Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright(c) 2015 - 2018 Intel Corporation. |
| 3 | * |
| 4 | * This file is provided under a dual BSD/GPLv2 license. When using or |
| 5 | * redistributing this file, you may do so under either license. |
| 6 | * |
| 7 | * GPL LICENSE SUMMARY |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of version 2 of the GNU General Public License as |
| 11 | * published by the Free Software Foundation. |
| 12 | * |
| 13 | * This program is distributed in the hope that it will be useful, but |
| 14 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 16 | * General Public License for more details. |
| 17 | * |
| 18 | * BSD LICENSE |
| 19 | * |
| 20 | * Redistribution and use in source and binary forms, with or without |
| 21 | * modification, are permitted provided that the following conditions |
| 22 | * are met: |
| 23 | * |
| 24 | * - Redistributions of source code must retain the above copyright |
| 25 | * notice, this list of conditions and the following disclaimer. |
| 26 | * - Redistributions in binary form must reproduce the above copyright |
| 27 | * notice, this list of conditions and the following disclaimer in |
| 28 | * the documentation and/or other materials provided with the |
| 29 | * distribution. |
| 30 | * - Neither the name of Intel Corporation nor the names of its |
| 31 | * contributors may be used to endorse or promote products derived |
| 32 | * from this software without specific prior written permission. |
| 33 | * |
| 34 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 35 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 36 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 37 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 38 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 39 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 40 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 41 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 42 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 43 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 44 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 45 | * |
| 46 | */ |
| 47 | #include <linux/topology.h> |
| 48 | #include <linux/cpumask.h> |
| 49 | #include <linux/module.h> |
| 50 | #include <linux/interrupt.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 51 | #include <linux/numa.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 52 | |
| 53 | #include "hfi.h" |
| 54 | #include "affinity.h" |
| 55 | #include "sdma.h" |
| 56 | #include "trace.h" |
| 57 | |
| 58 | struct hfi1_affinity_node_list node_affinity = { |
| 59 | .list = LIST_HEAD_INIT(node_affinity.list), |
| 60 | .lock = __MUTEX_INITIALIZER(node_affinity.lock) |
| 61 | }; |
| 62 | |
| 63 | /* Name of IRQ types, indexed by enum irq_type */ |
| 64 | static const char * const irq_type_names[] = { |
| 65 | "SDMA", |
| 66 | "RCVCTXT", |
| 67 | "GENERAL", |
| 68 | "OTHER", |
| 69 | }; |
| 70 | |
| 71 | /* Per NUMA node count of HFI devices */ |
| 72 | static unsigned int *hfi1_per_node_cntr; |
| 73 | |
| 74 | static inline void init_cpu_mask_set(struct cpu_mask_set *set) |
| 75 | { |
| 76 | cpumask_clear(&set->mask); |
| 77 | cpumask_clear(&set->used); |
| 78 | set->gen = 0; |
| 79 | } |
| 80 | |
| 81 | /* Increment generation of CPU set if needed */ |
| 82 | static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set) |
| 83 | { |
| 84 | if (cpumask_equal(&set->mask, &set->used)) { |
| 85 | /* |
| 86 | * We've used up all the CPUs, bump up the generation |
| 87 | * and reset the 'used' map |
| 88 | */ |
| 89 | set->gen++; |
| 90 | cpumask_clear(&set->used); |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set) |
| 95 | { |
| 96 | if (cpumask_empty(&set->used) && set->gen) { |
| 97 | set->gen--; |
| 98 | cpumask_copy(&set->used, &set->mask); |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | /* Get the first CPU from the list of unused CPUs in a CPU set data structure */ |
| 103 | static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff) |
| 104 | { |
| 105 | int cpu; |
| 106 | |
| 107 | if (!diff || !set) |
| 108 | return -EINVAL; |
| 109 | |
| 110 | _cpu_mask_set_gen_inc(set); |
| 111 | |
| 112 | /* Find out CPUs left in CPU mask */ |
| 113 | cpumask_andnot(diff, &set->mask, &set->used); |
| 114 | |
| 115 | cpu = cpumask_first(diff); |
| 116 | if (cpu >= nr_cpu_ids) /* empty */ |
| 117 | cpu = -EINVAL; |
| 118 | else |
| 119 | cpumask_set_cpu(cpu, &set->used); |
| 120 | |
| 121 | return cpu; |
| 122 | } |
| 123 | |
| 124 | static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu) |
| 125 | { |
| 126 | if (!set) |
| 127 | return; |
| 128 | |
| 129 | cpumask_clear_cpu(cpu, &set->used); |
| 130 | _cpu_mask_set_gen_dec(set); |
| 131 | } |
| 132 | |
| 133 | /* Initialize non-HT cpu cores mask */ |
| 134 | void init_real_cpu_mask(void) |
| 135 | { |
| 136 | int possible, curr_cpu, i, ht; |
| 137 | |
| 138 | cpumask_clear(&node_affinity.real_cpu_mask); |
| 139 | |
| 140 | /* Start with cpu online mask as the real cpu mask */ |
| 141 | cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask); |
| 142 | |
| 143 | /* |
| 144 | * Remove HT cores from the real cpu mask. Do this in two steps below. |
| 145 | */ |
| 146 | possible = cpumask_weight(&node_affinity.real_cpu_mask); |
| 147 | ht = cpumask_weight(topology_sibling_cpumask( |
| 148 | cpumask_first(&node_affinity.real_cpu_mask))); |
| 149 | /* |
| 150 | * Step 1. Skip over the first N HT siblings and use them as the |
| 151 | * "real" cores. Assumes that HT cores are not enumerated in |
| 152 | * succession (except in the single core case). |
| 153 | */ |
| 154 | curr_cpu = cpumask_first(&node_affinity.real_cpu_mask); |
| 155 | for (i = 0; i < possible / ht; i++) |
| 156 | curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask); |
| 157 | /* |
| 158 | * Step 2. Remove the remaining HT siblings. Use cpumask_next() to |
| 159 | * skip any gaps. |
| 160 | */ |
| 161 | for (; i < possible; i++) { |
| 162 | cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask); |
| 163 | curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask); |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | int node_affinity_init(void) |
| 168 | { |
| 169 | int node; |
| 170 | struct pci_dev *dev = NULL; |
| 171 | const struct pci_device_id *ids = hfi1_pci_tbl; |
| 172 | |
| 173 | cpumask_clear(&node_affinity.proc.used); |
| 174 | cpumask_copy(&node_affinity.proc.mask, cpu_online_mask); |
| 175 | |
| 176 | node_affinity.proc.gen = 0; |
| 177 | node_affinity.num_core_siblings = |
| 178 | cpumask_weight(topology_sibling_cpumask( |
| 179 | cpumask_first(&node_affinity.proc.mask) |
| 180 | )); |
| 181 | node_affinity.num_possible_nodes = num_possible_nodes(); |
| 182 | node_affinity.num_online_nodes = num_online_nodes(); |
| 183 | node_affinity.num_online_cpus = num_online_cpus(); |
| 184 | |
| 185 | /* |
| 186 | * The real cpu mask is part of the affinity struct but it has to be |
| 187 | * initialized early. It is needed to calculate the number of user |
| 188 | * contexts in set_up_context_variables(). |
| 189 | */ |
| 190 | init_real_cpu_mask(); |
| 191 | |
| 192 | hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes, |
| 193 | sizeof(*hfi1_per_node_cntr), GFP_KERNEL); |
| 194 | if (!hfi1_per_node_cntr) |
| 195 | return -ENOMEM; |
| 196 | |
| 197 | while (ids->vendor) { |
| 198 | dev = NULL; |
| 199 | while ((dev = pci_get_device(ids->vendor, ids->device, dev))) { |
| 200 | node = pcibus_to_node(dev->bus); |
| 201 | if (node < 0) |
| 202 | goto out; |
| 203 | |
| 204 | hfi1_per_node_cntr[node]++; |
| 205 | } |
| 206 | ids++; |
| 207 | } |
| 208 | |
| 209 | return 0; |
| 210 | |
| 211 | out: |
| 212 | /* |
| 213 | * Invalid PCI NUMA node information found, note it, and populate |
| 214 | * our database 1:1. |
| 215 | */ |
| 216 | pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n"); |
| 217 | pr_err("HFI: System BIOS may need to be upgraded\n"); |
| 218 | for (node = 0; node < node_affinity.num_possible_nodes; node++) |
| 219 | hfi1_per_node_cntr[node] = 1; |
| 220 | |
| 221 | return 0; |
| 222 | } |
| 223 | |
| 224 | static void node_affinity_destroy(struct hfi1_affinity_node *entry) |
| 225 | { |
| 226 | free_percpu(entry->comp_vect_affinity); |
| 227 | kfree(entry); |
| 228 | } |
| 229 | |
| 230 | void node_affinity_destroy_all(void) |
| 231 | { |
| 232 | struct list_head *pos, *q; |
| 233 | struct hfi1_affinity_node *entry; |
| 234 | |
| 235 | mutex_lock(&node_affinity.lock); |
| 236 | list_for_each_safe(pos, q, &node_affinity.list) { |
| 237 | entry = list_entry(pos, struct hfi1_affinity_node, |
| 238 | list); |
| 239 | list_del(pos); |
| 240 | node_affinity_destroy(entry); |
| 241 | } |
| 242 | mutex_unlock(&node_affinity.lock); |
| 243 | kfree(hfi1_per_node_cntr); |
| 244 | } |
| 245 | |
| 246 | static struct hfi1_affinity_node *node_affinity_allocate(int node) |
| 247 | { |
| 248 | struct hfi1_affinity_node *entry; |
| 249 | |
| 250 | entry = kzalloc(sizeof(*entry), GFP_KERNEL); |
| 251 | if (!entry) |
| 252 | return NULL; |
| 253 | entry->node = node; |
| 254 | entry->comp_vect_affinity = alloc_percpu(u16); |
| 255 | INIT_LIST_HEAD(&entry->list); |
| 256 | |
| 257 | return entry; |
| 258 | } |
| 259 | |
| 260 | /* |
| 261 | * It appends an entry to the list. |
| 262 | * It *must* be called with node_affinity.lock held. |
| 263 | */ |
| 264 | static void node_affinity_add_tail(struct hfi1_affinity_node *entry) |
| 265 | { |
| 266 | list_add_tail(&entry->list, &node_affinity.list); |
| 267 | } |
| 268 | |
| 269 | /* It must be called with node_affinity.lock held */ |
| 270 | static struct hfi1_affinity_node *node_affinity_lookup(int node) |
| 271 | { |
| 272 | struct list_head *pos; |
| 273 | struct hfi1_affinity_node *entry; |
| 274 | |
| 275 | list_for_each(pos, &node_affinity.list) { |
| 276 | entry = list_entry(pos, struct hfi1_affinity_node, list); |
| 277 | if (entry->node == node) |
| 278 | return entry; |
| 279 | } |
| 280 | |
| 281 | return NULL; |
| 282 | } |
| 283 | |
| 284 | static int per_cpu_affinity_get(cpumask_var_t possible_cpumask, |
| 285 | u16 __percpu *comp_vect_affinity) |
| 286 | { |
| 287 | int curr_cpu; |
| 288 | u16 cntr; |
| 289 | u16 prev_cntr; |
| 290 | int ret_cpu; |
| 291 | |
| 292 | if (!possible_cpumask) { |
| 293 | ret_cpu = -EINVAL; |
| 294 | goto fail; |
| 295 | } |
| 296 | |
| 297 | if (!comp_vect_affinity) { |
| 298 | ret_cpu = -EINVAL; |
| 299 | goto fail; |
| 300 | } |
| 301 | |
| 302 | ret_cpu = cpumask_first(possible_cpumask); |
| 303 | if (ret_cpu >= nr_cpu_ids) { |
| 304 | ret_cpu = -EINVAL; |
| 305 | goto fail; |
| 306 | } |
| 307 | |
| 308 | prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu); |
| 309 | for_each_cpu(curr_cpu, possible_cpumask) { |
| 310 | cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu); |
| 311 | |
| 312 | if (cntr < prev_cntr) { |
| 313 | ret_cpu = curr_cpu; |
| 314 | prev_cntr = cntr; |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | *per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1; |
| 319 | |
| 320 | fail: |
| 321 | return ret_cpu; |
| 322 | } |
| 323 | |
| 324 | static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask, |
| 325 | u16 __percpu *comp_vect_affinity) |
| 326 | { |
| 327 | int curr_cpu; |
| 328 | int max_cpu; |
| 329 | u16 cntr; |
| 330 | u16 prev_cntr; |
| 331 | |
| 332 | if (!possible_cpumask) |
| 333 | return -EINVAL; |
| 334 | |
| 335 | if (!comp_vect_affinity) |
| 336 | return -EINVAL; |
| 337 | |
| 338 | max_cpu = cpumask_first(possible_cpumask); |
| 339 | if (max_cpu >= nr_cpu_ids) |
| 340 | return -EINVAL; |
| 341 | |
| 342 | prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu); |
| 343 | for_each_cpu(curr_cpu, possible_cpumask) { |
| 344 | cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu); |
| 345 | |
| 346 | if (cntr > prev_cntr) { |
| 347 | max_cpu = curr_cpu; |
| 348 | prev_cntr = cntr; |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | *per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1; |
| 353 | |
| 354 | return max_cpu; |
| 355 | } |
| 356 | |
| 357 | /* |
| 358 | * Non-interrupt CPUs are used first, then interrupt CPUs. |
| 359 | * Two already allocated cpu masks must be passed. |
| 360 | */ |
| 361 | static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd, |
| 362 | struct hfi1_affinity_node *entry, |
| 363 | cpumask_var_t non_intr_cpus, |
| 364 | cpumask_var_t available_cpus) |
| 365 | __must_hold(&node_affinity.lock) |
| 366 | { |
| 367 | int cpu; |
| 368 | struct cpu_mask_set *set = dd->comp_vect; |
| 369 | |
| 370 | lockdep_assert_held(&node_affinity.lock); |
| 371 | if (!non_intr_cpus) { |
| 372 | cpu = -1; |
| 373 | goto fail; |
| 374 | } |
| 375 | |
| 376 | if (!available_cpus) { |
| 377 | cpu = -1; |
| 378 | goto fail; |
| 379 | } |
| 380 | |
| 381 | /* Available CPUs for pinning completion vectors */ |
| 382 | _cpu_mask_set_gen_inc(set); |
| 383 | cpumask_andnot(available_cpus, &set->mask, &set->used); |
| 384 | |
| 385 | /* Available CPUs without SDMA engine interrupts */ |
| 386 | cpumask_andnot(non_intr_cpus, available_cpus, |
| 387 | &entry->def_intr.used); |
| 388 | |
| 389 | /* If there are non-interrupt CPUs available, use them first */ |
| 390 | if (!cpumask_empty(non_intr_cpus)) |
| 391 | cpu = cpumask_first(non_intr_cpus); |
| 392 | else /* Otherwise, use interrupt CPUs */ |
| 393 | cpu = cpumask_first(available_cpus); |
| 394 | |
| 395 | if (cpu >= nr_cpu_ids) { /* empty */ |
| 396 | cpu = -1; |
| 397 | goto fail; |
| 398 | } |
| 399 | cpumask_set_cpu(cpu, &set->used); |
| 400 | |
| 401 | fail: |
| 402 | return cpu; |
| 403 | } |
| 404 | |
| 405 | static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu) |
| 406 | { |
| 407 | struct cpu_mask_set *set = dd->comp_vect; |
| 408 | |
| 409 | if (cpu < 0) |
| 410 | return; |
| 411 | |
| 412 | cpu_mask_set_put(set, cpu); |
| 413 | } |
| 414 | |
| 415 | /* _dev_comp_vect_mappings_destroy() is reentrant */ |
| 416 | static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd) |
| 417 | { |
| 418 | int i, cpu; |
| 419 | |
| 420 | if (!dd->comp_vect_mappings) |
| 421 | return; |
| 422 | |
| 423 | for (i = 0; i < dd->comp_vect_possible_cpus; i++) { |
| 424 | cpu = dd->comp_vect_mappings[i]; |
| 425 | _dev_comp_vect_cpu_put(dd, cpu); |
| 426 | dd->comp_vect_mappings[i] = -1; |
| 427 | hfi1_cdbg(AFFINITY, |
| 428 | "[%s] Release CPU %d from completion vector %d", |
| 429 | rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i); |
| 430 | } |
| 431 | |
| 432 | kfree(dd->comp_vect_mappings); |
| 433 | dd->comp_vect_mappings = NULL; |
| 434 | } |
| 435 | |
| 436 | /* |
| 437 | * This function creates the table for looking up CPUs for completion vectors. |
| 438 | * num_comp_vectors needs to have been initilized before calling this function. |
| 439 | */ |
| 440 | static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd, |
| 441 | struct hfi1_affinity_node *entry) |
| 442 | __must_hold(&node_affinity.lock) |
| 443 | { |
| 444 | int i, cpu, ret; |
| 445 | cpumask_var_t non_intr_cpus; |
| 446 | cpumask_var_t available_cpus; |
| 447 | |
| 448 | lockdep_assert_held(&node_affinity.lock); |
| 449 | |
| 450 | if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL)) |
| 451 | return -ENOMEM; |
| 452 | |
| 453 | if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) { |
| 454 | free_cpumask_var(non_intr_cpus); |
| 455 | return -ENOMEM; |
| 456 | } |
| 457 | |
| 458 | dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus, |
| 459 | sizeof(*dd->comp_vect_mappings), |
| 460 | GFP_KERNEL); |
| 461 | if (!dd->comp_vect_mappings) { |
| 462 | ret = -ENOMEM; |
| 463 | goto fail; |
| 464 | } |
| 465 | for (i = 0; i < dd->comp_vect_possible_cpus; i++) |
| 466 | dd->comp_vect_mappings[i] = -1; |
| 467 | |
| 468 | for (i = 0; i < dd->comp_vect_possible_cpus; i++) { |
| 469 | cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus, |
| 470 | available_cpus); |
| 471 | if (cpu < 0) { |
| 472 | ret = -EINVAL; |
| 473 | goto fail; |
| 474 | } |
| 475 | |
| 476 | dd->comp_vect_mappings[i] = cpu; |
| 477 | hfi1_cdbg(AFFINITY, |
| 478 | "[%s] Completion Vector %d -> CPU %d", |
| 479 | rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu); |
| 480 | } |
| 481 | |
| 482 | return 0; |
| 483 | |
| 484 | fail: |
| 485 | free_cpumask_var(available_cpus); |
| 486 | free_cpumask_var(non_intr_cpus); |
| 487 | _dev_comp_vect_mappings_destroy(dd); |
| 488 | |
| 489 | return ret; |
| 490 | } |
| 491 | |
| 492 | int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd) |
| 493 | { |
| 494 | int ret; |
| 495 | struct hfi1_affinity_node *entry; |
| 496 | |
| 497 | mutex_lock(&node_affinity.lock); |
| 498 | entry = node_affinity_lookup(dd->node); |
| 499 | if (!entry) { |
| 500 | ret = -EINVAL; |
| 501 | goto unlock; |
| 502 | } |
| 503 | ret = _dev_comp_vect_mappings_create(dd, entry); |
| 504 | unlock: |
| 505 | mutex_unlock(&node_affinity.lock); |
| 506 | |
| 507 | return ret; |
| 508 | } |
| 509 | |
| 510 | void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd) |
| 511 | { |
| 512 | _dev_comp_vect_mappings_destroy(dd); |
| 513 | } |
| 514 | |
| 515 | int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect) |
| 516 | { |
| 517 | struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); |
| 518 | struct hfi1_devdata *dd = dd_from_dev(verbs_dev); |
| 519 | |
| 520 | if (!dd->comp_vect_mappings) |
| 521 | return -EINVAL; |
| 522 | if (comp_vect >= dd->comp_vect_possible_cpus) |
| 523 | return -EINVAL; |
| 524 | |
| 525 | return dd->comp_vect_mappings[comp_vect]; |
| 526 | } |
| 527 | |
| 528 | /* |
| 529 | * It assumes dd->comp_vect_possible_cpus is available. |
| 530 | */ |
| 531 | static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd, |
| 532 | struct hfi1_affinity_node *entry, |
| 533 | bool first_dev_init) |
| 534 | __must_hold(&node_affinity.lock) |
| 535 | { |
| 536 | int i, j, curr_cpu; |
| 537 | int possible_cpus_comp_vect = 0; |
| 538 | struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask; |
| 539 | |
| 540 | lockdep_assert_held(&node_affinity.lock); |
| 541 | /* |
| 542 | * If there's only one CPU available for completion vectors, then |
| 543 | * there will only be one completion vector available. Othewise, |
| 544 | * the number of completion vector available will be the number of |
| 545 | * available CPUs divide it by the number of devices in the |
| 546 | * local NUMA node. |
| 547 | */ |
| 548 | if (cpumask_weight(&entry->comp_vect_mask) == 1) { |
| 549 | possible_cpus_comp_vect = 1; |
| 550 | dd_dev_warn(dd, |
| 551 | "Number of kernel receive queues is too large for completion vector affinity to be effective\n"); |
| 552 | } else { |
| 553 | possible_cpus_comp_vect += |
| 554 | cpumask_weight(&entry->comp_vect_mask) / |
| 555 | hfi1_per_node_cntr[dd->node]; |
| 556 | |
| 557 | /* |
| 558 | * If the completion vector CPUs available doesn't divide |
| 559 | * evenly among devices, then the first device device to be |
| 560 | * initialized gets an extra CPU. |
| 561 | */ |
| 562 | if (first_dev_init && |
| 563 | cpumask_weight(&entry->comp_vect_mask) % |
| 564 | hfi1_per_node_cntr[dd->node] != 0) |
| 565 | possible_cpus_comp_vect++; |
| 566 | } |
| 567 | |
| 568 | dd->comp_vect_possible_cpus = possible_cpus_comp_vect; |
| 569 | |
| 570 | /* Reserving CPUs for device completion vector */ |
| 571 | for (i = 0; i < dd->comp_vect_possible_cpus; i++) { |
| 572 | curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask, |
| 573 | entry->comp_vect_affinity); |
| 574 | if (curr_cpu < 0) |
| 575 | goto fail; |
| 576 | |
| 577 | cpumask_set_cpu(curr_cpu, dev_comp_vect_mask); |
| 578 | } |
| 579 | |
| 580 | hfi1_cdbg(AFFINITY, |
| 581 | "[%s] Completion vector affinity CPU set(s) %*pbl", |
| 582 | rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), |
| 583 | cpumask_pr_args(dev_comp_vect_mask)); |
| 584 | |
| 585 | return 0; |
| 586 | |
| 587 | fail: |
| 588 | for (j = 0; j < i; j++) |
| 589 | per_cpu_affinity_put_max(&entry->comp_vect_mask, |
| 590 | entry->comp_vect_affinity); |
| 591 | |
| 592 | return curr_cpu; |
| 593 | } |
| 594 | |
| 595 | /* |
| 596 | * It assumes dd->comp_vect_possible_cpus is available. |
| 597 | */ |
| 598 | static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd, |
| 599 | struct hfi1_affinity_node *entry) |
| 600 | __must_hold(&node_affinity.lock) |
| 601 | { |
| 602 | int i, cpu; |
| 603 | |
| 604 | lockdep_assert_held(&node_affinity.lock); |
| 605 | if (!dd->comp_vect_possible_cpus) |
| 606 | return; |
| 607 | |
| 608 | for (i = 0; i < dd->comp_vect_possible_cpus; i++) { |
| 609 | cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask, |
| 610 | entry->comp_vect_affinity); |
| 611 | /* Clearing CPU in device completion vector cpu mask */ |
| 612 | if (cpu >= 0) |
| 613 | cpumask_clear_cpu(cpu, &dd->comp_vect->mask); |
| 614 | } |
| 615 | |
| 616 | dd->comp_vect_possible_cpus = 0; |
| 617 | } |
| 618 | |
| 619 | /* |
| 620 | * Interrupt affinity. |
| 621 | * |
| 622 | * non-rcv avail gets a default mask that |
| 623 | * starts as possible cpus with threads reset |
| 624 | * and each rcv avail reset. |
| 625 | * |
| 626 | * rcv avail gets node relative 1 wrapping back |
| 627 | * to the node relative 1 as necessary. |
| 628 | * |
| 629 | */ |
| 630 | int hfi1_dev_affinity_init(struct hfi1_devdata *dd) |
| 631 | { |
| 632 | int node = pcibus_to_node(dd->pcidev->bus); |
| 633 | struct hfi1_affinity_node *entry; |
| 634 | const struct cpumask *local_mask; |
| 635 | int curr_cpu, possible, i, ret; |
| 636 | bool new_entry = false; |
| 637 | |
| 638 | /* |
| 639 | * If the BIOS does not have the NUMA node information set, select |
| 640 | * NUMA 0 so we get consistent performance. |
| 641 | */ |
| 642 | if (node < 0) { |
| 643 | dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n"); |
| 644 | node = 0; |
| 645 | } |
| 646 | dd->node = node; |
| 647 | |
| 648 | local_mask = cpumask_of_node(dd->node); |
| 649 | if (cpumask_first(local_mask) >= nr_cpu_ids) |
| 650 | local_mask = topology_core_cpumask(0); |
| 651 | |
| 652 | mutex_lock(&node_affinity.lock); |
| 653 | entry = node_affinity_lookup(dd->node); |
| 654 | |
| 655 | /* |
| 656 | * If this is the first time this NUMA node's affinity is used, |
| 657 | * create an entry in the global affinity structure and initialize it. |
| 658 | */ |
| 659 | if (!entry) { |
| 660 | entry = node_affinity_allocate(node); |
| 661 | if (!entry) { |
| 662 | dd_dev_err(dd, |
| 663 | "Unable to allocate global affinity node\n"); |
| 664 | ret = -ENOMEM; |
| 665 | goto fail; |
| 666 | } |
| 667 | new_entry = true; |
| 668 | |
| 669 | init_cpu_mask_set(&entry->def_intr); |
| 670 | init_cpu_mask_set(&entry->rcv_intr); |
| 671 | cpumask_clear(&entry->comp_vect_mask); |
| 672 | cpumask_clear(&entry->general_intr_mask); |
| 673 | /* Use the "real" cpu mask of this node as the default */ |
| 674 | cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask, |
| 675 | local_mask); |
| 676 | |
| 677 | /* fill in the receive list */ |
| 678 | possible = cpumask_weight(&entry->def_intr.mask); |
| 679 | curr_cpu = cpumask_first(&entry->def_intr.mask); |
| 680 | |
| 681 | if (possible == 1) { |
| 682 | /* only one CPU, everyone will use it */ |
| 683 | cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask); |
| 684 | cpumask_set_cpu(curr_cpu, &entry->general_intr_mask); |
| 685 | } else { |
| 686 | /* |
| 687 | * The general/control context will be the first CPU in |
| 688 | * the default list, so it is removed from the default |
| 689 | * list and added to the general interrupt list. |
| 690 | */ |
| 691 | cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask); |
| 692 | cpumask_set_cpu(curr_cpu, &entry->general_intr_mask); |
| 693 | curr_cpu = cpumask_next(curr_cpu, |
| 694 | &entry->def_intr.mask); |
| 695 | |
| 696 | /* |
| 697 | * Remove the remaining kernel receive queues from |
| 698 | * the default list and add them to the receive list. |
| 699 | */ |
| 700 | for (i = 0; |
| 701 | i < (dd->n_krcv_queues - 1) * |
| 702 | hfi1_per_node_cntr[dd->node]; |
| 703 | i++) { |
| 704 | cpumask_clear_cpu(curr_cpu, |
| 705 | &entry->def_intr.mask); |
| 706 | cpumask_set_cpu(curr_cpu, |
| 707 | &entry->rcv_intr.mask); |
| 708 | curr_cpu = cpumask_next(curr_cpu, |
| 709 | &entry->def_intr.mask); |
| 710 | if (curr_cpu >= nr_cpu_ids) |
| 711 | break; |
| 712 | } |
| 713 | |
| 714 | /* |
| 715 | * If there ends up being 0 CPU cores leftover for SDMA |
| 716 | * engines, use the same CPU cores as general/control |
| 717 | * context. |
| 718 | */ |
| 719 | if (cpumask_weight(&entry->def_intr.mask) == 0) |
| 720 | cpumask_copy(&entry->def_intr.mask, |
| 721 | &entry->general_intr_mask); |
| 722 | } |
| 723 | |
| 724 | /* Determine completion vector CPUs for the entire node */ |
| 725 | cpumask_and(&entry->comp_vect_mask, |
| 726 | &node_affinity.real_cpu_mask, local_mask); |
| 727 | cpumask_andnot(&entry->comp_vect_mask, |
| 728 | &entry->comp_vect_mask, |
| 729 | &entry->rcv_intr.mask); |
| 730 | cpumask_andnot(&entry->comp_vect_mask, |
| 731 | &entry->comp_vect_mask, |
| 732 | &entry->general_intr_mask); |
| 733 | |
| 734 | /* |
| 735 | * If there ends up being 0 CPU cores leftover for completion |
| 736 | * vectors, use the same CPU core as the general/control |
| 737 | * context. |
| 738 | */ |
| 739 | if (cpumask_weight(&entry->comp_vect_mask) == 0) |
| 740 | cpumask_copy(&entry->comp_vect_mask, |
| 741 | &entry->general_intr_mask); |
| 742 | } |
| 743 | |
| 744 | ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry); |
| 745 | if (ret < 0) |
| 746 | goto fail; |
| 747 | |
| 748 | if (new_entry) |
| 749 | node_affinity_add_tail(entry); |
| 750 | |
| 751 | mutex_unlock(&node_affinity.lock); |
| 752 | |
| 753 | return 0; |
| 754 | |
| 755 | fail: |
| 756 | if (new_entry) |
| 757 | node_affinity_destroy(entry); |
| 758 | mutex_unlock(&node_affinity.lock); |
| 759 | return ret; |
| 760 | } |
| 761 | |
| 762 | void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd) |
| 763 | { |
| 764 | struct hfi1_affinity_node *entry; |
| 765 | |
| 766 | if (dd->node < 0) |
| 767 | return; |
| 768 | |
| 769 | mutex_lock(&node_affinity.lock); |
| 770 | entry = node_affinity_lookup(dd->node); |
| 771 | if (!entry) |
| 772 | goto unlock; |
| 773 | |
| 774 | /* |
| 775 | * Free device completion vector CPUs to be used by future |
| 776 | * completion vectors |
| 777 | */ |
| 778 | _dev_comp_vect_cpu_mask_clean_up(dd, entry); |
| 779 | unlock: |
| 780 | mutex_unlock(&node_affinity.lock); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 781 | dd->node = NUMA_NO_NODE; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 782 | } |
| 783 | |
| 784 | /* |
| 785 | * Function updates the irq affinity hint for msix after it has been changed |
| 786 | * by the user using the /proc/irq interface. This function only accepts |
| 787 | * one cpu in the mask. |
| 788 | */ |
| 789 | static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu) |
| 790 | { |
| 791 | struct sdma_engine *sde = msix->arg; |
| 792 | struct hfi1_devdata *dd = sde->dd; |
| 793 | struct hfi1_affinity_node *entry; |
| 794 | struct cpu_mask_set *set; |
| 795 | int i, old_cpu; |
| 796 | |
| 797 | if (cpu > num_online_cpus() || cpu == sde->cpu) |
| 798 | return; |
| 799 | |
| 800 | mutex_lock(&node_affinity.lock); |
| 801 | entry = node_affinity_lookup(dd->node); |
| 802 | if (!entry) |
| 803 | goto unlock; |
| 804 | |
| 805 | old_cpu = sde->cpu; |
| 806 | sde->cpu = cpu; |
| 807 | cpumask_clear(&msix->mask); |
| 808 | cpumask_set_cpu(cpu, &msix->mask); |
| 809 | dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n", |
| 810 | msix->irq, irq_type_names[msix->type], |
| 811 | sde->this_idx, cpu); |
| 812 | irq_set_affinity_hint(msix->irq, &msix->mask); |
| 813 | |
| 814 | /* |
| 815 | * Set the new cpu in the hfi1_affinity_node and clean |
| 816 | * the old cpu if it is not used by any other IRQ |
| 817 | */ |
| 818 | set = &entry->def_intr; |
| 819 | cpumask_set_cpu(cpu, &set->mask); |
| 820 | cpumask_set_cpu(cpu, &set->used); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 821 | for (i = 0; i < dd->msix_info.max_requested; i++) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 822 | struct hfi1_msix_entry *other_msix; |
| 823 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 824 | other_msix = &dd->msix_info.msix_entries[i]; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 825 | if (other_msix->type != IRQ_SDMA || other_msix == msix) |
| 826 | continue; |
| 827 | |
| 828 | if (cpumask_test_cpu(old_cpu, &other_msix->mask)) |
| 829 | goto unlock; |
| 830 | } |
| 831 | cpumask_clear_cpu(old_cpu, &set->mask); |
| 832 | cpumask_clear_cpu(old_cpu, &set->used); |
| 833 | unlock: |
| 834 | mutex_unlock(&node_affinity.lock); |
| 835 | } |
| 836 | |
| 837 | static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify, |
| 838 | const cpumask_t *mask) |
| 839 | { |
| 840 | int cpu = cpumask_first(mask); |
| 841 | struct hfi1_msix_entry *msix = container_of(notify, |
| 842 | struct hfi1_msix_entry, |
| 843 | notify); |
| 844 | |
| 845 | /* Only one CPU configuration supported currently */ |
| 846 | hfi1_update_sdma_affinity(msix, cpu); |
| 847 | } |
| 848 | |
| 849 | static void hfi1_irq_notifier_release(struct kref *ref) |
| 850 | { |
| 851 | /* |
| 852 | * This is required by affinity notifier. We don't have anything to |
| 853 | * free here. |
| 854 | */ |
| 855 | } |
| 856 | |
| 857 | static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix) |
| 858 | { |
| 859 | struct irq_affinity_notify *notify = &msix->notify; |
| 860 | |
| 861 | notify->irq = msix->irq; |
| 862 | notify->notify = hfi1_irq_notifier_notify; |
| 863 | notify->release = hfi1_irq_notifier_release; |
| 864 | |
| 865 | if (irq_set_affinity_notifier(notify->irq, notify)) |
| 866 | pr_err("Failed to register sdma irq affinity notifier for irq %d\n", |
| 867 | notify->irq); |
| 868 | } |
| 869 | |
| 870 | static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix) |
| 871 | { |
| 872 | struct irq_affinity_notify *notify = &msix->notify; |
| 873 | |
| 874 | if (irq_set_affinity_notifier(notify->irq, NULL)) |
| 875 | pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n", |
| 876 | notify->irq); |
| 877 | } |
| 878 | |
| 879 | /* |
| 880 | * Function sets the irq affinity for msix. |
| 881 | * It *must* be called with node_affinity.lock held. |
| 882 | */ |
| 883 | static int get_irq_affinity(struct hfi1_devdata *dd, |
| 884 | struct hfi1_msix_entry *msix) |
| 885 | { |
| 886 | cpumask_var_t diff; |
| 887 | struct hfi1_affinity_node *entry; |
| 888 | struct cpu_mask_set *set = NULL; |
| 889 | struct sdma_engine *sde = NULL; |
| 890 | struct hfi1_ctxtdata *rcd = NULL; |
| 891 | char extra[64]; |
| 892 | int cpu = -1; |
| 893 | |
| 894 | extra[0] = '\0'; |
| 895 | cpumask_clear(&msix->mask); |
| 896 | |
| 897 | entry = node_affinity_lookup(dd->node); |
| 898 | |
| 899 | switch (msix->type) { |
| 900 | case IRQ_SDMA: |
| 901 | sde = (struct sdma_engine *)msix->arg; |
| 902 | scnprintf(extra, 64, "engine %u", sde->this_idx); |
| 903 | set = &entry->def_intr; |
| 904 | break; |
| 905 | case IRQ_GENERAL: |
| 906 | cpu = cpumask_first(&entry->general_intr_mask); |
| 907 | break; |
| 908 | case IRQ_RCVCTXT: |
| 909 | rcd = (struct hfi1_ctxtdata *)msix->arg; |
| 910 | if (rcd->ctxt == HFI1_CTRL_CTXT) |
| 911 | cpu = cpumask_first(&entry->general_intr_mask); |
| 912 | else |
| 913 | set = &entry->rcv_intr; |
| 914 | scnprintf(extra, 64, "ctxt %u", rcd->ctxt); |
| 915 | break; |
| 916 | default: |
| 917 | dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type); |
| 918 | return -EINVAL; |
| 919 | } |
| 920 | |
| 921 | /* |
| 922 | * The general and control contexts are placed on a particular |
| 923 | * CPU, which is set above. Skip accounting for it. Everything else |
| 924 | * finds its CPU here. |
| 925 | */ |
| 926 | if (cpu == -1 && set) { |
| 927 | if (!zalloc_cpumask_var(&diff, GFP_KERNEL)) |
| 928 | return -ENOMEM; |
| 929 | |
| 930 | cpu = cpu_mask_set_get_first(set, diff); |
| 931 | if (cpu < 0) { |
| 932 | free_cpumask_var(diff); |
| 933 | dd_dev_err(dd, "Failure to obtain CPU for IRQ\n"); |
| 934 | return cpu; |
| 935 | } |
| 936 | |
| 937 | free_cpumask_var(diff); |
| 938 | } |
| 939 | |
| 940 | cpumask_set_cpu(cpu, &msix->mask); |
| 941 | dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n", |
| 942 | msix->irq, irq_type_names[msix->type], |
| 943 | extra, cpu); |
| 944 | irq_set_affinity_hint(msix->irq, &msix->mask); |
| 945 | |
| 946 | if (msix->type == IRQ_SDMA) { |
| 947 | sde->cpu = cpu; |
| 948 | hfi1_setup_sdma_notifier(msix); |
| 949 | } |
| 950 | |
| 951 | return 0; |
| 952 | } |
| 953 | |
| 954 | int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix) |
| 955 | { |
| 956 | int ret; |
| 957 | |
| 958 | mutex_lock(&node_affinity.lock); |
| 959 | ret = get_irq_affinity(dd, msix); |
| 960 | mutex_unlock(&node_affinity.lock); |
| 961 | return ret; |
| 962 | } |
| 963 | |
| 964 | void hfi1_put_irq_affinity(struct hfi1_devdata *dd, |
| 965 | struct hfi1_msix_entry *msix) |
| 966 | { |
| 967 | struct cpu_mask_set *set = NULL; |
| 968 | struct hfi1_ctxtdata *rcd; |
| 969 | struct hfi1_affinity_node *entry; |
| 970 | |
| 971 | mutex_lock(&node_affinity.lock); |
| 972 | entry = node_affinity_lookup(dd->node); |
| 973 | |
| 974 | switch (msix->type) { |
| 975 | case IRQ_SDMA: |
| 976 | set = &entry->def_intr; |
| 977 | hfi1_cleanup_sdma_notifier(msix); |
| 978 | break; |
| 979 | case IRQ_GENERAL: |
| 980 | /* Don't do accounting for general contexts */ |
| 981 | break; |
| 982 | case IRQ_RCVCTXT: |
| 983 | rcd = (struct hfi1_ctxtdata *)msix->arg; |
| 984 | /* Don't do accounting for control contexts */ |
| 985 | if (rcd->ctxt != HFI1_CTRL_CTXT) |
| 986 | set = &entry->rcv_intr; |
| 987 | break; |
| 988 | default: |
| 989 | mutex_unlock(&node_affinity.lock); |
| 990 | return; |
| 991 | } |
| 992 | |
| 993 | if (set) { |
| 994 | cpumask_andnot(&set->used, &set->used, &msix->mask); |
| 995 | _cpu_mask_set_gen_dec(set); |
| 996 | } |
| 997 | |
| 998 | irq_set_affinity_hint(msix->irq, NULL); |
| 999 | cpumask_clear(&msix->mask); |
| 1000 | mutex_unlock(&node_affinity.lock); |
| 1001 | } |
| 1002 | |
| 1003 | /* This should be called with node_affinity.lock held */ |
| 1004 | static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask, |
| 1005 | struct hfi1_affinity_node_list *affinity) |
| 1006 | { |
| 1007 | int possible, curr_cpu, i; |
| 1008 | uint num_cores_per_socket = node_affinity.num_online_cpus / |
| 1009 | affinity->num_core_siblings / |
| 1010 | node_affinity.num_online_nodes; |
| 1011 | |
| 1012 | cpumask_copy(hw_thread_mask, &affinity->proc.mask); |
| 1013 | if (affinity->num_core_siblings > 0) { |
| 1014 | /* Removing other siblings not needed for now */ |
| 1015 | possible = cpumask_weight(hw_thread_mask); |
| 1016 | curr_cpu = cpumask_first(hw_thread_mask); |
| 1017 | for (i = 0; |
| 1018 | i < num_cores_per_socket * node_affinity.num_online_nodes; |
| 1019 | i++) |
| 1020 | curr_cpu = cpumask_next(curr_cpu, hw_thread_mask); |
| 1021 | |
| 1022 | for (; i < possible; i++) { |
| 1023 | cpumask_clear_cpu(curr_cpu, hw_thread_mask); |
| 1024 | curr_cpu = cpumask_next(curr_cpu, hw_thread_mask); |
| 1025 | } |
| 1026 | |
| 1027 | /* Identifying correct HW threads within physical cores */ |
| 1028 | cpumask_shift_left(hw_thread_mask, hw_thread_mask, |
| 1029 | num_cores_per_socket * |
| 1030 | node_affinity.num_online_nodes * |
| 1031 | hw_thread_no); |
| 1032 | } |
| 1033 | } |
| 1034 | |
| 1035 | int hfi1_get_proc_affinity(int node) |
| 1036 | { |
| 1037 | int cpu = -1, ret, i; |
| 1038 | struct hfi1_affinity_node *entry; |
| 1039 | cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask; |
| 1040 | const struct cpumask *node_mask, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1041 | *proc_mask = current->cpus_ptr; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1042 | struct hfi1_affinity_node_list *affinity = &node_affinity; |
| 1043 | struct cpu_mask_set *set = &affinity->proc; |
| 1044 | |
| 1045 | /* |
| 1046 | * check whether process/context affinity has already |
| 1047 | * been set |
| 1048 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1049 | if (current->nr_cpus_allowed == 1) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1050 | hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl", |
| 1051 | current->pid, current->comm, |
| 1052 | cpumask_pr_args(proc_mask)); |
| 1053 | /* |
| 1054 | * Mark the pre-set CPU as used. This is atomic so we don't |
| 1055 | * need the lock |
| 1056 | */ |
| 1057 | cpu = cpumask_first(proc_mask); |
| 1058 | cpumask_set_cpu(cpu, &set->used); |
| 1059 | goto done; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1060 | } else if (current->nr_cpus_allowed < cpumask_weight(&set->mask)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1061 | hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl", |
| 1062 | current->pid, current->comm, |
| 1063 | cpumask_pr_args(proc_mask)); |
| 1064 | goto done; |
| 1065 | } |
| 1066 | |
| 1067 | /* |
| 1068 | * The process does not have a preset CPU affinity so find one to |
| 1069 | * recommend using the following algorithm: |
| 1070 | * |
| 1071 | * For each user process that is opening a context on HFI Y: |
| 1072 | * a) If all cores are filled, reinitialize the bitmask |
| 1073 | * b) Fill real cores first, then HT cores (First set of HT |
| 1074 | * cores on all physical cores, then second set of HT core, |
| 1075 | * and, so on) in the following order: |
| 1076 | * |
| 1077 | * 1. Same NUMA node as HFI Y and not running an IRQ |
| 1078 | * handler |
| 1079 | * 2. Same NUMA node as HFI Y and running an IRQ handler |
| 1080 | * 3. Different NUMA node to HFI Y and not running an IRQ |
| 1081 | * handler |
| 1082 | * 4. Different NUMA node to HFI Y and running an IRQ |
| 1083 | * handler |
| 1084 | * c) Mark core as filled in the bitmask. As user processes are |
| 1085 | * done, clear cores from the bitmask. |
| 1086 | */ |
| 1087 | |
| 1088 | ret = zalloc_cpumask_var(&diff, GFP_KERNEL); |
| 1089 | if (!ret) |
| 1090 | goto done; |
| 1091 | ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL); |
| 1092 | if (!ret) |
| 1093 | goto free_diff; |
| 1094 | ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL); |
| 1095 | if (!ret) |
| 1096 | goto free_hw_thread_mask; |
| 1097 | ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL); |
| 1098 | if (!ret) |
| 1099 | goto free_available_mask; |
| 1100 | |
| 1101 | mutex_lock(&affinity->lock); |
| 1102 | /* |
| 1103 | * If we've used all available HW threads, clear the mask and start |
| 1104 | * overloading. |
| 1105 | */ |
| 1106 | _cpu_mask_set_gen_inc(set); |
| 1107 | |
| 1108 | /* |
| 1109 | * If NUMA node has CPUs used by interrupt handlers, include them in the |
| 1110 | * interrupt handler mask. |
| 1111 | */ |
| 1112 | entry = node_affinity_lookup(node); |
| 1113 | if (entry) { |
| 1114 | cpumask_copy(intrs_mask, (entry->def_intr.gen ? |
| 1115 | &entry->def_intr.mask : |
| 1116 | &entry->def_intr.used)); |
| 1117 | cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ? |
| 1118 | &entry->rcv_intr.mask : |
| 1119 | &entry->rcv_intr.used)); |
| 1120 | cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask); |
| 1121 | } |
| 1122 | hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl", |
| 1123 | cpumask_pr_args(intrs_mask)); |
| 1124 | |
| 1125 | cpumask_copy(hw_thread_mask, &set->mask); |
| 1126 | |
| 1127 | /* |
| 1128 | * If HT cores are enabled, identify which HW threads within the |
| 1129 | * physical cores should be used. |
| 1130 | */ |
| 1131 | if (affinity->num_core_siblings > 0) { |
| 1132 | for (i = 0; i < affinity->num_core_siblings; i++) { |
| 1133 | find_hw_thread_mask(i, hw_thread_mask, affinity); |
| 1134 | |
| 1135 | /* |
| 1136 | * If there's at least one available core for this HW |
| 1137 | * thread number, stop looking for a core. |
| 1138 | * |
| 1139 | * diff will always be not empty at least once in this |
| 1140 | * loop as the used mask gets reset when |
| 1141 | * (set->mask == set->used) before this loop. |
| 1142 | */ |
| 1143 | cpumask_andnot(diff, hw_thread_mask, &set->used); |
| 1144 | if (!cpumask_empty(diff)) |
| 1145 | break; |
| 1146 | } |
| 1147 | } |
| 1148 | hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl", |
| 1149 | cpumask_pr_args(hw_thread_mask)); |
| 1150 | |
| 1151 | node_mask = cpumask_of_node(node); |
| 1152 | hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node, |
| 1153 | cpumask_pr_args(node_mask)); |
| 1154 | |
| 1155 | /* Get cpumask of available CPUs on preferred NUMA */ |
| 1156 | cpumask_and(available_mask, hw_thread_mask, node_mask); |
| 1157 | cpumask_andnot(available_mask, available_mask, &set->used); |
| 1158 | hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node, |
| 1159 | cpumask_pr_args(available_mask)); |
| 1160 | |
| 1161 | /* |
| 1162 | * At first, we don't want to place processes on the same |
| 1163 | * CPUs as interrupt handlers. Then, CPUs running interrupt |
| 1164 | * handlers are used. |
| 1165 | * |
| 1166 | * 1) If diff is not empty, then there are CPUs not running |
| 1167 | * non-interrupt handlers available, so diff gets copied |
| 1168 | * over to available_mask. |
| 1169 | * 2) If diff is empty, then all CPUs not running interrupt |
| 1170 | * handlers are taken, so available_mask contains all |
| 1171 | * available CPUs running interrupt handlers. |
| 1172 | * 3) If available_mask is empty, then all CPUs on the |
| 1173 | * preferred NUMA node are taken, so other NUMA nodes are |
| 1174 | * used for process assignments using the same method as |
| 1175 | * the preferred NUMA node. |
| 1176 | */ |
| 1177 | cpumask_andnot(diff, available_mask, intrs_mask); |
| 1178 | if (!cpumask_empty(diff)) |
| 1179 | cpumask_copy(available_mask, diff); |
| 1180 | |
| 1181 | /* If we don't have CPUs on the preferred node, use other NUMA nodes */ |
| 1182 | if (cpumask_empty(available_mask)) { |
| 1183 | cpumask_andnot(available_mask, hw_thread_mask, &set->used); |
| 1184 | /* Excluding preferred NUMA cores */ |
| 1185 | cpumask_andnot(available_mask, available_mask, node_mask); |
| 1186 | hfi1_cdbg(PROC, |
| 1187 | "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl", |
| 1188 | cpumask_pr_args(available_mask)); |
| 1189 | |
| 1190 | /* |
| 1191 | * At first, we don't want to place processes on the same |
| 1192 | * CPUs as interrupt handlers. |
| 1193 | */ |
| 1194 | cpumask_andnot(diff, available_mask, intrs_mask); |
| 1195 | if (!cpumask_empty(diff)) |
| 1196 | cpumask_copy(available_mask, diff); |
| 1197 | } |
| 1198 | hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl", |
| 1199 | cpumask_pr_args(available_mask)); |
| 1200 | |
| 1201 | cpu = cpumask_first(available_mask); |
| 1202 | if (cpu >= nr_cpu_ids) /* empty */ |
| 1203 | cpu = -1; |
| 1204 | else |
| 1205 | cpumask_set_cpu(cpu, &set->used); |
| 1206 | |
| 1207 | mutex_unlock(&affinity->lock); |
| 1208 | hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu); |
| 1209 | |
| 1210 | free_cpumask_var(intrs_mask); |
| 1211 | free_available_mask: |
| 1212 | free_cpumask_var(available_mask); |
| 1213 | free_hw_thread_mask: |
| 1214 | free_cpumask_var(hw_thread_mask); |
| 1215 | free_diff: |
| 1216 | free_cpumask_var(diff); |
| 1217 | done: |
| 1218 | return cpu; |
| 1219 | } |
| 1220 | |
| 1221 | void hfi1_put_proc_affinity(int cpu) |
| 1222 | { |
| 1223 | struct hfi1_affinity_node_list *affinity = &node_affinity; |
| 1224 | struct cpu_mask_set *set = &affinity->proc; |
| 1225 | |
| 1226 | if (cpu < 0) |
| 1227 | return; |
| 1228 | |
| 1229 | mutex_lock(&affinity->lock); |
| 1230 | cpu_mask_set_put(set, cpu); |
| 1231 | hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu); |
| 1232 | mutex_unlock(&affinity->lock); |
| 1233 | } |