num_rcv_contexts; i++) { |
| 1082 | rcd = hfi1_rcd_get_by_index(dd, i); |
| 1083 | hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS | |
| 1084 | HFI1_RCVCTRL_CTXT_DIS | |
| 1085 | HFI1_RCVCTRL_INTRAVAIL_DIS | |
| 1086 | HFI1_RCVCTRL_PKEY_DIS | |
| 1087 | HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd); |
| 1088 | hfi1_rcd_put(rcd); |
| 1089 | } |
| 1090 | /* |
| 1091 | * Gracefully stop all sends allowing any in progress to |
| 1092 | * trickle out first. |
| 1093 | */ |
| 1094 | for (i = 0; i < dd->num_send_contexts; i++) |
| 1095 | sc_flush(dd->send_contexts[i].sc); |
| 1096 | } |
| 1097 | |
| 1098 | /* |
| 1099 | * Enough for anything that's going to trickle out to have actually |
| 1100 | * done so. |
| 1101 | */ |
| 1102 | udelay(20); |
| 1103 | |
| 1104 | for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| 1105 | ppd = dd->pport + pidx; |
| 1106 | |
| 1107 | /* disable all contexts */ |
| 1108 | for (i = 0; i < dd->num_send_contexts; i++) |
| 1109 | sc_disable(dd->send_contexts[i].sc); |
| 1110 | /* disable the send device */ |
| 1111 | pio_send_control(dd, PSC_GLOBAL_DISABLE); |
| 1112 | |
| 1113 | shutdown_led_override(ppd); |
| 1114 | |
| 1115 | /* |
| 1116 | * Clear SerdesEnable. |
| 1117 | * We can't count on interrupts since we are stopping. |
| 1118 | */ |
| 1119 | hfi1_quiet_serdes(ppd); |
| 1120 | |
| 1121 | if (ppd->hfi1_wq) { |
| 1122 | destroy_workqueue(ppd->hfi1_wq); |
| 1123 | ppd->hfi1_wq = NULL; |
| 1124 | } |
| 1125 | if (ppd->link_wq) { |
| 1126 | destroy_workqueue(ppd->link_wq); |
| 1127 | ppd->link_wq = NULL; |
| 1128 | } |
| 1129 | } |
| 1130 | sdma_exit(dd); |
| 1131 | } |
| 1132 | |
| 1133 | /** |
| 1134 | * hfi1_free_ctxtdata - free a context's allocated data |
| 1135 | * @dd: the hfi1_ib device |
| 1136 | * @rcd: the ctxtdata structure |
| 1137 | * |
| 1138 | * free up any allocated data for a context |
| 1139 | * It should never change any chip state, or global driver state. |
| 1140 | */ |
| 1141 | void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) |
| 1142 | { |
| 1143 | u32 e; |
| 1144 | |
| 1145 | if (!rcd) |
| 1146 | return; |
| 1147 | |
| 1148 | if (rcd->rcvhdrq) { |
| 1149 | dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd), |
| 1150 | rcd->rcvhdrq, rcd->rcvhdrq_dma); |
| 1151 | rcd->rcvhdrq = NULL; |
| 1152 | if (rcd->rcvhdrtail_kvaddr) { |
| 1153 | dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, |
| 1154 | (void *)rcd->rcvhdrtail_kvaddr, |
| 1155 | rcd->rcvhdrqtailaddr_dma); |
| 1156 | rcd->rcvhdrtail_kvaddr = NULL; |
| 1157 | } |
| 1158 | } |
| 1159 | |
| 1160 | /* all the RcvArray entries should have been cleared by now */ |
| 1161 | kfree(rcd->egrbufs.rcvtids); |
| 1162 | rcd->egrbufs.rcvtids = NULL; |
| 1163 | |
| 1164 | for (e = 0; e < rcd->egrbufs.alloced; e++) { |
| 1165 | if (rcd->egrbufs.buffers[e].dma) |
| 1166 | dma_free_coherent(&dd->pcidev->dev, |
| 1167 | rcd->egrbufs.buffers[e].len, |
| 1168 | rcd->egrbufs.buffers[e].addr, |
| 1169 | rcd->egrbufs.buffers[e].dma); |
| 1170 | } |
| 1171 | kfree(rcd->egrbufs.buffers); |
| 1172 | rcd->egrbufs.alloced = 0; |
| 1173 | rcd->egrbufs.buffers = NULL; |
| 1174 | |
| 1175 | sc_free(rcd->sc); |
| 1176 | rcd->sc = NULL; |
| 1177 | |
| 1178 | vfree(rcd->subctxt_uregbase); |
| 1179 | vfree(rcd->subctxt_rcvegrbuf); |
| 1180 | vfree(rcd->subctxt_rcvhdr_base); |
| 1181 | kfree(rcd->opstats); |
| 1182 | |
| 1183 | rcd->subctxt_uregbase = NULL; |
| 1184 | rcd->subctxt_rcvegrbuf = NULL; |
| 1185 | rcd->subctxt_rcvhdr_base = NULL; |
| 1186 | rcd->opstats = NULL; |
| 1187 | } |
| 1188 | |
| 1189 | /* |
| 1190 | * Release our hold on the shared asic data. If we are the last one, |
| 1191 | * return the structure to be finalized outside the lock. Must be |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1192 | * holding hfi1_dev_table lock. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1193 | */ |
| 1194 | static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd) |
| 1195 | { |
| 1196 | struct hfi1_asic_data *ad; |
| 1197 | int other; |
| 1198 | |
| 1199 | if (!dd->asic_data) |
| 1200 | return NULL; |
| 1201 | dd->asic_data->dds[dd->hfi1_id] = NULL; |
| 1202 | other = dd->hfi1_id ? 0 : 1; |
| 1203 | ad = dd->asic_data; |
| 1204 | dd->asic_data = NULL; |
| 1205 | /* return NULL if the other dd still has a link */ |
| 1206 | return ad->dds[other] ? NULL : ad; |
| 1207 | } |
| 1208 | |
| 1209 | static void finalize_asic_data(struct hfi1_devdata *dd, |
| 1210 | struct hfi1_asic_data *ad) |
| 1211 | { |
| 1212 | clean_up_i2c(dd, ad); |
| 1213 | kfree(ad); |
| 1214 | } |
| 1215 | |
| 1216 | /** |
| 1217 | * hfi1_clean_devdata - cleans up per-unit data structure |
| 1218 | * @dd: pointer to a valid devdata structure |
| 1219 | * |
| 1220 | * It cleans up all data structures set up by |
| 1221 | * by hfi1_alloc_devdata(). |
| 1222 | */ |
| 1223 | static void hfi1_clean_devdata(struct hfi1_devdata *dd) |
| 1224 | { |
| 1225 | struct hfi1_asic_data *ad; |
| 1226 | unsigned long flags; |
| 1227 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1228 | xa_lock_irqsave(&hfi1_dev_table, flags); |
| 1229 | __xa_erase(&hfi1_dev_table, dd->unit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1230 | ad = release_asic_data(dd); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1231 | xa_unlock_irqrestore(&hfi1_dev_table, flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1232 | |
| 1233 | finalize_asic_data(dd, ad); |
| 1234 | free_platform_config(dd); |
| 1235 | rcu_barrier(); /* wait for rcu callbacks to complete */ |
| 1236 | free_percpu(dd->int_counter); |
| 1237 | free_percpu(dd->rcv_limit); |
| 1238 | free_percpu(dd->send_schedule); |
| 1239 | free_percpu(dd->tx_opstats); |
| 1240 | dd->int_counter = NULL; |
| 1241 | dd->rcv_limit = NULL; |
| 1242 | dd->send_schedule = NULL; |
| 1243 | dd->tx_opstats = NULL; |
| 1244 | kfree(dd->comp_vect); |
| 1245 | dd->comp_vect = NULL; |
| 1246 | sdma_clean(dd, dd->num_sdma); |
| 1247 | rvt_dealloc_device(&dd->verbs_dev.rdi); |
| 1248 | } |
| 1249 | |
| 1250 | static void __hfi1_free_devdata(struct kobject *kobj) |
| 1251 | { |
| 1252 | struct hfi1_devdata *dd = |
| 1253 | container_of(kobj, struct hfi1_devdata, kobj); |
| 1254 | |
| 1255 | hfi1_clean_devdata(dd); |
| 1256 | } |
| 1257 | |
| 1258 | static struct kobj_type hfi1_devdata_type = { |
| 1259 | .release = __hfi1_free_devdata, |
| 1260 | }; |
| 1261 | |
| 1262 | void hfi1_free_devdata(struct hfi1_devdata *dd) |
| 1263 | { |
| 1264 | kobject_put(&dd->kobj); |
| 1265 | } |
| 1266 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1267 | /** |
| 1268 | * hfi1_alloc_devdata - Allocate our primary per-unit data structure. |
| 1269 | * @pdev: Valid PCI device |
| 1270 | * @extra: How many bytes to alloc past the default |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1271 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1272 | * Must be done via verbs allocator, because the verbs cleanup process |
| 1273 | * both does cleanup and free of the data structure. |
| 1274 | * "extra" is for chip-specific data. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1275 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1276 | static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, |
| 1277 | size_t extra) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1278 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1279 | struct hfi1_devdata *dd; |
| 1280 | int ret, nports; |
| 1281 | |
| 1282 | /* extra is * number of ports */ |
| 1283 | nports = extra / sizeof(struct hfi1_pportdata); |
| 1284 | |
| 1285 | dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra, |
| 1286 | nports); |
| 1287 | if (!dd) |
| 1288 | return ERR_PTR(-ENOMEM); |
| 1289 | dd->num_pports = nports; |
| 1290 | dd->pport = (struct hfi1_pportdata *)(dd + 1); |
| 1291 | dd->pcidev = pdev; |
| 1292 | pci_set_drvdata(pdev, dd); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1293 | dd->node = NUMA_NO_NODE; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1294 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1295 | ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b, |
| 1296 | GFP_KERNEL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1297 | if (ret < 0) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1298 | dev_err(&pdev->dev, |
| 1299 | "Could not allocate unit ID: error %d\n", -ret); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1300 | goto bail; |
| 1301 | } |
| 1302 | rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit); |
| 1303 | |
| 1304 | /* |
| 1305 | * Initialize all locks for the device. This needs to be as early as |
| 1306 | * possible so locks are usable. |
| 1307 | */ |
| 1308 | spin_lock_init(&dd->sc_lock); |
| 1309 | spin_lock_init(&dd->sendctrl_lock); |
| 1310 | spin_lock_init(&dd->rcvctrl_lock); |
| 1311 | spin_lock_init(&dd->uctxt_lock); |
| 1312 | spin_lock_init(&dd->hfi1_diag_trans_lock); |
| 1313 | spin_lock_init(&dd->sc_init_lock); |
| 1314 | spin_lock_init(&dd->dc8051_memlock); |
| 1315 | seqlock_init(&dd->sc2vl_lock); |
| 1316 | spin_lock_init(&dd->sde_map_lock); |
| 1317 | spin_lock_init(&dd->pio_map_lock); |
| 1318 | mutex_init(&dd->dc8051_lock); |
| 1319 | init_waitqueue_head(&dd->event_queue); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1320 | spin_lock_init(&dd->irq_src_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1321 | |
| 1322 | dd->int_counter = alloc_percpu(u64); |
| 1323 | if (!dd->int_counter) { |
| 1324 | ret = -ENOMEM; |
| 1325 | goto bail; |
| 1326 | } |
| 1327 | |
| 1328 | dd->rcv_limit = alloc_percpu(u64); |
| 1329 | if (!dd->rcv_limit) { |
| 1330 | ret = -ENOMEM; |
| 1331 | goto bail; |
| 1332 | } |
| 1333 | |
| 1334 | dd->send_schedule = alloc_percpu(u64); |
| 1335 | if (!dd->send_schedule) { |
| 1336 | ret = -ENOMEM; |
| 1337 | goto bail; |
| 1338 | } |
| 1339 | |
| 1340 | dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx); |
| 1341 | if (!dd->tx_opstats) { |
| 1342 | ret = -ENOMEM; |
| 1343 | goto bail; |
| 1344 | } |
| 1345 | |
| 1346 | dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL); |
| 1347 | if (!dd->comp_vect) { |
| 1348 | ret = -ENOMEM; |
| 1349 | goto bail; |
| 1350 | } |
| 1351 | |
| 1352 | kobject_init(&dd->kobj, &hfi1_devdata_type); |
| 1353 | return dd; |
| 1354 | |
| 1355 | bail: |
| 1356 | hfi1_clean_devdata(dd); |
| 1357 | return ERR_PTR(ret); |
| 1358 | } |
| 1359 | |
| 1360 | /* |
| 1361 | * Called from freeze mode handlers, and from PCI error |
| 1362 | * reporting code. Should be paranoid about state of |
| 1363 | * system and data structures. |
| 1364 | */ |
| 1365 | void hfi1_disable_after_error(struct hfi1_devdata *dd) |
| 1366 | { |
| 1367 | if (dd->flags & HFI1_INITTED) { |
| 1368 | u32 pidx; |
| 1369 | |
| 1370 | dd->flags &= ~HFI1_INITTED; |
| 1371 | if (dd->pport) |
| 1372 | for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| 1373 | struct hfi1_pportdata *ppd; |
| 1374 | |
| 1375 | ppd = dd->pport + pidx; |
| 1376 | if (dd->flags & HFI1_PRESENT) |
| 1377 | set_link_state(ppd, HLS_DN_DISABLE); |
| 1378 | |
| 1379 | if (ppd->statusp) |
| 1380 | *ppd->statusp &= ~HFI1_STATUS_IB_READY; |
| 1381 | } |
| 1382 | } |
| 1383 | |
| 1384 | /* |
| 1385 | * Mark as having had an error for driver, and also |
| 1386 | * for /sys and status word mapped to user programs. |
| 1387 | * This marks unit as not usable, until reset. |
| 1388 | */ |
| 1389 | if (dd->status) |
| 1390 | dd->status->dev |= HFI1_STATUS_HWERROR; |
| 1391 | } |
| 1392 | |
| 1393 | static void remove_one(struct pci_dev *); |
| 1394 | static int init_one(struct pci_dev *, const struct pci_device_id *); |
| 1395 | static void shutdown_one(struct pci_dev *); |
| 1396 | |
| 1397 | #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: " |
| 1398 | #define PFX DRIVER_NAME ": " |
| 1399 | |
| 1400 | const struct pci_device_id hfi1_pci_tbl[] = { |
| 1401 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) }, |
| 1402 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) }, |
| 1403 | { 0, } |
| 1404 | }; |
| 1405 | |
| 1406 | MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl); |
| 1407 | |
| 1408 | static struct pci_driver hfi1_pci_driver = { |
| 1409 | .name = DRIVER_NAME, |
| 1410 | .probe = init_one, |
| 1411 | .remove = remove_one, |
| 1412 | .shutdown = shutdown_one, |
| 1413 | .id_table = hfi1_pci_tbl, |
| 1414 | .err_handler = &hfi1_pci_err_handler, |
| 1415 | }; |
| 1416 | |
| 1417 | static void __init compute_krcvqs(void) |
| 1418 | { |
| 1419 | int i; |
| 1420 | |
| 1421 | for (i = 0; i < krcvqsset; i++) |
| 1422 | n_krcvqs += krcvqs[i]; |
| 1423 | } |
| 1424 | |
| 1425 | /* |
| 1426 | * Do all the generic driver unit- and chip-independent memory |
| 1427 | * allocation and initialization. |
| 1428 | */ |
| 1429 | static int __init hfi1_mod_init(void) |
| 1430 | { |
| 1431 | int ret; |
| 1432 | |
| 1433 | ret = dev_init(); |
| 1434 | if (ret) |
| 1435 | goto bail; |
| 1436 | |
| 1437 | ret = node_affinity_init(); |
| 1438 | if (ret) |
| 1439 | goto bail; |
| 1440 | |
| 1441 | /* validate max MTU before any devices start */ |
| 1442 | if (!valid_opa_max_mtu(hfi1_max_mtu)) { |
| 1443 | pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n", |
| 1444 | hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU); |
| 1445 | hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; |
| 1446 | } |
| 1447 | /* valid CUs run from 1-128 in powers of 2 */ |
| 1448 | if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu)) |
| 1449 | hfi1_cu = 1; |
| 1450 | /* valid credit return threshold is 0-100, variable is unsigned */ |
| 1451 | if (user_credit_return_threshold > 100) |
| 1452 | user_credit_return_threshold = 100; |
| 1453 | |
| 1454 | compute_krcvqs(); |
| 1455 | /* |
| 1456 | * sanitize receive interrupt count, time must wait until after |
| 1457 | * the hardware type is known |
| 1458 | */ |
| 1459 | if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK) |
| 1460 | rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK; |
| 1461 | /* reject invalid combinations */ |
| 1462 | if (rcv_intr_count == 0 && rcv_intr_timeout == 0) { |
| 1463 | pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n"); |
| 1464 | rcv_intr_count = 1; |
| 1465 | } |
| 1466 | if (rcv_intr_count > 1 && rcv_intr_timeout == 0) { |
| 1467 | /* |
| 1468 | * Avoid indefinite packet delivery by requiring a timeout |
| 1469 | * if count is > 1. |
| 1470 | */ |
| 1471 | pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n"); |
| 1472 | rcv_intr_timeout = 1; |
| 1473 | } |
| 1474 | if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) { |
| 1475 | /* |
| 1476 | * The dynamic algorithm expects a non-zero timeout |
| 1477 | * and a count > 1. |
| 1478 | */ |
| 1479 | pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n"); |
| 1480 | rcv_intr_dynamic = 0; |
| 1481 | } |
| 1482 | |
| 1483 | /* sanitize link CRC options */ |
| 1484 | link_crc_mask &= SUPPORTED_CRCS; |
| 1485 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1486 | ret = opfn_init(); |
| 1487 | if (ret < 0) { |
| 1488 | pr_err("Failed to allocate opfn_wq"); |
| 1489 | goto bail_dev; |
| 1490 | } |
| 1491 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1492 | /* |
| 1493 | * These must be called before the driver is registered with |
| 1494 | * the PCI subsystem. |
| 1495 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1496 | hfi1_dbg_init(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1497 | ret = pci_register_driver(&hfi1_pci_driver); |
| 1498 | if (ret < 0) { |
| 1499 | pr_err("Unable to register driver: error %d\n", -ret); |
| 1500 | goto bail_dev; |
| 1501 | } |
| 1502 | goto bail; /* all OK */ |
| 1503 | |
| 1504 | bail_dev: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1505 | hfi1_dbg_exit(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1506 | dev_cleanup(); |
| 1507 | bail: |
| 1508 | return ret; |
| 1509 | } |
| 1510 | |
| 1511 | module_init(hfi1_mod_init); |
| 1512 | |
| 1513 | /* |
| 1514 | * Do the non-unit driver cleanup, memory free, etc. at unload. |
| 1515 | */ |
| 1516 | static void __exit hfi1_mod_cleanup(void) |
| 1517 | { |
| 1518 | pci_unregister_driver(&hfi1_pci_driver); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1519 | opfn_exit(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1520 | node_affinity_destroy_all(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1521 | hfi1_dbg_exit(); |
| 1522 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1523 | WARN_ON(!xa_empty(&hfi1_dev_table)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1524 | dispose_firmware(); /* asymmetric with obtain_firmware() */ |
| 1525 | dev_cleanup(); |
| 1526 | } |
| 1527 | |
| 1528 | module_exit(hfi1_mod_cleanup); |
| 1529 | |
| 1530 | /* this can only be called after a successful initialization */ |
| 1531 | static void cleanup_device_data(struct hfi1_devdata *dd) |
| 1532 | { |
| 1533 | int ctxt; |
| 1534 | int pidx; |
| 1535 | |
| 1536 | /* users can't do anything more with chip */ |
| 1537 | for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| 1538 | struct hfi1_pportdata *ppd = &dd->pport[pidx]; |
| 1539 | struct cc_state *cc_state; |
| 1540 | int i; |
| 1541 | |
| 1542 | if (ppd->statusp) |
| 1543 | *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT; |
| 1544 | |
| 1545 | for (i = 0; i < OPA_MAX_SLS; i++) |
| 1546 | hrtimer_cancel(&ppd->cca_timer[i].hrtimer); |
| 1547 | |
| 1548 | spin_lock(&ppd->cc_state_lock); |
| 1549 | cc_state = get_cc_state_protected(ppd); |
| 1550 | RCU_INIT_POINTER(ppd->cc_state, NULL); |
| 1551 | spin_unlock(&ppd->cc_state_lock); |
| 1552 | |
| 1553 | if (cc_state) |
| 1554 | kfree_rcu(cc_state, rcu); |
| 1555 | } |
| 1556 | |
| 1557 | free_credit_return(dd); |
| 1558 | |
| 1559 | if (dd->rcvhdrtail_dummy_kvaddr) { |
| 1560 | dma_free_coherent(&dd->pcidev->dev, sizeof(u64), |
| 1561 | (void *)dd->rcvhdrtail_dummy_kvaddr, |
| 1562 | dd->rcvhdrtail_dummy_dma); |
| 1563 | dd->rcvhdrtail_dummy_kvaddr = NULL; |
| 1564 | } |
| 1565 | |
| 1566 | /* |
| 1567 | * Free any resources still in use (usually just kernel contexts) |
| 1568 | * at unload; we do for ctxtcnt, because that's what we allocate. |
| 1569 | */ |
| 1570 | for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) { |
| 1571 | struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; |
| 1572 | |
| 1573 | if (rcd) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1574 | hfi1_free_ctxt_rcv_groups(rcd); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1575 | hfi1_free_ctxt(rcd); |
| 1576 | } |
| 1577 | } |
| 1578 | |
| 1579 | kfree(dd->rcd); |
| 1580 | dd->rcd = NULL; |
| 1581 | |
| 1582 | free_pio_map(dd); |
| 1583 | /* must follow rcv context free - need to remove rcv's hooks */ |
| 1584 | for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++) |
| 1585 | sc_free(dd->send_contexts[ctxt].sc); |
| 1586 | dd->num_send_contexts = 0; |
| 1587 | kfree(dd->send_contexts); |
| 1588 | dd->send_contexts = NULL; |
| 1589 | kfree(dd->hw_to_sw); |
| 1590 | dd->hw_to_sw = NULL; |
| 1591 | kfree(dd->boardname); |
| 1592 | vfree(dd->events); |
| 1593 | vfree(dd->status); |
| 1594 | } |
| 1595 | |
| 1596 | /* |
| 1597 | * Clean up on unit shutdown, or error during unit load after |
| 1598 | * successful initialization. |
| 1599 | */ |
| 1600 | static void postinit_cleanup(struct hfi1_devdata *dd) |
| 1601 | { |
| 1602 | hfi1_start_cleanup(dd); |
| 1603 | hfi1_comp_vectors_clean_up(dd); |
| 1604 | hfi1_dev_affinity_clean_up(dd); |
| 1605 | |
| 1606 | hfi1_pcie_ddcleanup(dd); |
| 1607 | hfi1_pcie_cleanup(dd->pcidev); |
| 1608 | |
| 1609 | cleanup_device_data(dd); |
| 1610 | |
| 1611 | hfi1_free_devdata(dd); |
| 1612 | } |
| 1613 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1614 | static int init_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1615 | { |
| 1616 | if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1617 | dd_dev_err(dd, "Receive header queue count too small\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1618 | return -EINVAL; |
| 1619 | } |
| 1620 | |
| 1621 | if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1622 | dd_dev_err(dd, |
| 1623 | "Receive header queue count cannot be greater than %u\n", |
| 1624 | HFI1_MAX_HDRQ_EGRBUF_CNT); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1625 | return -EINVAL; |
| 1626 | } |
| 1627 | |
| 1628 | if (thecnt % HDRQ_INCREMENT) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1629 | dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n", |
| 1630 | thecnt, HDRQ_INCREMENT); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1631 | return -EINVAL; |
| 1632 | } |
| 1633 | |
| 1634 | return 0; |
| 1635 | } |
| 1636 | |
| 1637 | static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
| 1638 | { |
| 1639 | int ret = 0, j, pidx, initfail; |
| 1640 | struct hfi1_devdata *dd; |
| 1641 | struct hfi1_pportdata *ppd; |
| 1642 | |
| 1643 | /* First, lock the non-writable module parameters */ |
| 1644 | HFI1_CAP_LOCK(); |
| 1645 | |
| 1646 | /* Validate dev ids */ |
| 1647 | if (!(ent->device == PCI_DEVICE_ID_INTEL0 || |
| 1648 | ent->device == PCI_DEVICE_ID_INTEL1)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1649 | dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n", |
| 1650 | ent->device); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1651 | ret = -ENODEV; |
| 1652 | goto bail; |
| 1653 | } |
| 1654 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1655 | /* Allocate the dd so we can get to work */ |
| 1656 | dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS * |
| 1657 | sizeof(struct hfi1_pportdata)); |
| 1658 | if (IS_ERR(dd)) { |
| 1659 | ret = PTR_ERR(dd); |
| 1660 | goto bail; |
| 1661 | } |
| 1662 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1663 | /* Validate some global module parameters */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1664 | ret = init_validate_rcvhdrcnt(dd, rcvhdrcnt); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1665 | if (ret) |
| 1666 | goto bail; |
| 1667 | |
| 1668 | /* use the encoding function as a sanitization check */ |
| 1669 | if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1670 | dd_dev_err(dd, "Invalid HdrQ Entry size %u\n", |
| 1671 | hfi1_hdrq_entsize); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1672 | ret = -EINVAL; |
| 1673 | goto bail; |
| 1674 | } |
| 1675 | |
| 1676 | /* The receive eager buffer size must be set before the receive |
| 1677 | * contexts are created. |
| 1678 | * |
| 1679 | * Set the eager buffer size. Validate that it falls in a range |
| 1680 | * allowed by the hardware - all powers of 2 between the min and |
| 1681 | * max. The maximum valid MTU is within the eager buffer range |
| 1682 | * so we do not need to cap the max_mtu by an eager buffer size |
| 1683 | * setting. |
| 1684 | */ |
| 1685 | if (eager_buffer_size) { |
| 1686 | if (!is_power_of_2(eager_buffer_size)) |
| 1687 | eager_buffer_size = |
| 1688 | roundup_pow_of_two(eager_buffer_size); |
| 1689 | eager_buffer_size = |
| 1690 | clamp_val(eager_buffer_size, |
| 1691 | MIN_EAGER_BUFFER * 8, |
| 1692 | MAX_EAGER_BUFFER_TOTAL); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1693 | dd_dev_info(dd, "Eager buffer size %u\n", |
| 1694 | eager_buffer_size); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1695 | } else { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1696 | dd_dev_err(dd, "Invalid Eager buffer size of 0\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1697 | ret = -EINVAL; |
| 1698 | goto bail; |
| 1699 | } |
| 1700 | |
| 1701 | /* restrict value of hfi1_rcvarr_split */ |
| 1702 | hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100); |
| 1703 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1704 | ret = hfi1_pcie_init(dd); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1705 | if (ret) |
| 1706 | goto bail; |
| 1707 | |
| 1708 | /* |
| 1709 | * Do device-specific initialization, function table setup, dd |
| 1710 | * allocation, etc. |
| 1711 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1712 | ret = hfi1_init_dd(dd); |
| 1713 | if (ret) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1714 | goto clean_bail; /* error already printed */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1715 | |
| 1716 | ret = create_workqueues(dd); |
| 1717 | if (ret) |
| 1718 | goto clean_bail; |
| 1719 | |
| 1720 | /* do the generic initialization */ |
| 1721 | initfail = hfi1_init(dd, 0); |
| 1722 | |
| 1723 | /* setup vnic */ |
| 1724 | hfi1_vnic_setup(dd); |
| 1725 | |
| 1726 | ret = hfi1_register_ib_device(dd); |
| 1727 | |
| 1728 | /* |
| 1729 | * Now ready for use. this should be cleared whenever we |
| 1730 | * detect a reset, or initiate one. If earlier failure, |
| 1731 | * we still create devices, so diags, etc. can be used |
| 1732 | * to determine cause of problem. |
| 1733 | */ |
| 1734 | if (!initfail && !ret) { |
| 1735 | dd->flags |= HFI1_INITTED; |
| 1736 | /* create debufs files after init and ib register */ |
| 1737 | hfi1_dbg_ibdev_init(&dd->verbs_dev); |
| 1738 | } |
| 1739 | |
| 1740 | j = hfi1_device_create(dd); |
| 1741 | if (j) |
| 1742 | dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j); |
| 1743 | |
| 1744 | if (initfail || ret) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1745 | msix_clean_up_interrupts(dd); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1746 | stop_timers(dd); |
| 1747 | flush_workqueue(ib_wq); |
| 1748 | for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| 1749 | hfi1_quiet_serdes(dd->pport + pidx); |
| 1750 | ppd = dd->pport + pidx; |
| 1751 | if (ppd->hfi1_wq) { |
| 1752 | destroy_workqueue(ppd->hfi1_wq); |
| 1753 | ppd->hfi1_wq = NULL; |
| 1754 | } |
| 1755 | if (ppd->link_wq) { |
| 1756 | destroy_workqueue(ppd->link_wq); |
| 1757 | ppd->link_wq = NULL; |
| 1758 | } |
| 1759 | } |
| 1760 | if (!j) |
| 1761 | hfi1_device_remove(dd); |
| 1762 | if (!ret) |
| 1763 | hfi1_unregister_ib_device(dd); |
| 1764 | hfi1_vnic_cleanup(dd); |
| 1765 | postinit_cleanup(dd); |
| 1766 | if (initfail) |
| 1767 | ret = initfail; |
| 1768 | goto bail; /* everything already cleaned */ |
| 1769 | } |
| 1770 | |
| 1771 | sdma_start(dd); |
| 1772 | |
| 1773 | return 0; |
| 1774 | |
| 1775 | clean_bail: |
| 1776 | hfi1_pcie_cleanup(pdev); |
| 1777 | bail: |
| 1778 | return ret; |
| 1779 | } |
| 1780 | |
| 1781 | static void wait_for_clients(struct hfi1_devdata *dd) |
| 1782 | { |
| 1783 | /* |
| 1784 | * Remove the device init value and complete the device if there is |
| 1785 | * no clients or wait for active clients to finish. |
| 1786 | */ |
| 1787 | if (atomic_dec_and_test(&dd->user_refcount)) |
| 1788 | complete(&dd->user_comp); |
| 1789 | |
| 1790 | wait_for_completion(&dd->user_comp); |
| 1791 | } |
| 1792 | |
| 1793 | static void remove_one(struct pci_dev *pdev) |
| 1794 | { |
| 1795 | struct hfi1_devdata *dd = pci_get_drvdata(pdev); |
| 1796 | |
| 1797 | /* close debugfs files before ib unregister */ |
| 1798 | hfi1_dbg_ibdev_exit(&dd->verbs_dev); |
| 1799 | |
| 1800 | /* remove the /dev hfi1 interface */ |
| 1801 | hfi1_device_remove(dd); |
| 1802 | |
| 1803 | /* wait for existing user space clients to finish */ |
| 1804 | wait_for_clients(dd); |
| 1805 | |
| 1806 | /* unregister from IB core */ |
| 1807 | hfi1_unregister_ib_device(dd); |
| 1808 | |
| 1809 | /* cleanup vnic */ |
| 1810 | hfi1_vnic_cleanup(dd); |
| 1811 | |
| 1812 | /* |
| 1813 | * Disable the IB link, disable interrupts on the device, |
| 1814 | * clear dma engines, etc. |
| 1815 | */ |
| 1816 | shutdown_device(dd); |
| 1817 | |
| 1818 | stop_timers(dd); |
| 1819 | |
| 1820 | /* wait until all of our (qsfp) queue_work() calls complete */ |
| 1821 | flush_workqueue(ib_wq); |
| 1822 | |
| 1823 | postinit_cleanup(dd); |
| 1824 | } |
| 1825 | |
| 1826 | static void shutdown_one(struct pci_dev *pdev) |
| 1827 | { |
| 1828 | struct hfi1_devdata *dd = pci_get_drvdata(pdev); |
| 1829 | |
| 1830 | shutdown_device(dd); |
| 1831 | } |
| 1832 | |
| 1833 | /** |
| 1834 | * hfi1_create_rcvhdrq - create a receive header queue |
| 1835 | * @dd: the hfi1_ib device |
| 1836 | * @rcd: the context data |
| 1837 | * |
| 1838 | * This must be contiguous memory (from an i/o perspective), and must be |
| 1839 | * DMA'able (which means for some systems, it will go through an IOMMU, |
| 1840 | * or be forced into a low address range). |
| 1841 | */ |
| 1842 | int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) |
| 1843 | { |
| 1844 | unsigned amt; |
| 1845 | u64 reg; |
| 1846 | |
| 1847 | if (!rcd->rcvhdrq) { |
| 1848 | gfp_t gfp_flags; |
| 1849 | |
| 1850 | amt = rcvhdrq_size(rcd); |
| 1851 | |
| 1852 | if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic) |
| 1853 | gfp_flags = GFP_KERNEL; |
| 1854 | else |
| 1855 | gfp_flags = GFP_USER; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1856 | rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt, |
| 1857 | &rcd->rcvhdrq_dma, |
| 1858 | gfp_flags | __GFP_COMP); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1859 | |
| 1860 | if (!rcd->rcvhdrq) { |
| 1861 | dd_dev_err(dd, |
| 1862 | "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n", |
| 1863 | amt, rcd->ctxt); |
| 1864 | goto bail; |
| 1865 | } |
| 1866 | |
| 1867 | if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) || |
| 1868 | HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1869 | rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev, |
| 1870 | PAGE_SIZE, |
| 1871 | &rcd->rcvhdrqtailaddr_dma, |
| 1872 | gfp_flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1873 | if (!rcd->rcvhdrtail_kvaddr) |
| 1874 | goto bail_free; |
| 1875 | } |
| 1876 | } |
| 1877 | /* |
| 1878 | * These values are per-context: |
| 1879 | * RcvHdrCnt |
| 1880 | * RcvHdrEntSize |
| 1881 | * RcvHdrSize |
| 1882 | */ |
| 1883 | reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT) |
| 1884 | & RCV_HDR_CNT_CNT_MASK) |
| 1885 | << RCV_HDR_CNT_CNT_SHIFT; |
| 1886 | write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg); |
| 1887 | reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize) |
| 1888 | & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) |
| 1889 | << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT; |
| 1890 | write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg); |
| 1891 | reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK) |
| 1892 | << RCV_HDR_SIZE_HDR_SIZE_SHIFT; |
| 1893 | write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg); |
| 1894 | |
| 1895 | /* |
| 1896 | * Program dummy tail address for every receive context |
| 1897 | * before enabling any receive context |
| 1898 | */ |
| 1899 | write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR, |
| 1900 | dd->rcvhdrtail_dummy_dma); |
| 1901 | |
| 1902 | return 0; |
| 1903 | |
| 1904 | bail_free: |
| 1905 | dd_dev_err(dd, |
| 1906 | "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n", |
| 1907 | rcd->ctxt); |
| 1908 | dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq, |
| 1909 | rcd->rcvhdrq_dma); |
| 1910 | rcd->rcvhdrq = NULL; |
| 1911 | bail: |
| 1912 | return -ENOMEM; |
| 1913 | } |
| 1914 | |
| 1915 | /** |
| 1916 | * allocate eager buffers, both kernel and user contexts. |
| 1917 | * @rcd: the context we are setting up. |
| 1918 | * |
| 1919 | * Allocate the eager TID buffers and program them into hip. |
| 1920 | * They are no longer completely contiguous, we do multiple allocation |
| 1921 | * calls. Otherwise we get the OOM code involved, by asking for too |
| 1922 | * much per call, with disastrous results on some kernels. |
| 1923 | */ |
| 1924 | int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd) |
| 1925 | { |
| 1926 | struct hfi1_devdata *dd = rcd->dd; |
| 1927 | u32 max_entries, egrtop, alloced_bytes = 0; |
| 1928 | gfp_t gfp_flags; |
| 1929 | u16 order, idx = 0; |
| 1930 | int ret = 0; |
| 1931 | u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu); |
| 1932 | |
| 1933 | /* |
| 1934 | * GFP_USER, but without GFP_FS, so buffer cache can be |
| 1935 | * coalesced (we hope); otherwise, even at order 4, |
| 1936 | * heavy filesystem activity makes these fail, and we can |
| 1937 | * use compound pages. |
| 1938 | */ |
| 1939 | gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP; |
| 1940 | |
| 1941 | /* |
| 1942 | * The minimum size of the eager buffers is a groups of MTU-sized |
| 1943 | * buffers. |
| 1944 | * The global eager_buffer_size parameter is checked against the |
| 1945 | * theoretical lower limit of the value. Here, we check against the |
| 1946 | * MTU. |
| 1947 | */ |
| 1948 | if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size)) |
| 1949 | rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size; |
| 1950 | /* |
| 1951 | * If using one-pkt-per-egr-buffer, lower the eager buffer |
| 1952 | * size to the max MTU (page-aligned). |
| 1953 | */ |
| 1954 | if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) |
| 1955 | rcd->egrbufs.rcvtid_size = round_mtu; |
| 1956 | |
| 1957 | /* |
| 1958 | * Eager buffers sizes of 1MB or less require smaller TID sizes |
| 1959 | * to satisfy the "multiple of 8 RcvArray entries" requirement. |
| 1960 | */ |
| 1961 | if (rcd->egrbufs.size <= (1 << 20)) |
| 1962 | rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu, |
| 1963 | rounddown_pow_of_two(rcd->egrbufs.size / 8)); |
| 1964 | |
| 1965 | while (alloced_bytes < rcd->egrbufs.size && |
| 1966 | rcd->egrbufs.alloced < rcd->egrbufs.count) { |
| 1967 | rcd->egrbufs.buffers[idx].addr = |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1968 | dma_alloc_coherent(&dd->pcidev->dev, |
| 1969 | rcd->egrbufs.rcvtid_size, |
| 1970 | &rcd->egrbufs.buffers[idx].dma, |
| 1971 | gfp_flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1972 | if (rcd->egrbufs.buffers[idx].addr) { |
| 1973 | rcd->egrbufs.buffers[idx].len = |
| 1974 | rcd->egrbufs.rcvtid_size; |
| 1975 | rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr = |
| 1976 | rcd->egrbufs.buffers[idx].addr; |
| 1977 | rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma = |
| 1978 | rcd->egrbufs.buffers[idx].dma; |
| 1979 | rcd->egrbufs.alloced++; |
| 1980 | alloced_bytes += rcd->egrbufs.rcvtid_size; |
| 1981 | idx++; |
| 1982 | } else { |
| 1983 | u32 new_size, i, j; |
| 1984 | u64 offset = 0; |
| 1985 | |
| 1986 | /* |
| 1987 | * Fail the eager buffer allocation if: |
| 1988 | * - we are already using the lowest acceptable size |
| 1989 | * - we are using one-pkt-per-egr-buffer (this implies |
| 1990 | * that we are accepting only one size) |
| 1991 | */ |
| 1992 | if (rcd->egrbufs.rcvtid_size == round_mtu || |
| 1993 | !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) { |
| 1994 | dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n", |
| 1995 | rcd->ctxt); |
| 1996 | ret = -ENOMEM; |
| 1997 | goto bail_rcvegrbuf_phys; |
| 1998 | } |
| 1999 | |
| 2000 | new_size = rcd->egrbufs.rcvtid_size / 2; |
| 2001 | |
| 2002 | /* |
| 2003 | * If the first attempt to allocate memory failed, don't |
| 2004 | * fail everything but continue with the next lower |
| 2005 | * size. |
| 2006 | */ |
| 2007 | if (idx == 0) { |
| 2008 | rcd->egrbufs.rcvtid_size = new_size; |
| 2009 | continue; |
| 2010 | } |
| 2011 | |
| 2012 | /* |
| 2013 | * Re-partition already allocated buffers to a smaller |
| 2014 | * size. |
| 2015 | */ |
| 2016 | rcd->egrbufs.alloced = 0; |
| 2017 | for (i = 0, j = 0, offset = 0; j < idx; i++) { |
| 2018 | if (i >= rcd->egrbufs.count) |
| 2019 | break; |
| 2020 | rcd->egrbufs.rcvtids[i].dma = |
| 2021 | rcd->egrbufs.buffers[j].dma + offset; |
| 2022 | rcd->egrbufs.rcvtids[i].addr = |
| 2023 | rcd->egrbufs.buffers[j].addr + offset; |
| 2024 | rcd->egrbufs.alloced++; |
| 2025 | if ((rcd->egrbufs.buffers[j].dma + offset + |
| 2026 | new_size) == |
| 2027 | (rcd->egrbufs.buffers[j].dma + |
| 2028 | rcd->egrbufs.buffers[j].len)) { |
| 2029 | j++; |
| 2030 | offset = 0; |
| 2031 | } else { |
| 2032 | offset += new_size; |
| 2033 | } |
| 2034 | } |
| 2035 | rcd->egrbufs.rcvtid_size = new_size; |
| 2036 | } |
| 2037 | } |
| 2038 | rcd->egrbufs.numbufs = idx; |
| 2039 | rcd->egrbufs.size = alloced_bytes; |
| 2040 | |
| 2041 | hfi1_cdbg(PROC, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2042 | "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2043 | rcd->ctxt, rcd->egrbufs.alloced, |
| 2044 | rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024); |
| 2045 | |
| 2046 | /* |
| 2047 | * Set the contexts rcv array head update threshold to the closest |
| 2048 | * power of 2 (so we can use a mask instead of modulo) below half |
| 2049 | * the allocated entries. |
| 2050 | */ |
| 2051 | rcd->egrbufs.threshold = |
| 2052 | rounddown_pow_of_two(rcd->egrbufs.alloced / 2); |
| 2053 | /* |
| 2054 | * Compute the expected RcvArray entry base. This is done after |
| 2055 | * allocating the eager buffers in order to maximize the |
| 2056 | * expected RcvArray entries for the context. |
| 2057 | */ |
| 2058 | max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size; |
| 2059 | egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size); |
| 2060 | rcd->expected_count = max_entries - egrtop; |
| 2061 | if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2) |
| 2062 | rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2; |
| 2063 | |
| 2064 | rcd->expected_base = rcd->eager_base + egrtop; |
| 2065 | hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n", |
| 2066 | rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count, |
| 2067 | rcd->eager_base, rcd->expected_base); |
| 2068 | |
| 2069 | if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) { |
| 2070 | hfi1_cdbg(PROC, |
| 2071 | "ctxt%u: current Eager buffer size is invalid %u\n", |
| 2072 | rcd->ctxt, rcd->egrbufs.rcvtid_size); |
| 2073 | ret = -EINVAL; |
| 2074 | goto bail_rcvegrbuf_phys; |
| 2075 | } |
| 2076 | |
| 2077 | for (idx = 0; idx < rcd->egrbufs.alloced; idx++) { |
| 2078 | hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER, |
| 2079 | rcd->egrbufs.rcvtids[idx].dma, order); |
| 2080 | cond_resched(); |
| 2081 | } |
| 2082 | |
| 2083 | return 0; |
| 2084 | |
| 2085 | bail_rcvegrbuf_phys: |
| 2086 | for (idx = 0; idx < rcd->egrbufs.alloced && |
| 2087 | rcd->egrbufs.buffers[idx].addr; |
| 2088 | idx++) { |
| 2089 | dma_free_coherent(&dd->pcidev->dev, |
| 2090 | rcd->egrbufs.buffers[idx].len, |
| 2091 | rcd->egrbufs.buffers[idx].addr, |
| 2092 | rcd->egrbufs.buffers[idx].dma); |
| 2093 | rcd->egrbufs.buffers[idx].addr = NULL; |
| 2094 | rcd->egrbufs.buffers[idx].dma = 0; |
| 2095 | rcd->egrbufs.buffers[idx].len = 0; |
| 2096 | } |
| 2097 | |
| 2098 | return ret; |
| 2099 | } |