v4.19.13 snapshot.
diff --git a/drivers/infiniband/hw/hfi1/init.c b/drivers/infiniband/hw/hfi1/init.c
new file mode 100644
index 0000000..758d273
--- /dev/null
+++ b/drivers/infiniband/hw/hfi1/init.c
@@ -0,0 +1,2087 @@
+/*
+ * Copyright(c) 2015 - 2018 Intel Corporation.
+ *
+ * This file is provided under a dual BSD/GPLv2 license.  When using or
+ * redistributing this file, you may do so under either license.
+ *
+ * GPL LICENSE SUMMARY
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of version 2 of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ *  - Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ *  - Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in
+ *    the documentation and/or other materials provided with the
+ *    distribution.
+ *  - Neither the name of Intel Corporation nor the names of its
+ *    contributors may be used to endorse or promote products derived
+ *    from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+
+#include <linux/pci.h>
+#include <linux/netdevice.h>
+#include <linux/vmalloc.h>
+#include <linux/delay.h>
+#include <linux/idr.h>
+#include <linux/module.h>
+#include <linux/printk.h>
+#include <linux/hrtimer.h>
+#include <linux/bitmap.h>
+#include <rdma/rdma_vt.h>
+
+#include "hfi.h"
+#include "device.h"
+#include "common.h"
+#include "trace.h"
+#include "mad.h"
+#include "sdma.h"
+#include "debugfs.h"
+#include "verbs.h"
+#include "aspm.h"
+#include "affinity.h"
+#include "vnic.h"
+#include "exp_rcv.h"
+
+#undef pr_fmt
+#define pr_fmt(fmt) DRIVER_NAME ": " fmt
+
+#define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
+/*
+ * min buffers we want to have per context, after driver
+ */
+#define HFI1_MIN_USER_CTXT_BUFCNT 7
+
+#define HFI1_MIN_HDRQ_EGRBUF_CNT 2
+#define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
+#define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
+#define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
+
+/*
+ * Number of user receive contexts we are configured to use (to allow for more
+ * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
+ */
+int num_user_contexts = -1;
+module_param_named(num_user_contexts, num_user_contexts, int, 0444);
+MODULE_PARM_DESC(
+	num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
+
+uint krcvqs[RXE_NUM_DATA_VL];
+int krcvqsset;
+module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
+MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
+
+/* computed based on above array */
+unsigned long n_krcvqs;
+
+static unsigned hfi1_rcvarr_split = 25;
+module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
+MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
+
+static uint eager_buffer_size = (8 << 20); /* 8MB */
+module_param(eager_buffer_size, uint, S_IRUGO);
+MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
+
+static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
+module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
+MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
+
+static uint hfi1_hdrq_entsize = 32;
+module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
+MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
+
+unsigned int user_credit_return_threshold = 33;	/* default is 33% */
+module_param(user_credit_return_threshold, uint, S_IRUGO);
+MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
+
+static inline u64 encode_rcv_header_entry_size(u16 size);
+
+static struct idr hfi1_unit_table;
+
+static int hfi1_create_kctxt(struct hfi1_devdata *dd,
+			     struct hfi1_pportdata *ppd)
+{
+	struct hfi1_ctxtdata *rcd;
+	int ret;
+
+	/* Control context has to be always 0 */
+	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
+
+	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
+	if (ret < 0) {
+		dd_dev_err(dd, "Kernel receive context allocation failed\n");
+		return ret;
+	}
+
+	/*
+	 * Set up the kernel context flags here and now because they use
+	 * default values for all receive side memories.  User contexts will
+	 * be handled as they are created.
+	 */
+	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
+		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
+		HFI1_CAP_KGET(NODROP_EGR_FULL) |
+		HFI1_CAP_KGET(DMA_RTAIL);
+
+	/* Control context must use DMA_RTAIL */
+	if (rcd->ctxt == HFI1_CTRL_CTXT)
+		rcd->flags |= HFI1_CAP_DMA_RTAIL;
+	rcd->seq_cnt = 1;
+
+	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
+	if (!rcd->sc) {
+		dd_dev_err(dd, "Kernel send context allocation failed\n");
+		return -ENOMEM;
+	}
+	hfi1_init_ctxt(rcd->sc);
+
+	return 0;
+}
+
+/*
+ * Create the receive context array and one or more kernel contexts
+ */
+int hfi1_create_kctxts(struct hfi1_devdata *dd)
+{
+	u16 i;
+	int ret;
+
+	dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
+			       GFP_KERNEL, dd->node);
+	if (!dd->rcd)
+		return -ENOMEM;
+
+	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
+		ret = hfi1_create_kctxt(dd, dd->pport);
+		if (ret)
+			goto bail;
+	}
+
+	return 0;
+bail:
+	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
+		hfi1_free_ctxt(dd->rcd[i]);
+
+	/* All the contexts should be freed, free the array */
+	kfree(dd->rcd);
+	dd->rcd = NULL;
+	return ret;
+}
+
+/*
+ * Helper routines for the receive context reference count (rcd and uctxt).
+ */
+static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
+{
+	kref_init(&rcd->kref);
+}
+
+/**
+ * hfi1_rcd_free - When reference is zero clean up.
+ * @kref: pointer to an initialized rcd data structure
+ *
+ */
+static void hfi1_rcd_free(struct kref *kref)
+{
+	unsigned long flags;
+	struct hfi1_ctxtdata *rcd =
+		container_of(kref, struct hfi1_ctxtdata, kref);
+
+	hfi1_free_ctxtdata(rcd->dd, rcd);
+
+	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
+	rcd->dd->rcd[rcd->ctxt] = NULL;
+	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
+
+	kfree(rcd);
+}
+
+/**
+ * hfi1_rcd_put - decrement reference for rcd
+ * @rcd: pointer to an initialized rcd data structure
+ *
+ * Use this to put a reference after the init.
+ */
+int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
+{
+	if (rcd)
+		return kref_put(&rcd->kref, hfi1_rcd_free);
+
+	return 0;
+}
+
+/**
+ * hfi1_rcd_get - increment reference for rcd
+ * @rcd: pointer to an initialized rcd data structure
+ *
+ * Use this to get a reference after the init.
+ */
+void hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
+{
+	kref_get(&rcd->kref);
+}
+
+/**
+ * allocate_rcd_index - allocate an rcd index from the rcd array
+ * @dd: pointer to a valid devdata structure
+ * @rcd: rcd data structure to assign
+ * @index: pointer to index that is allocated
+ *
+ * Find an empty index in the rcd array, and assign the given rcd to it.
+ * If the array is full, we are EBUSY.
+ *
+ */
+static int allocate_rcd_index(struct hfi1_devdata *dd,
+			      struct hfi1_ctxtdata *rcd, u16 *index)
+{
+	unsigned long flags;
+	u16 ctxt;
+
+	spin_lock_irqsave(&dd->uctxt_lock, flags);
+	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
+		if (!dd->rcd[ctxt])
+			break;
+
+	if (ctxt < dd->num_rcv_contexts) {
+		rcd->ctxt = ctxt;
+		dd->rcd[ctxt] = rcd;
+		hfi1_rcd_init(rcd);
+	}
+	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
+
+	if (ctxt >= dd->num_rcv_contexts)
+		return -EBUSY;
+
+	*index = ctxt;
+
+	return 0;
+}
+
+/**
+ * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
+ * array
+ * @dd: pointer to a valid devdata structure
+ * @ctxt: the index of an possilbe rcd
+ *
+ * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
+ * ctxt index is valid.
+ *
+ * The caller is responsible for making the _put().
+ *
+ */
+struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
+						 u16 ctxt)
+{
+	if (ctxt < dd->num_rcv_contexts)
+		return hfi1_rcd_get_by_index(dd, ctxt);
+
+	return NULL;
+}
+
+/**
+ * hfi1_rcd_get_by_index
+ * @dd: pointer to a valid devdata structure
+ * @ctxt: the index of an possilbe rcd
+ *
+ * We need to protect access to the rcd array.  If access is needed to
+ * one or more index, get the protecting spinlock and then increment the
+ * kref.
+ *
+ * The caller is responsible for making the _put().
+ *
+ */
+struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
+{
+	unsigned long flags;
+	struct hfi1_ctxtdata *rcd = NULL;
+
+	spin_lock_irqsave(&dd->uctxt_lock, flags);
+	if (dd->rcd[ctxt]) {
+		rcd = dd->rcd[ctxt];
+		hfi1_rcd_get(rcd);
+	}
+	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
+
+	return rcd;
+}
+
+/*
+ * Common code for user and kernel context create and setup.
+ * NOTE: the initial kref is done here (hf1_rcd_init()).
+ */
+int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
+			 struct hfi1_ctxtdata **context)
+{
+	struct hfi1_devdata *dd = ppd->dd;
+	struct hfi1_ctxtdata *rcd;
+	unsigned kctxt_ngroups = 0;
+	u32 base;
+
+	if (dd->rcv_entries.nctxt_extra >
+	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
+		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
+			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
+	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
+	if (rcd) {
+		u32 rcvtids, max_entries;
+		u16 ctxt;
+		int ret;
+
+		ret = allocate_rcd_index(dd, rcd, &ctxt);
+		if (ret) {
+			*context = NULL;
+			kfree(rcd);
+			return ret;
+		}
+
+		INIT_LIST_HEAD(&rcd->qp_wait_list);
+		hfi1_exp_tid_group_init(rcd);
+		rcd->ppd = ppd;
+		rcd->dd = dd;
+		rcd->numa_id = numa;
+		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
+		rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
+
+		mutex_init(&rcd->exp_mutex);
+
+		hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
+
+		/*
+		 * Calculate the context's RcvArray entry starting point.
+		 * We do this here because we have to take into account all
+		 * the RcvArray entries that previous context would have
+		 * taken and we have to account for any extra groups assigned
+		 * to the static (kernel) or dynamic (vnic/user) contexts.
+		 */
+		if (ctxt < dd->first_dyn_alloc_ctxt) {
+			if (ctxt < kctxt_ngroups) {
+				base = ctxt * (dd->rcv_entries.ngroups + 1);
+				rcd->rcv_array_groups++;
+			} else {
+				base = kctxt_ngroups +
+					(ctxt * dd->rcv_entries.ngroups);
+			}
+		} else {
+			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
+
+			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
+				kctxt_ngroups);
+			if (ct < dd->rcv_entries.nctxt_extra) {
+				base += ct * (dd->rcv_entries.ngroups + 1);
+				rcd->rcv_array_groups++;
+			} else {
+				base += dd->rcv_entries.nctxt_extra +
+					(ct * dd->rcv_entries.ngroups);
+			}
+		}
+		rcd->eager_base = base * dd->rcv_entries.group_size;
+
+		rcd->rcvhdrq_cnt = rcvhdrcnt;
+		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
+		rcd->rhf_offset =
+			rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
+		/*
+		 * Simple Eager buffer allocation: we have already pre-allocated
+		 * the number of RcvArray entry groups. Each ctxtdata structure
+		 * holds the number of groups for that context.
+		 *
+		 * To follow CSR requirements and maintain cacheline alignment,
+		 * make sure all sizes and bases are multiples of group_size.
+		 *
+		 * The expected entry count is what is left after assigning
+		 * eager.
+		 */
+		max_entries = rcd->rcv_array_groups *
+			dd->rcv_entries.group_size;
+		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
+		rcd->egrbufs.count = round_down(rcvtids,
+						dd->rcv_entries.group_size);
+		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
+			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
+				   rcd->ctxt);
+			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
+		}
+		hfi1_cdbg(PROC,
+			  "ctxt%u: max Eager buffer RcvArray entries: %u\n",
+			  rcd->ctxt, rcd->egrbufs.count);
+
+		/*
+		 * Allocate array that will hold the eager buffer accounting
+		 * data.
+		 * This will allocate the maximum possible buffer count based
+		 * on the value of the RcvArray split parameter.
+		 * The resulting value will be rounded down to the closest
+		 * multiple of dd->rcv_entries.group_size.
+		 */
+		rcd->egrbufs.buffers =
+			kcalloc_node(rcd->egrbufs.count,
+				     sizeof(*rcd->egrbufs.buffers),
+				     GFP_KERNEL, numa);
+		if (!rcd->egrbufs.buffers)
+			goto bail;
+		rcd->egrbufs.rcvtids =
+			kcalloc_node(rcd->egrbufs.count,
+				     sizeof(*rcd->egrbufs.rcvtids),
+				     GFP_KERNEL, numa);
+		if (!rcd->egrbufs.rcvtids)
+			goto bail;
+		rcd->egrbufs.size = eager_buffer_size;
+		/*
+		 * The size of the buffers programmed into the RcvArray
+		 * entries needs to be big enough to handle the highest
+		 * MTU supported.
+		 */
+		if (rcd->egrbufs.size < hfi1_max_mtu) {
+			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
+			hfi1_cdbg(PROC,
+				  "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
+				    rcd->ctxt, rcd->egrbufs.size);
+		}
+		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
+
+		/* Applicable only for statically created kernel contexts */
+		if (ctxt < dd->first_dyn_alloc_ctxt) {
+			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
+						    GFP_KERNEL, numa);
+			if (!rcd->opstats)
+				goto bail;
+		}
+
+		*context = rcd;
+		return 0;
+	}
+
+bail:
+	*context = NULL;
+	hfi1_free_ctxt(rcd);
+	return -ENOMEM;
+}
+
+/**
+ * hfi1_free_ctxt
+ * @rcd: pointer to an initialized rcd data structure
+ *
+ * This wrapper is the free function that matches hfi1_create_ctxtdata().
+ * When a context is done being used (kernel or user), this function is called
+ * for the "final" put to match the kref init from hf1i_create_ctxtdata().
+ * Other users of the context do a get/put sequence to make sure that the
+ * structure isn't removed while in use.
+ */
+void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
+{
+	hfi1_rcd_put(rcd);
+}
+
+/*
+ * Convert a receive header entry size that to the encoding used in the CSR.
+ *
+ * Return a zero if the given size is invalid.
+ */
+static inline u64 encode_rcv_header_entry_size(u16 size)
+{
+	/* there are only 3 valid receive header entry sizes */
+	if (size == 2)
+		return 1;
+	if (size == 16)
+		return 2;
+	else if (size == 32)
+		return 4;
+	return 0; /* invalid */
+}
+
+/*
+ * Select the largest ccti value over all SLs to determine the intra-
+ * packet gap for the link.
+ *
+ * called with cca_timer_lock held (to protect access to cca_timer
+ * array), and rcu_read_lock() (to protect access to cc_state).
+ */
+void set_link_ipg(struct hfi1_pportdata *ppd)
+{
+	struct hfi1_devdata *dd = ppd->dd;
+	struct cc_state *cc_state;
+	int i;
+	u16 cce, ccti_limit, max_ccti = 0;
+	u16 shift, mult;
+	u64 src;
+	u32 current_egress_rate; /* Mbits /sec */
+	u32 max_pkt_time;
+	/*
+	 * max_pkt_time is the maximum packet egress time in units
+	 * of the fabric clock period 1/(805 MHz).
+	 */
+
+	cc_state = get_cc_state(ppd);
+
+	if (!cc_state)
+		/*
+		 * This should _never_ happen - rcu_read_lock() is held,
+		 * and set_link_ipg() should not be called if cc_state
+		 * is NULL.
+		 */
+		return;
+
+	for (i = 0; i < OPA_MAX_SLS; i++) {
+		u16 ccti = ppd->cca_timer[i].ccti;
+
+		if (ccti > max_ccti)
+			max_ccti = ccti;
+	}
+
+	ccti_limit = cc_state->cct.ccti_limit;
+	if (max_ccti > ccti_limit)
+		max_ccti = ccti_limit;
+
+	cce = cc_state->cct.entries[max_ccti].entry;
+	shift = (cce & 0xc000) >> 14;
+	mult = (cce & 0x3fff);
+
+	current_egress_rate = active_egress_rate(ppd);
+
+	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
+
+	src = (max_pkt_time >> shift) * mult;
+
+	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
+	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
+
+	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
+}
+
+static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
+{
+	struct cca_timer *cca_timer;
+	struct hfi1_pportdata *ppd;
+	int sl;
+	u16 ccti_timer, ccti_min;
+	struct cc_state *cc_state;
+	unsigned long flags;
+	enum hrtimer_restart ret = HRTIMER_NORESTART;
+
+	cca_timer = container_of(t, struct cca_timer, hrtimer);
+	ppd = cca_timer->ppd;
+	sl = cca_timer->sl;
+
+	rcu_read_lock();
+
+	cc_state = get_cc_state(ppd);
+
+	if (!cc_state) {
+		rcu_read_unlock();
+		return HRTIMER_NORESTART;
+	}
+
+	/*
+	 * 1) decrement ccti for SL
+	 * 2) calculate IPG for link (set_link_ipg())
+	 * 3) restart timer, unless ccti is at min value
+	 */
+
+	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
+	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
+
+	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
+
+	if (cca_timer->ccti > ccti_min) {
+		cca_timer->ccti--;
+		set_link_ipg(ppd);
+	}
+
+	if (cca_timer->ccti > ccti_min) {
+		unsigned long nsec = 1024 * ccti_timer;
+		/* ccti_timer is in units of 1.024 usec */
+		hrtimer_forward_now(t, ns_to_ktime(nsec));
+		ret = HRTIMER_RESTART;
+	}
+
+	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
+	rcu_read_unlock();
+	return ret;
+}
+
+/*
+ * Common code for initializing the physical port structure.
+ */
+void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
+			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
+{
+	int i;
+	uint default_pkey_idx;
+	struct cc_state *cc_state;
+
+	ppd->dd = dd;
+	ppd->hw_pidx = hw_pidx;
+	ppd->port = port; /* IB port number, not index */
+	ppd->prev_link_width = LINK_WIDTH_DEFAULT;
+	/*
+	 * There are C_VL_COUNT number of PortVLXmitWait counters.
+	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
+	 */
+	for (i = 0; i < C_VL_COUNT + 1; i++) {
+		ppd->port_vl_xmit_wait_last[i] = 0;
+		ppd->vl_xmit_flit_cnt[i] = 0;
+	}
+
+	default_pkey_idx = 1;
+
+	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
+	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
+
+	if (loopback) {
+		hfi1_early_err(&pdev->dev,
+			       "Faking data partition 0x8001 in idx %u\n",
+			       !default_pkey_idx);
+		ppd->pkeys[!default_pkey_idx] = 0x8001;
+	}
+
+	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
+	INIT_WORK(&ppd->link_up_work, handle_link_up);
+	INIT_WORK(&ppd->link_down_work, handle_link_down);
+	INIT_WORK(&ppd->freeze_work, handle_freeze);
+	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
+	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
+	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
+	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
+	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
+	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
+
+	mutex_init(&ppd->hls_lock);
+	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
+
+	ppd->qsfp_info.ppd = ppd;
+	ppd->sm_trap_qp = 0x0;
+	ppd->sa_qp = 0x1;
+
+	ppd->hfi1_wq = NULL;
+
+	spin_lock_init(&ppd->cca_timer_lock);
+
+	for (i = 0; i < OPA_MAX_SLS; i++) {
+		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
+			     HRTIMER_MODE_REL);
+		ppd->cca_timer[i].ppd = ppd;
+		ppd->cca_timer[i].sl = i;
+		ppd->cca_timer[i].ccti = 0;
+		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
+	}
+
+	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
+
+	spin_lock_init(&ppd->cc_state_lock);
+	spin_lock_init(&ppd->cc_log_lock);
+	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
+	RCU_INIT_POINTER(ppd->cc_state, cc_state);
+	if (!cc_state)
+		goto bail;
+	return;
+
+bail:
+
+	hfi1_early_err(&pdev->dev,
+		       "Congestion Control Agent disabled for port %d\n", port);
+}
+
+/*
+ * Do initialization for device that is only needed on
+ * first detect, not on resets.
+ */
+static int loadtime_init(struct hfi1_devdata *dd)
+{
+	return 0;
+}
+
+/**
+ * init_after_reset - re-initialize after a reset
+ * @dd: the hfi1_ib device
+ *
+ * sanity check at least some of the values after reset, and
+ * ensure no receive or transmit (explicitly, in case reset
+ * failed
+ */
+static int init_after_reset(struct hfi1_devdata *dd)
+{
+	int i;
+	struct hfi1_ctxtdata *rcd;
+	/*
+	 * Ensure chip does no sends or receives, tail updates, or
+	 * pioavail updates while we re-initialize.  This is mostly
+	 * for the driver data structures, not chip registers.
+	 */
+	for (i = 0; i < dd->num_rcv_contexts; i++) {
+		rcd = hfi1_rcd_get_by_index(dd, i);
+		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
+			     HFI1_RCVCTRL_INTRAVAIL_DIS |
+			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
+		hfi1_rcd_put(rcd);
+	}
+	pio_send_control(dd, PSC_GLOBAL_DISABLE);
+	for (i = 0; i < dd->num_send_contexts; i++)
+		sc_disable(dd->send_contexts[i].sc);
+
+	return 0;
+}
+
+static void enable_chip(struct hfi1_devdata *dd)
+{
+	struct hfi1_ctxtdata *rcd;
+	u32 rcvmask;
+	u16 i;
+
+	/* enable PIO send */
+	pio_send_control(dd, PSC_GLOBAL_ENABLE);
+
+	/*
+	 * Enable kernel ctxts' receive and receive interrupt.
+	 * Other ctxts done as user opens and initializes them.
+	 */
+	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
+		rcd = hfi1_rcd_get_by_index(dd, i);
+		if (!rcd)
+			continue;
+		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
+		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
+			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
+		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
+			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
+		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
+			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
+		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
+			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
+		hfi1_rcvctrl(dd, rcvmask, rcd);
+		sc_enable(rcd->sc);
+		hfi1_rcd_put(rcd);
+	}
+}
+
+/**
+ * create_workqueues - create per port workqueues
+ * @dd: the hfi1_ib device
+ */
+static int create_workqueues(struct hfi1_devdata *dd)
+{
+	int pidx;
+	struct hfi1_pportdata *ppd;
+
+	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
+		ppd = dd->pport + pidx;
+		if (!ppd->hfi1_wq) {
+			ppd->hfi1_wq =
+				alloc_workqueue(
+				    "hfi%d_%d",
+				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
+				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
+				    dd->unit, pidx);
+			if (!ppd->hfi1_wq)
+				goto wq_error;
+		}
+		if (!ppd->link_wq) {
+			/*
+			 * Make the link workqueue single-threaded to enforce
+			 * serialization.
+			 */
+			ppd->link_wq =
+				alloc_workqueue(
+				    "hfi_link_%d_%d",
+				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
+				    1, /* max_active */
+				    dd->unit, pidx);
+			if (!ppd->link_wq)
+				goto wq_error;
+		}
+	}
+	return 0;
+wq_error:
+	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
+	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
+		ppd = dd->pport + pidx;
+		if (ppd->hfi1_wq) {
+			destroy_workqueue(ppd->hfi1_wq);
+			ppd->hfi1_wq = NULL;
+		}
+		if (ppd->link_wq) {
+			destroy_workqueue(ppd->link_wq);
+			ppd->link_wq = NULL;
+		}
+	}
+	return -ENOMEM;
+}
+
+/**
+ * hfi1_init - do the actual initialization sequence on the chip
+ * @dd: the hfi1_ib device
+ * @reinit: re-initializing, so don't allocate new memory
+ *
+ * Do the actual initialization sequence on the chip.  This is done
+ * both from the init routine called from the PCI infrastructure, and
+ * when we reset the chip, or detect that it was reset internally,
+ * or it's administratively re-enabled.
+ *
+ * Memory allocation here and in called routines is only done in
+ * the first case (reinit == 0).  We have to be careful, because even
+ * without memory allocation, we need to re-write all the chip registers
+ * TIDs, etc. after the reset or enable has completed.
+ */
+int hfi1_init(struct hfi1_devdata *dd, int reinit)
+{
+	int ret = 0, pidx, lastfail = 0;
+	unsigned long len;
+	u16 i;
+	struct hfi1_ctxtdata *rcd;
+	struct hfi1_pportdata *ppd;
+
+	/* Set up send low level handlers */
+	dd->process_pio_send = hfi1_verbs_send_pio;
+	dd->process_dma_send = hfi1_verbs_send_dma;
+	dd->pio_inline_send = pio_copy;
+	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
+
+	if (is_ax(dd)) {
+		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
+		dd->do_drop = 1;
+	} else {
+		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
+		dd->do_drop = 0;
+	}
+
+	/* make sure the link is not "up" */
+	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
+		ppd = dd->pport + pidx;
+		ppd->linkup = 0;
+	}
+
+	if (reinit)
+		ret = init_after_reset(dd);
+	else
+		ret = loadtime_init(dd);
+	if (ret)
+		goto done;
+
+	/* allocate dummy tail memory for all receive contexts */
+	dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
+		&dd->pcidev->dev, sizeof(u64),
+		&dd->rcvhdrtail_dummy_dma,
+		GFP_KERNEL);
+
+	if (!dd->rcvhdrtail_dummy_kvaddr) {
+		dd_dev_err(dd, "cannot allocate dummy tail memory\n");
+		ret = -ENOMEM;
+		goto done;
+	}
+
+	/* dd->rcd can be NULL if early initialization failed */
+	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
+		/*
+		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
+		 * re-init, the simplest way to handle this is to free
+		 * existing, and re-allocate.
+		 * Need to re-create rest of ctxt 0 ctxtdata as well.
+		 */
+		rcd = hfi1_rcd_get_by_index(dd, i);
+		if (!rcd)
+			continue;
+
+		rcd->do_interrupt = &handle_receive_interrupt;
+
+		lastfail = hfi1_create_rcvhdrq(dd, rcd);
+		if (!lastfail)
+			lastfail = hfi1_setup_eagerbufs(rcd);
+		if (lastfail) {
+			dd_dev_err(dd,
+				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
+			ret = lastfail;
+		}
+		hfi1_rcd_put(rcd);
+	}
+
+	/* Allocate enough memory for user event notification. */
+	len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
+			 sizeof(*dd->events));
+	dd->events = vmalloc_user(len);
+	if (!dd->events)
+		dd_dev_err(dd, "Failed to allocate user events page\n");
+	/*
+	 * Allocate a page for device and port status.
+	 * Page will be shared amongst all user processes.
+	 */
+	dd->status = vmalloc_user(PAGE_SIZE);
+	if (!dd->status)
+		dd_dev_err(dd, "Failed to allocate dev status page\n");
+	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
+		ppd = dd->pport + pidx;
+		if (dd->status)
+			/* Currently, we only have one port */
+			ppd->statusp = &dd->status->port;
+
+		set_mtu(ppd);
+	}
+
+	/* enable chip even if we have an error, so we can debug cause */
+	enable_chip(dd);
+
+done:
+	/*
+	 * Set status even if port serdes is not initialized
+	 * so that diags will work.
+	 */
+	if (dd->status)
+		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
+			HFI1_STATUS_INITTED;
+	if (!ret) {
+		/* enable all interrupts from the chip */
+		set_intr_state(dd, 1);
+
+		/* chip is OK for user apps; mark it as initialized */
+		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
+			ppd = dd->pport + pidx;
+
+			/*
+			 * start the serdes - must be after interrupts are
+			 * enabled so we are notified when the link goes up
+			 */
+			lastfail = bringup_serdes(ppd);
+			if (lastfail)
+				dd_dev_info(dd,
+					    "Failed to bring up port %u\n",
+					    ppd->port);
+
+			/*
+			 * Set status even if port serdes is not initialized
+			 * so that diags will work.
+			 */
+			if (ppd->statusp)
+				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
+							HFI1_STATUS_INITTED;
+			if (!ppd->link_speed_enabled)
+				continue;
+		}
+	}
+
+	/* if ret is non-zero, we probably should do some cleanup here... */
+	return ret;
+}
+
+static inline struct hfi1_devdata *__hfi1_lookup(int unit)
+{
+	return idr_find(&hfi1_unit_table, unit);
+}
+
+struct hfi1_devdata *hfi1_lookup(int unit)
+{
+	struct hfi1_devdata *dd;
+	unsigned long flags;
+
+	spin_lock_irqsave(&hfi1_devs_lock, flags);
+	dd = __hfi1_lookup(unit);
+	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
+
+	return dd;
+}
+
+/*
+ * Stop the timers during unit shutdown, or after an error late
+ * in initialization.
+ */
+static void stop_timers(struct hfi1_devdata *dd)
+{
+	struct hfi1_pportdata *ppd;
+	int pidx;
+
+	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
+		ppd = dd->pport + pidx;
+		if (ppd->led_override_timer.function) {
+			del_timer_sync(&ppd->led_override_timer);
+			atomic_set(&ppd->led_override_timer_active, 0);
+		}
+	}
+}
+
+/**
+ * shutdown_device - shut down a device
+ * @dd: the hfi1_ib device
+ *
+ * This is called to make the device quiet when we are about to
+ * unload the driver, and also when the device is administratively
+ * disabled.   It does not free any data structures.
+ * Everything it does has to be setup again by hfi1_init(dd, 1)
+ */
+static void shutdown_device(struct hfi1_devdata *dd)
+{
+	struct hfi1_pportdata *ppd;
+	struct hfi1_ctxtdata *rcd;
+	unsigned pidx;
+	int i;
+
+	if (dd->flags & HFI1_SHUTDOWN)
+		return;
+	dd->flags |= HFI1_SHUTDOWN;
+
+	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
+		ppd = dd->pport + pidx;
+
+		ppd->linkup = 0;
+		if (ppd->statusp)
+			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
+					   HFI1_STATUS_IB_READY);
+	}
+	dd->flags &= ~HFI1_INITTED;
+
+	/* mask and clean up interrupts, but not errors */
+	set_intr_state(dd, 0);
+	hfi1_clean_up_interrupts(dd);
+
+	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
+		ppd = dd->pport + pidx;
+		for (i = 0; i < dd->num_rcv_contexts; i++) {
+			rcd = hfi1_rcd_get_by_index(dd, i);
+			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
+				     HFI1_RCVCTRL_CTXT_DIS |
+				     HFI1_RCVCTRL_INTRAVAIL_DIS |
+				     HFI1_RCVCTRL_PKEY_DIS |
+				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
+			hfi1_rcd_put(rcd);
+		}
+		/*
+		 * Gracefully stop all sends allowing any in progress to
+		 * trickle out first.
+		 */
+		for (i = 0; i < dd->num_send_contexts; i++)
+			sc_flush(dd->send_contexts[i].sc);
+	}
+
+	/*
+	 * Enough for anything that's going to trickle out to have actually
+	 * done so.
+	 */
+	udelay(20);
+
+	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
+		ppd = dd->pport + pidx;
+
+		/* disable all contexts */
+		for (i = 0; i < dd->num_send_contexts; i++)
+			sc_disable(dd->send_contexts[i].sc);
+		/* disable the send device */
+		pio_send_control(dd, PSC_GLOBAL_DISABLE);
+
+		shutdown_led_override(ppd);
+
+		/*
+		 * Clear SerdesEnable.
+		 * We can't count on interrupts since we are stopping.
+		 */
+		hfi1_quiet_serdes(ppd);
+
+		if (ppd->hfi1_wq) {
+			destroy_workqueue(ppd->hfi1_wq);
+			ppd->hfi1_wq = NULL;
+		}
+		if (ppd->link_wq) {
+			destroy_workqueue(ppd->link_wq);
+			ppd->link_wq = NULL;
+		}
+	}
+	sdma_exit(dd);
+}
+
+/**
+ * hfi1_free_ctxtdata - free a context's allocated data
+ * @dd: the hfi1_ib device
+ * @rcd: the ctxtdata structure
+ *
+ * free up any allocated data for a context
+ * It should never change any chip state, or global driver state.
+ */
+void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
+{
+	u32 e;
+
+	if (!rcd)
+		return;
+
+	if (rcd->rcvhdrq) {
+		dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
+				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
+		rcd->rcvhdrq = NULL;
+		if (rcd->rcvhdrtail_kvaddr) {
+			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
+					  (void *)rcd->rcvhdrtail_kvaddr,
+					  rcd->rcvhdrqtailaddr_dma);
+			rcd->rcvhdrtail_kvaddr = NULL;
+		}
+	}
+
+	/* all the RcvArray entries should have been cleared by now */
+	kfree(rcd->egrbufs.rcvtids);
+	rcd->egrbufs.rcvtids = NULL;
+
+	for (e = 0; e < rcd->egrbufs.alloced; e++) {
+		if (rcd->egrbufs.buffers[e].dma)
+			dma_free_coherent(&dd->pcidev->dev,
+					  rcd->egrbufs.buffers[e].len,
+					  rcd->egrbufs.buffers[e].addr,
+					  rcd->egrbufs.buffers[e].dma);
+	}
+	kfree(rcd->egrbufs.buffers);
+	rcd->egrbufs.alloced = 0;
+	rcd->egrbufs.buffers = NULL;
+
+	sc_free(rcd->sc);
+	rcd->sc = NULL;
+
+	vfree(rcd->subctxt_uregbase);
+	vfree(rcd->subctxt_rcvegrbuf);
+	vfree(rcd->subctxt_rcvhdr_base);
+	kfree(rcd->opstats);
+
+	rcd->subctxt_uregbase = NULL;
+	rcd->subctxt_rcvegrbuf = NULL;
+	rcd->subctxt_rcvhdr_base = NULL;
+	rcd->opstats = NULL;
+}
+
+/*
+ * Release our hold on the shared asic data.  If we are the last one,
+ * return the structure to be finalized outside the lock.  Must be
+ * holding hfi1_devs_lock.
+ */
+static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
+{
+	struct hfi1_asic_data *ad;
+	int other;
+
+	if (!dd->asic_data)
+		return NULL;
+	dd->asic_data->dds[dd->hfi1_id] = NULL;
+	other = dd->hfi1_id ? 0 : 1;
+	ad = dd->asic_data;
+	dd->asic_data = NULL;
+	/* return NULL if the other dd still has a link */
+	return ad->dds[other] ? NULL : ad;
+}
+
+static void finalize_asic_data(struct hfi1_devdata *dd,
+			       struct hfi1_asic_data *ad)
+{
+	clean_up_i2c(dd, ad);
+	kfree(ad);
+}
+
+/**
+ * hfi1_clean_devdata - cleans up per-unit data structure
+ * @dd: pointer to a valid devdata structure
+ *
+ * It cleans up all data structures set up by
+ * by hfi1_alloc_devdata().
+ */
+static void hfi1_clean_devdata(struct hfi1_devdata *dd)
+{
+	struct hfi1_asic_data *ad;
+	unsigned long flags;
+
+	spin_lock_irqsave(&hfi1_devs_lock, flags);
+	if (!list_empty(&dd->list)) {
+		idr_remove(&hfi1_unit_table, dd->unit);
+		list_del_init(&dd->list);
+	}
+	ad = release_asic_data(dd);
+	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
+
+	finalize_asic_data(dd, ad);
+	free_platform_config(dd);
+	rcu_barrier(); /* wait for rcu callbacks to complete */
+	free_percpu(dd->int_counter);
+	free_percpu(dd->rcv_limit);
+	free_percpu(dd->send_schedule);
+	free_percpu(dd->tx_opstats);
+	dd->int_counter   = NULL;
+	dd->rcv_limit     = NULL;
+	dd->send_schedule = NULL;
+	dd->tx_opstats    = NULL;
+	kfree(dd->comp_vect);
+	dd->comp_vect = NULL;
+	sdma_clean(dd, dd->num_sdma);
+	rvt_dealloc_device(&dd->verbs_dev.rdi);
+}
+
+static void __hfi1_free_devdata(struct kobject *kobj)
+{
+	struct hfi1_devdata *dd =
+		container_of(kobj, struct hfi1_devdata, kobj);
+
+	hfi1_clean_devdata(dd);
+}
+
+static struct kobj_type hfi1_devdata_type = {
+	.release = __hfi1_free_devdata,
+};
+
+void hfi1_free_devdata(struct hfi1_devdata *dd)
+{
+	kobject_put(&dd->kobj);
+}
+
+/*
+ * Allocate our primary per-unit data structure.  Must be done via verbs
+ * allocator, because the verbs cleanup process both does cleanup and
+ * free of the data structure.
+ * "extra" is for chip-specific data.
+ *
+ * Use the idr mechanism to get a unit number for this unit.
+ */
+struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
+{
+	unsigned long flags;
+	struct hfi1_devdata *dd;
+	int ret, nports;
+
+	/* extra is * number of ports */
+	nports = extra / sizeof(struct hfi1_pportdata);
+
+	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
+						     nports);
+	if (!dd)
+		return ERR_PTR(-ENOMEM);
+	dd->num_pports = nports;
+	dd->pport = (struct hfi1_pportdata *)(dd + 1);
+	dd->pcidev = pdev;
+	pci_set_drvdata(pdev, dd);
+
+	INIT_LIST_HEAD(&dd->list);
+	idr_preload(GFP_KERNEL);
+	spin_lock_irqsave(&hfi1_devs_lock, flags);
+
+	ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
+	if (ret >= 0) {
+		dd->unit = ret;
+		list_add(&dd->list, &hfi1_dev_list);
+	}
+	dd->node = -1;
+
+	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
+	idr_preload_end();
+
+	if (ret < 0) {
+		hfi1_early_err(&pdev->dev,
+			       "Could not allocate unit ID: error %d\n", -ret);
+		goto bail;
+	}
+	rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
+
+	/*
+	 * Initialize all locks for the device. This needs to be as early as
+	 * possible so locks are usable.
+	 */
+	spin_lock_init(&dd->sc_lock);
+	spin_lock_init(&dd->sendctrl_lock);
+	spin_lock_init(&dd->rcvctrl_lock);
+	spin_lock_init(&dd->uctxt_lock);
+	spin_lock_init(&dd->hfi1_diag_trans_lock);
+	spin_lock_init(&dd->sc_init_lock);
+	spin_lock_init(&dd->dc8051_memlock);
+	seqlock_init(&dd->sc2vl_lock);
+	spin_lock_init(&dd->sde_map_lock);
+	spin_lock_init(&dd->pio_map_lock);
+	mutex_init(&dd->dc8051_lock);
+	init_waitqueue_head(&dd->event_queue);
+
+	dd->int_counter = alloc_percpu(u64);
+	if (!dd->int_counter) {
+		ret = -ENOMEM;
+		goto bail;
+	}
+
+	dd->rcv_limit = alloc_percpu(u64);
+	if (!dd->rcv_limit) {
+		ret = -ENOMEM;
+		goto bail;
+	}
+
+	dd->send_schedule = alloc_percpu(u64);
+	if (!dd->send_schedule) {
+		ret = -ENOMEM;
+		goto bail;
+	}
+
+	dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
+	if (!dd->tx_opstats) {
+		ret = -ENOMEM;
+		goto bail;
+	}
+
+	dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
+	if (!dd->comp_vect) {
+		ret = -ENOMEM;
+		goto bail;
+	}
+
+	kobject_init(&dd->kobj, &hfi1_devdata_type);
+	return dd;
+
+bail:
+	hfi1_clean_devdata(dd);
+	return ERR_PTR(ret);
+}
+
+/*
+ * Called from freeze mode handlers, and from PCI error
+ * reporting code.  Should be paranoid about state of
+ * system and data structures.
+ */
+void hfi1_disable_after_error(struct hfi1_devdata *dd)
+{
+	if (dd->flags & HFI1_INITTED) {
+		u32 pidx;
+
+		dd->flags &= ~HFI1_INITTED;
+		if (dd->pport)
+			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
+				struct hfi1_pportdata *ppd;
+
+				ppd = dd->pport + pidx;
+				if (dd->flags & HFI1_PRESENT)
+					set_link_state(ppd, HLS_DN_DISABLE);
+
+				if (ppd->statusp)
+					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
+			}
+	}
+
+	/*
+	 * Mark as having had an error for driver, and also
+	 * for /sys and status word mapped to user programs.
+	 * This marks unit as not usable, until reset.
+	 */
+	if (dd->status)
+		dd->status->dev |= HFI1_STATUS_HWERROR;
+}
+
+static void remove_one(struct pci_dev *);
+static int init_one(struct pci_dev *, const struct pci_device_id *);
+static void shutdown_one(struct pci_dev *);
+
+#define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
+#define PFX DRIVER_NAME ": "
+
+const struct pci_device_id hfi1_pci_tbl[] = {
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
+	{ 0, }
+};
+
+MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
+
+static struct pci_driver hfi1_pci_driver = {
+	.name = DRIVER_NAME,
+	.probe = init_one,
+	.remove = remove_one,
+	.shutdown = shutdown_one,
+	.id_table = hfi1_pci_tbl,
+	.err_handler = &hfi1_pci_err_handler,
+};
+
+static void __init compute_krcvqs(void)
+{
+	int i;
+
+	for (i = 0; i < krcvqsset; i++)
+		n_krcvqs += krcvqs[i];
+}
+
+/*
+ * Do all the generic driver unit- and chip-independent memory
+ * allocation and initialization.
+ */
+static int __init hfi1_mod_init(void)
+{
+	int ret;
+
+	ret = dev_init();
+	if (ret)
+		goto bail;
+
+	ret = node_affinity_init();
+	if (ret)
+		goto bail;
+
+	/* validate max MTU before any devices start */
+	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
+		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
+		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
+		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
+	}
+	/* valid CUs run from 1-128 in powers of 2 */
+	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
+		hfi1_cu = 1;
+	/* valid credit return threshold is 0-100, variable is unsigned */
+	if (user_credit_return_threshold > 100)
+		user_credit_return_threshold = 100;
+
+	compute_krcvqs();
+	/*
+	 * sanitize receive interrupt count, time must wait until after
+	 * the hardware type is known
+	 */
+	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
+		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
+	/* reject invalid combinations */
+	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
+		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
+		rcv_intr_count = 1;
+	}
+	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
+		/*
+		 * Avoid indefinite packet delivery by requiring a timeout
+		 * if count is > 1.
+		 */
+		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
+		rcv_intr_timeout = 1;
+	}
+	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
+		/*
+		 * The dynamic algorithm expects a non-zero timeout
+		 * and a count > 1.
+		 */
+		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
+		rcv_intr_dynamic = 0;
+	}
+
+	/* sanitize link CRC options */
+	link_crc_mask &= SUPPORTED_CRCS;
+
+	/*
+	 * These must be called before the driver is registered with
+	 * the PCI subsystem.
+	 */
+	idr_init(&hfi1_unit_table);
+
+	hfi1_dbg_init();
+	ret = hfi1_wss_init();
+	if (ret < 0)
+		goto bail_wss;
+	ret = pci_register_driver(&hfi1_pci_driver);
+	if (ret < 0) {
+		pr_err("Unable to register driver: error %d\n", -ret);
+		goto bail_dev;
+	}
+	goto bail; /* all OK */
+
+bail_dev:
+	hfi1_wss_exit();
+bail_wss:
+	hfi1_dbg_exit();
+	idr_destroy(&hfi1_unit_table);
+	dev_cleanup();
+bail:
+	return ret;
+}
+
+module_init(hfi1_mod_init);
+
+/*
+ * Do the non-unit driver cleanup, memory free, etc. at unload.
+ */
+static void __exit hfi1_mod_cleanup(void)
+{
+	pci_unregister_driver(&hfi1_pci_driver);
+	node_affinity_destroy_all();
+	hfi1_wss_exit();
+	hfi1_dbg_exit();
+
+	idr_destroy(&hfi1_unit_table);
+	dispose_firmware();	/* asymmetric with obtain_firmware() */
+	dev_cleanup();
+}
+
+module_exit(hfi1_mod_cleanup);
+
+/* this can only be called after a successful initialization */
+static void cleanup_device_data(struct hfi1_devdata *dd)
+{
+	int ctxt;
+	int pidx;
+
+	/* users can't do anything more with chip */
+	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
+		struct hfi1_pportdata *ppd = &dd->pport[pidx];
+		struct cc_state *cc_state;
+		int i;
+
+		if (ppd->statusp)
+			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
+
+		for (i = 0; i < OPA_MAX_SLS; i++)
+			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
+
+		spin_lock(&ppd->cc_state_lock);
+		cc_state = get_cc_state_protected(ppd);
+		RCU_INIT_POINTER(ppd->cc_state, NULL);
+		spin_unlock(&ppd->cc_state_lock);
+
+		if (cc_state)
+			kfree_rcu(cc_state, rcu);
+	}
+
+	free_credit_return(dd);
+
+	if (dd->rcvhdrtail_dummy_kvaddr) {
+		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
+				  (void *)dd->rcvhdrtail_dummy_kvaddr,
+				  dd->rcvhdrtail_dummy_dma);
+		dd->rcvhdrtail_dummy_kvaddr = NULL;
+	}
+
+	/*
+	 * Free any resources still in use (usually just kernel contexts)
+	 * at unload; we do for ctxtcnt, because that's what we allocate.
+	 */
+	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
+		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
+
+		if (rcd) {
+			hfi1_clear_tids(rcd);
+			hfi1_free_ctxt(rcd);
+		}
+	}
+
+	kfree(dd->rcd);
+	dd->rcd = NULL;
+
+	free_pio_map(dd);
+	/* must follow rcv context free - need to remove rcv's hooks */
+	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
+		sc_free(dd->send_contexts[ctxt].sc);
+	dd->num_send_contexts = 0;
+	kfree(dd->send_contexts);
+	dd->send_contexts = NULL;
+	kfree(dd->hw_to_sw);
+	dd->hw_to_sw = NULL;
+	kfree(dd->boardname);
+	vfree(dd->events);
+	vfree(dd->status);
+}
+
+/*
+ * Clean up on unit shutdown, or error during unit load after
+ * successful initialization.
+ */
+static void postinit_cleanup(struct hfi1_devdata *dd)
+{
+	hfi1_start_cleanup(dd);
+	hfi1_comp_vectors_clean_up(dd);
+	hfi1_dev_affinity_clean_up(dd);
+
+	hfi1_pcie_ddcleanup(dd);
+	hfi1_pcie_cleanup(dd->pcidev);
+
+	cleanup_device_data(dd);
+
+	hfi1_free_devdata(dd);
+}
+
+static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt)
+{
+	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
+		hfi1_early_err(dev, "Receive header queue count too small\n");
+		return -EINVAL;
+	}
+
+	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
+		hfi1_early_err(dev,
+			       "Receive header queue count cannot be greater than %u\n",
+			       HFI1_MAX_HDRQ_EGRBUF_CNT);
+		return -EINVAL;
+	}
+
+	if (thecnt % HDRQ_INCREMENT) {
+		hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n",
+			       thecnt, HDRQ_INCREMENT);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
+{
+	int ret = 0, j, pidx, initfail;
+	struct hfi1_devdata *dd;
+	struct hfi1_pportdata *ppd;
+
+	/* First, lock the non-writable module parameters */
+	HFI1_CAP_LOCK();
+
+	/* Validate dev ids */
+	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
+	      ent->device == PCI_DEVICE_ID_INTEL1)) {
+		hfi1_early_err(&pdev->dev,
+			       "Failing on unknown Intel deviceid 0x%x\n",
+			       ent->device);
+		ret = -ENODEV;
+		goto bail;
+	}
+
+	/* Validate some global module parameters */
+	ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt);
+	if (ret)
+		goto bail;
+
+	/* use the encoding function as a sanitization check */
+	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
+		hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
+			       hfi1_hdrq_entsize);
+		ret = -EINVAL;
+		goto bail;
+	}
+
+	/* The receive eager buffer size must be set before the receive
+	 * contexts are created.
+	 *
+	 * Set the eager buffer size.  Validate that it falls in a range
+	 * allowed by the hardware - all powers of 2 between the min and
+	 * max.  The maximum valid MTU is within the eager buffer range
+	 * so we do not need to cap the max_mtu by an eager buffer size
+	 * setting.
+	 */
+	if (eager_buffer_size) {
+		if (!is_power_of_2(eager_buffer_size))
+			eager_buffer_size =
+				roundup_pow_of_two(eager_buffer_size);
+		eager_buffer_size =
+			clamp_val(eager_buffer_size,
+				  MIN_EAGER_BUFFER * 8,
+				  MAX_EAGER_BUFFER_TOTAL);
+		hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
+				eager_buffer_size);
+	} else {
+		hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
+		ret = -EINVAL;
+		goto bail;
+	}
+
+	/* restrict value of hfi1_rcvarr_split */
+	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
+
+	ret = hfi1_pcie_init(pdev, ent);
+	if (ret)
+		goto bail;
+
+	/*
+	 * Do device-specific initialization, function table setup, dd
+	 * allocation, etc.
+	 */
+	dd = hfi1_init_dd(pdev, ent);
+
+	if (IS_ERR(dd)) {
+		ret = PTR_ERR(dd);
+		goto clean_bail; /* error already printed */
+	}
+
+	ret = create_workqueues(dd);
+	if (ret)
+		goto clean_bail;
+
+	/* do the generic initialization */
+	initfail = hfi1_init(dd, 0);
+
+	/* setup vnic */
+	hfi1_vnic_setup(dd);
+
+	ret = hfi1_register_ib_device(dd);
+
+	/*
+	 * Now ready for use.  this should be cleared whenever we
+	 * detect a reset, or initiate one.  If earlier failure,
+	 * we still create devices, so diags, etc. can be used
+	 * to determine cause of problem.
+	 */
+	if (!initfail && !ret) {
+		dd->flags |= HFI1_INITTED;
+		/* create debufs files after init and ib register */
+		hfi1_dbg_ibdev_init(&dd->verbs_dev);
+	}
+
+	j = hfi1_device_create(dd);
+	if (j)
+		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
+
+	if (initfail || ret) {
+		hfi1_clean_up_interrupts(dd);
+		stop_timers(dd);
+		flush_workqueue(ib_wq);
+		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
+			hfi1_quiet_serdes(dd->pport + pidx);
+			ppd = dd->pport + pidx;
+			if (ppd->hfi1_wq) {
+				destroy_workqueue(ppd->hfi1_wq);
+				ppd->hfi1_wq = NULL;
+			}
+			if (ppd->link_wq) {
+				destroy_workqueue(ppd->link_wq);
+				ppd->link_wq = NULL;
+			}
+		}
+		if (!j)
+			hfi1_device_remove(dd);
+		if (!ret)
+			hfi1_unregister_ib_device(dd);
+		hfi1_vnic_cleanup(dd);
+		postinit_cleanup(dd);
+		if (initfail)
+			ret = initfail;
+		goto bail;	/* everything already cleaned */
+	}
+
+	sdma_start(dd);
+
+	return 0;
+
+clean_bail:
+	hfi1_pcie_cleanup(pdev);
+bail:
+	return ret;
+}
+
+static void wait_for_clients(struct hfi1_devdata *dd)
+{
+	/*
+	 * Remove the device init value and complete the device if there is
+	 * no clients or wait for active clients to finish.
+	 */
+	if (atomic_dec_and_test(&dd->user_refcount))
+		complete(&dd->user_comp);
+
+	wait_for_completion(&dd->user_comp);
+}
+
+static void remove_one(struct pci_dev *pdev)
+{
+	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
+
+	/* close debugfs files before ib unregister */
+	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
+
+	/* remove the /dev hfi1 interface */
+	hfi1_device_remove(dd);
+
+	/* wait for existing user space clients to finish */
+	wait_for_clients(dd);
+
+	/* unregister from IB core */
+	hfi1_unregister_ib_device(dd);
+
+	/* cleanup vnic */
+	hfi1_vnic_cleanup(dd);
+
+	/*
+	 * Disable the IB link, disable interrupts on the device,
+	 * clear dma engines, etc.
+	 */
+	shutdown_device(dd);
+
+	stop_timers(dd);
+
+	/* wait until all of our (qsfp) queue_work() calls complete */
+	flush_workqueue(ib_wq);
+
+	postinit_cleanup(dd);
+}
+
+static void shutdown_one(struct pci_dev *pdev)
+{
+	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
+
+	shutdown_device(dd);
+}
+
+/**
+ * hfi1_create_rcvhdrq - create a receive header queue
+ * @dd: the hfi1_ib device
+ * @rcd: the context data
+ *
+ * This must be contiguous memory (from an i/o perspective), and must be
+ * DMA'able (which means for some systems, it will go through an IOMMU,
+ * or be forced into a low address range).
+ */
+int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
+{
+	unsigned amt;
+	u64 reg;
+
+	if (!rcd->rcvhdrq) {
+		gfp_t gfp_flags;
+
+		amt = rcvhdrq_size(rcd);
+
+		if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
+			gfp_flags = GFP_KERNEL;
+		else
+			gfp_flags = GFP_USER;
+		rcd->rcvhdrq = dma_zalloc_coherent(
+			&dd->pcidev->dev, amt, &rcd->rcvhdrq_dma,
+			gfp_flags | __GFP_COMP);
+
+		if (!rcd->rcvhdrq) {
+			dd_dev_err(dd,
+				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
+				   amt, rcd->ctxt);
+			goto bail;
+		}
+
+		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
+		    HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
+			rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
+				&dd->pcidev->dev, PAGE_SIZE,
+				&rcd->rcvhdrqtailaddr_dma, gfp_flags);
+			if (!rcd->rcvhdrtail_kvaddr)
+				goto bail_free;
+		}
+	}
+	/*
+	 * These values are per-context:
+	 *	RcvHdrCnt
+	 *	RcvHdrEntSize
+	 *	RcvHdrSize
+	 */
+	reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
+			& RCV_HDR_CNT_CNT_MASK)
+		<< RCV_HDR_CNT_CNT_SHIFT;
+	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
+	reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
+			& RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
+		<< RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
+	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
+	reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK)
+		<< RCV_HDR_SIZE_HDR_SIZE_SHIFT;
+	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
+
+	/*
+	 * Program dummy tail address for every receive context
+	 * before enabling any receive context
+	 */
+	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
+			dd->rcvhdrtail_dummy_dma);
+
+	return 0;
+
+bail_free:
+	dd_dev_err(dd,
+		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
+		   rcd->ctxt);
+	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
+			  rcd->rcvhdrq_dma);
+	rcd->rcvhdrq = NULL;
+bail:
+	return -ENOMEM;
+}
+
+/**
+ * allocate eager buffers, both kernel and user contexts.
+ * @rcd: the context we are setting up.
+ *
+ * Allocate the eager TID buffers and program them into hip.
+ * They are no longer completely contiguous, we do multiple allocation
+ * calls.  Otherwise we get the OOM code involved, by asking for too
+ * much per call, with disastrous results on some kernels.
+ */
+int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
+{
+	struct hfi1_devdata *dd = rcd->dd;
+	u32 max_entries, egrtop, alloced_bytes = 0;
+	gfp_t gfp_flags;
+	u16 order, idx = 0;
+	int ret = 0;
+	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
+
+	/*
+	 * GFP_USER, but without GFP_FS, so buffer cache can be
+	 * coalesced (we hope); otherwise, even at order 4,
+	 * heavy filesystem activity makes these fail, and we can
+	 * use compound pages.
+	 */
+	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
+
+	/*
+	 * The minimum size of the eager buffers is a groups of MTU-sized
+	 * buffers.
+	 * The global eager_buffer_size parameter is checked against the
+	 * theoretical lower limit of the value. Here, we check against the
+	 * MTU.
+	 */
+	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
+		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
+	/*
+	 * If using one-pkt-per-egr-buffer, lower the eager buffer
+	 * size to the max MTU (page-aligned).
+	 */
+	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
+		rcd->egrbufs.rcvtid_size = round_mtu;
+
+	/*
+	 * Eager buffers sizes of 1MB or less require smaller TID sizes
+	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
+	 */
+	if (rcd->egrbufs.size <= (1 << 20))
+		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
+			rounddown_pow_of_two(rcd->egrbufs.size / 8));
+
+	while (alloced_bytes < rcd->egrbufs.size &&
+	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
+		rcd->egrbufs.buffers[idx].addr =
+			dma_zalloc_coherent(&dd->pcidev->dev,
+					    rcd->egrbufs.rcvtid_size,
+					    &rcd->egrbufs.buffers[idx].dma,
+					    gfp_flags);
+		if (rcd->egrbufs.buffers[idx].addr) {
+			rcd->egrbufs.buffers[idx].len =
+				rcd->egrbufs.rcvtid_size;
+			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
+				rcd->egrbufs.buffers[idx].addr;
+			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
+				rcd->egrbufs.buffers[idx].dma;
+			rcd->egrbufs.alloced++;
+			alloced_bytes += rcd->egrbufs.rcvtid_size;
+			idx++;
+		} else {
+			u32 new_size, i, j;
+			u64 offset = 0;
+
+			/*
+			 * Fail the eager buffer allocation if:
+			 *   - we are already using the lowest acceptable size
+			 *   - we are using one-pkt-per-egr-buffer (this implies
+			 *     that we are accepting only one size)
+			 */
+			if (rcd->egrbufs.rcvtid_size == round_mtu ||
+			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
+				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
+					   rcd->ctxt);
+				ret = -ENOMEM;
+				goto bail_rcvegrbuf_phys;
+			}
+
+			new_size = rcd->egrbufs.rcvtid_size / 2;
+
+			/*
+			 * If the first attempt to allocate memory failed, don't
+			 * fail everything but continue with the next lower
+			 * size.
+			 */
+			if (idx == 0) {
+				rcd->egrbufs.rcvtid_size = new_size;
+				continue;
+			}
+
+			/*
+			 * Re-partition already allocated buffers to a smaller
+			 * size.
+			 */
+			rcd->egrbufs.alloced = 0;
+			for (i = 0, j = 0, offset = 0; j < idx; i++) {
+				if (i >= rcd->egrbufs.count)
+					break;
+				rcd->egrbufs.rcvtids[i].dma =
+					rcd->egrbufs.buffers[j].dma + offset;
+				rcd->egrbufs.rcvtids[i].addr =
+					rcd->egrbufs.buffers[j].addr + offset;
+				rcd->egrbufs.alloced++;
+				if ((rcd->egrbufs.buffers[j].dma + offset +
+				     new_size) ==
+				    (rcd->egrbufs.buffers[j].dma +
+				     rcd->egrbufs.buffers[j].len)) {
+					j++;
+					offset = 0;
+				} else {
+					offset += new_size;
+				}
+			}
+			rcd->egrbufs.rcvtid_size = new_size;
+		}
+	}
+	rcd->egrbufs.numbufs = idx;
+	rcd->egrbufs.size = alloced_bytes;
+
+	hfi1_cdbg(PROC,
+		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
+		  rcd->ctxt, rcd->egrbufs.alloced,
+		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
+
+	/*
+	 * Set the contexts rcv array head update threshold to the closest
+	 * power of 2 (so we can use a mask instead of modulo) below half
+	 * the allocated entries.
+	 */
+	rcd->egrbufs.threshold =
+		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
+	/*
+	 * Compute the expected RcvArray entry base. This is done after
+	 * allocating the eager buffers in order to maximize the
+	 * expected RcvArray entries for the context.
+	 */
+	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
+	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
+	rcd->expected_count = max_entries - egrtop;
+	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
+		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
+
+	rcd->expected_base = rcd->eager_base + egrtop;
+	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
+		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
+		  rcd->eager_base, rcd->expected_base);
+
+	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
+		hfi1_cdbg(PROC,
+			  "ctxt%u: current Eager buffer size is invalid %u\n",
+			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
+		ret = -EINVAL;
+		goto bail_rcvegrbuf_phys;
+	}
+
+	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
+		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
+			     rcd->egrbufs.rcvtids[idx].dma, order);
+		cond_resched();
+	}
+
+	return 0;
+
+bail_rcvegrbuf_phys:
+	for (idx = 0; idx < rcd->egrbufs.alloced &&
+	     rcd->egrbufs.buffers[idx].addr;
+	     idx++) {
+		dma_free_coherent(&dd->pcidev->dev,
+				  rcd->egrbufs.buffers[idx].len,
+				  rcd->egrbufs.buffers[idx].addr,
+				  rcd->egrbufs.buffers[idx].dma);
+		rcd->egrbufs.buffers[idx].addr = NULL;
+		rcd->egrbufs.buffers[idx].dma = 0;
+		rcd->egrbufs.buffers[idx].len = 0;
+	}
+
+	return ret;
+}