v4.19.13 snapshot.
diff --git a/drivers/infiniband/hw/hfi1/affinity.c b/drivers/infiniband/hw/hfi1/affinity.c
new file mode 100644
index 0000000..bedd5fb
--- /dev/null
+++ b/drivers/infiniband/hw/hfi1/affinity.c
@@ -0,0 +1,1232 @@
+/*
+ * Copyright(c) 2015 - 2018 Intel Corporation.
+ *
+ * This file is provided under a dual BSD/GPLv2 license.  When using or
+ * redistributing this file, you may do so under either license.
+ *
+ * GPL LICENSE SUMMARY
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of version 2 of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ *  - Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ *  - Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in
+ *    the documentation and/or other materials provided with the
+ *    distribution.
+ *  - Neither the name of Intel Corporation nor the names of its
+ *    contributors may be used to endorse or promote products derived
+ *    from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+#include <linux/topology.h>
+#include <linux/cpumask.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+
+#include "hfi.h"
+#include "affinity.h"
+#include "sdma.h"
+#include "trace.h"
+
+struct hfi1_affinity_node_list node_affinity = {
+	.list = LIST_HEAD_INIT(node_affinity.list),
+	.lock = __MUTEX_INITIALIZER(node_affinity.lock)
+};
+
+/* Name of IRQ types, indexed by enum irq_type */
+static const char * const irq_type_names[] = {
+	"SDMA",
+	"RCVCTXT",
+	"GENERAL",
+	"OTHER",
+};
+
+/* Per NUMA node count of HFI devices */
+static unsigned int *hfi1_per_node_cntr;
+
+static inline void init_cpu_mask_set(struct cpu_mask_set *set)
+{
+	cpumask_clear(&set->mask);
+	cpumask_clear(&set->used);
+	set->gen = 0;
+}
+
+/* Increment generation of CPU set if needed */
+static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set)
+{
+	if (cpumask_equal(&set->mask, &set->used)) {
+		/*
+		 * We've used up all the CPUs, bump up the generation
+		 * and reset the 'used' map
+		 */
+		set->gen++;
+		cpumask_clear(&set->used);
+	}
+}
+
+static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set)
+{
+	if (cpumask_empty(&set->used) && set->gen) {
+		set->gen--;
+		cpumask_copy(&set->used, &set->mask);
+	}
+}
+
+/* Get the first CPU from the list of unused CPUs in a CPU set data structure */
+static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff)
+{
+	int cpu;
+
+	if (!diff || !set)
+		return -EINVAL;
+
+	_cpu_mask_set_gen_inc(set);
+
+	/* Find out CPUs left in CPU mask */
+	cpumask_andnot(diff, &set->mask, &set->used);
+
+	cpu = cpumask_first(diff);
+	if (cpu >= nr_cpu_ids) /* empty */
+		cpu = -EINVAL;
+	else
+		cpumask_set_cpu(cpu, &set->used);
+
+	return cpu;
+}
+
+static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu)
+{
+	if (!set)
+		return;
+
+	cpumask_clear_cpu(cpu, &set->used);
+	_cpu_mask_set_gen_dec(set);
+}
+
+/* Initialize non-HT cpu cores mask */
+void init_real_cpu_mask(void)
+{
+	int possible, curr_cpu, i, ht;
+
+	cpumask_clear(&node_affinity.real_cpu_mask);
+
+	/* Start with cpu online mask as the real cpu mask */
+	cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
+
+	/*
+	 * Remove HT cores from the real cpu mask.  Do this in two steps below.
+	 */
+	possible = cpumask_weight(&node_affinity.real_cpu_mask);
+	ht = cpumask_weight(topology_sibling_cpumask(
+				cpumask_first(&node_affinity.real_cpu_mask)));
+	/*
+	 * Step 1.  Skip over the first N HT siblings and use them as the
+	 * "real" cores.  Assumes that HT cores are not enumerated in
+	 * succession (except in the single core case).
+	 */
+	curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
+	for (i = 0; i < possible / ht; i++)
+		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
+	/*
+	 * Step 2.  Remove the remaining HT siblings.  Use cpumask_next() to
+	 * skip any gaps.
+	 */
+	for (; i < possible; i++) {
+		cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
+		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
+	}
+}
+
+int node_affinity_init(void)
+{
+	int node;
+	struct pci_dev *dev = NULL;
+	const struct pci_device_id *ids = hfi1_pci_tbl;
+
+	cpumask_clear(&node_affinity.proc.used);
+	cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
+
+	node_affinity.proc.gen = 0;
+	node_affinity.num_core_siblings =
+				cpumask_weight(topology_sibling_cpumask(
+					cpumask_first(&node_affinity.proc.mask)
+					));
+	node_affinity.num_possible_nodes = num_possible_nodes();
+	node_affinity.num_online_nodes = num_online_nodes();
+	node_affinity.num_online_cpus = num_online_cpus();
+
+	/*
+	 * The real cpu mask is part of the affinity struct but it has to be
+	 * initialized early. It is needed to calculate the number of user
+	 * contexts in set_up_context_variables().
+	 */
+	init_real_cpu_mask();
+
+	hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
+				     sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
+	if (!hfi1_per_node_cntr)
+		return -ENOMEM;
+
+	while (ids->vendor) {
+		dev = NULL;
+		while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
+			node = pcibus_to_node(dev->bus);
+			if (node < 0)
+				goto out;
+
+			hfi1_per_node_cntr[node]++;
+		}
+		ids++;
+	}
+
+	return 0;
+
+out:
+	/*
+	 * Invalid PCI NUMA node information found, note it, and populate
+	 * our database 1:1.
+	 */
+	pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
+	pr_err("HFI: System BIOS may need to be upgraded\n");
+	for (node = 0; node < node_affinity.num_possible_nodes; node++)
+		hfi1_per_node_cntr[node] = 1;
+
+	return 0;
+}
+
+static void node_affinity_destroy(struct hfi1_affinity_node *entry)
+{
+	free_percpu(entry->comp_vect_affinity);
+	kfree(entry);
+}
+
+void node_affinity_destroy_all(void)
+{
+	struct list_head *pos, *q;
+	struct hfi1_affinity_node *entry;
+
+	mutex_lock(&node_affinity.lock);
+	list_for_each_safe(pos, q, &node_affinity.list) {
+		entry = list_entry(pos, struct hfi1_affinity_node,
+				   list);
+		list_del(pos);
+		node_affinity_destroy(entry);
+	}
+	mutex_unlock(&node_affinity.lock);
+	kfree(hfi1_per_node_cntr);
+}
+
+static struct hfi1_affinity_node *node_affinity_allocate(int node)
+{
+	struct hfi1_affinity_node *entry;
+
+	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
+	if (!entry)
+		return NULL;
+	entry->node = node;
+	entry->comp_vect_affinity = alloc_percpu(u16);
+	INIT_LIST_HEAD(&entry->list);
+
+	return entry;
+}
+
+/*
+ * It appends an entry to the list.
+ * It *must* be called with node_affinity.lock held.
+ */
+static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
+{
+	list_add_tail(&entry->list, &node_affinity.list);
+}
+
+/* It must be called with node_affinity.lock held */
+static struct hfi1_affinity_node *node_affinity_lookup(int node)
+{
+	struct list_head *pos;
+	struct hfi1_affinity_node *entry;
+
+	list_for_each(pos, &node_affinity.list) {
+		entry = list_entry(pos, struct hfi1_affinity_node, list);
+		if (entry->node == node)
+			return entry;
+	}
+
+	return NULL;
+}
+
+static int per_cpu_affinity_get(cpumask_var_t possible_cpumask,
+				u16 __percpu *comp_vect_affinity)
+{
+	int curr_cpu;
+	u16 cntr;
+	u16 prev_cntr;
+	int ret_cpu;
+
+	if (!possible_cpumask) {
+		ret_cpu = -EINVAL;
+		goto fail;
+	}
+
+	if (!comp_vect_affinity) {
+		ret_cpu = -EINVAL;
+		goto fail;
+	}
+
+	ret_cpu = cpumask_first(possible_cpumask);
+	if (ret_cpu >= nr_cpu_ids) {
+		ret_cpu = -EINVAL;
+		goto fail;
+	}
+
+	prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu);
+	for_each_cpu(curr_cpu, possible_cpumask) {
+		cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
+
+		if (cntr < prev_cntr) {
+			ret_cpu = curr_cpu;
+			prev_cntr = cntr;
+		}
+	}
+
+	*per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1;
+
+fail:
+	return ret_cpu;
+}
+
+static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,
+				    u16 __percpu *comp_vect_affinity)
+{
+	int curr_cpu;
+	int max_cpu;
+	u16 cntr;
+	u16 prev_cntr;
+
+	if (!possible_cpumask)
+		return -EINVAL;
+
+	if (!comp_vect_affinity)
+		return -EINVAL;
+
+	max_cpu = cpumask_first(possible_cpumask);
+	if (max_cpu >= nr_cpu_ids)
+		return -EINVAL;
+
+	prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu);
+	for_each_cpu(curr_cpu, possible_cpumask) {
+		cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
+
+		if (cntr > prev_cntr) {
+			max_cpu = curr_cpu;
+			prev_cntr = cntr;
+		}
+	}
+
+	*per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1;
+
+	return max_cpu;
+}
+
+/*
+ * Non-interrupt CPUs are used first, then interrupt CPUs.
+ * Two already allocated cpu masks must be passed.
+ */
+static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd,
+				  struct hfi1_affinity_node *entry,
+				  cpumask_var_t non_intr_cpus,
+				  cpumask_var_t available_cpus)
+	__must_hold(&node_affinity.lock)
+{
+	int cpu;
+	struct cpu_mask_set *set = dd->comp_vect;
+
+	lockdep_assert_held(&node_affinity.lock);
+	if (!non_intr_cpus) {
+		cpu = -1;
+		goto fail;
+	}
+
+	if (!available_cpus) {
+		cpu = -1;
+		goto fail;
+	}
+
+	/* Available CPUs for pinning completion vectors */
+	_cpu_mask_set_gen_inc(set);
+	cpumask_andnot(available_cpus, &set->mask, &set->used);
+
+	/* Available CPUs without SDMA engine interrupts */
+	cpumask_andnot(non_intr_cpus, available_cpus,
+		       &entry->def_intr.used);
+
+	/* If there are non-interrupt CPUs available, use them first */
+	if (!cpumask_empty(non_intr_cpus))
+		cpu = cpumask_first(non_intr_cpus);
+	else /* Otherwise, use interrupt CPUs */
+		cpu = cpumask_first(available_cpus);
+
+	if (cpu >= nr_cpu_ids) { /* empty */
+		cpu = -1;
+		goto fail;
+	}
+	cpumask_set_cpu(cpu, &set->used);
+
+fail:
+	return cpu;
+}
+
+static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu)
+{
+	struct cpu_mask_set *set = dd->comp_vect;
+
+	if (cpu < 0)
+		return;
+
+	cpu_mask_set_put(set, cpu);
+}
+
+/* _dev_comp_vect_mappings_destroy() is reentrant */
+static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd)
+{
+	int i, cpu;
+
+	if (!dd->comp_vect_mappings)
+		return;
+
+	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
+		cpu = dd->comp_vect_mappings[i];
+		_dev_comp_vect_cpu_put(dd, cpu);
+		dd->comp_vect_mappings[i] = -1;
+		hfi1_cdbg(AFFINITY,
+			  "[%s] Release CPU %d from completion vector %d",
+			  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i);
+	}
+
+	kfree(dd->comp_vect_mappings);
+	dd->comp_vect_mappings = NULL;
+}
+
+/*
+ * This function creates the table for looking up CPUs for completion vectors.
+ * num_comp_vectors needs to have been initilized before calling this function.
+ */
+static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd,
+					  struct hfi1_affinity_node *entry)
+	__must_hold(&node_affinity.lock)
+{
+	int i, cpu, ret;
+	cpumask_var_t non_intr_cpus;
+	cpumask_var_t available_cpus;
+
+	lockdep_assert_held(&node_affinity.lock);
+
+	if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL))
+		return -ENOMEM;
+
+	if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) {
+		free_cpumask_var(non_intr_cpus);
+		return -ENOMEM;
+	}
+
+	dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus,
+					 sizeof(*dd->comp_vect_mappings),
+					 GFP_KERNEL);
+	if (!dd->comp_vect_mappings) {
+		ret = -ENOMEM;
+		goto fail;
+	}
+	for (i = 0; i < dd->comp_vect_possible_cpus; i++)
+		dd->comp_vect_mappings[i] = -1;
+
+	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
+		cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus,
+					     available_cpus);
+		if (cpu < 0) {
+			ret = -EINVAL;
+			goto fail;
+		}
+
+		dd->comp_vect_mappings[i] = cpu;
+		hfi1_cdbg(AFFINITY,
+			  "[%s] Completion Vector %d -> CPU %d",
+			  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu);
+	}
+
+	return 0;
+
+fail:
+	free_cpumask_var(available_cpus);
+	free_cpumask_var(non_intr_cpus);
+	_dev_comp_vect_mappings_destroy(dd);
+
+	return ret;
+}
+
+int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd)
+{
+	int ret;
+	struct hfi1_affinity_node *entry;
+
+	mutex_lock(&node_affinity.lock);
+	entry = node_affinity_lookup(dd->node);
+	if (!entry) {
+		ret = -EINVAL;
+		goto unlock;
+	}
+	ret = _dev_comp_vect_mappings_create(dd, entry);
+unlock:
+	mutex_unlock(&node_affinity.lock);
+
+	return ret;
+}
+
+void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd)
+{
+	_dev_comp_vect_mappings_destroy(dd);
+}
+
+int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect)
+{
+	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
+	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
+
+	if (!dd->comp_vect_mappings)
+		return -EINVAL;
+	if (comp_vect >= dd->comp_vect_possible_cpus)
+		return -EINVAL;
+
+	return dd->comp_vect_mappings[comp_vect];
+}
+
+/*
+ * It assumes dd->comp_vect_possible_cpus is available.
+ */
+static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd,
+					struct hfi1_affinity_node *entry,
+					bool first_dev_init)
+	__must_hold(&node_affinity.lock)
+{
+	int i, j, curr_cpu;
+	int possible_cpus_comp_vect = 0;
+	struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask;
+
+	lockdep_assert_held(&node_affinity.lock);
+	/*
+	 * If there's only one CPU available for completion vectors, then
+	 * there will only be one completion vector available. Othewise,
+	 * the number of completion vector available will be the number of
+	 * available CPUs divide it by the number of devices in the
+	 * local NUMA node.
+	 */
+	if (cpumask_weight(&entry->comp_vect_mask) == 1) {
+		possible_cpus_comp_vect = 1;
+		dd_dev_warn(dd,
+			    "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
+	} else {
+		possible_cpus_comp_vect +=
+			cpumask_weight(&entry->comp_vect_mask) /
+				       hfi1_per_node_cntr[dd->node];
+
+		/*
+		 * If the completion vector CPUs available doesn't divide
+		 * evenly among devices, then the first device device to be
+		 * initialized gets an extra CPU.
+		 */
+		if (first_dev_init &&
+		    cpumask_weight(&entry->comp_vect_mask) %
+		    hfi1_per_node_cntr[dd->node] != 0)
+			possible_cpus_comp_vect++;
+	}
+
+	dd->comp_vect_possible_cpus = possible_cpus_comp_vect;
+
+	/* Reserving CPUs for device completion vector */
+	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
+		curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask,
+						entry->comp_vect_affinity);
+		if (curr_cpu < 0)
+			goto fail;
+
+		cpumask_set_cpu(curr_cpu, dev_comp_vect_mask);
+	}
+
+	hfi1_cdbg(AFFINITY,
+		  "[%s] Completion vector affinity CPU set(s) %*pbl",
+		  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi),
+		  cpumask_pr_args(dev_comp_vect_mask));
+
+	return 0;
+
+fail:
+	for (j = 0; j < i; j++)
+		per_cpu_affinity_put_max(&entry->comp_vect_mask,
+					 entry->comp_vect_affinity);
+
+	return curr_cpu;
+}
+
+/*
+ * It assumes dd->comp_vect_possible_cpus is available.
+ */
+static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd,
+					     struct hfi1_affinity_node *entry)
+	__must_hold(&node_affinity.lock)
+{
+	int i, cpu;
+
+	lockdep_assert_held(&node_affinity.lock);
+	if (!dd->comp_vect_possible_cpus)
+		return;
+
+	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
+		cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask,
+					       entry->comp_vect_affinity);
+		/* Clearing CPU in device completion vector cpu mask */
+		if (cpu >= 0)
+			cpumask_clear_cpu(cpu, &dd->comp_vect->mask);
+	}
+
+	dd->comp_vect_possible_cpus = 0;
+}
+
+/*
+ * Interrupt affinity.
+ *
+ * non-rcv avail gets a default mask that
+ * starts as possible cpus with threads reset
+ * and each rcv avail reset.
+ *
+ * rcv avail gets node relative 1 wrapping back
+ * to the node relative 1 as necessary.
+ *
+ */
+int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
+{
+	int node = pcibus_to_node(dd->pcidev->bus);
+	struct hfi1_affinity_node *entry;
+	const struct cpumask *local_mask;
+	int curr_cpu, possible, i, ret;
+	bool new_entry = false;
+
+	/*
+	 * If the BIOS does not have the NUMA node information set, select
+	 * NUMA 0 so we get consistent performance.
+	 */
+	if (node < 0) {
+		dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
+		node = 0;
+	}
+	dd->node = node;
+
+	local_mask = cpumask_of_node(dd->node);
+	if (cpumask_first(local_mask) >= nr_cpu_ids)
+		local_mask = topology_core_cpumask(0);
+
+	mutex_lock(&node_affinity.lock);
+	entry = node_affinity_lookup(dd->node);
+
+	/*
+	 * If this is the first time this NUMA node's affinity is used,
+	 * create an entry in the global affinity structure and initialize it.
+	 */
+	if (!entry) {
+		entry = node_affinity_allocate(node);
+		if (!entry) {
+			dd_dev_err(dd,
+				   "Unable to allocate global affinity node\n");
+			ret = -ENOMEM;
+			goto fail;
+		}
+		new_entry = true;
+
+		init_cpu_mask_set(&entry->def_intr);
+		init_cpu_mask_set(&entry->rcv_intr);
+		cpumask_clear(&entry->comp_vect_mask);
+		cpumask_clear(&entry->general_intr_mask);
+		/* Use the "real" cpu mask of this node as the default */
+		cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
+			    local_mask);
+
+		/* fill in the receive list */
+		possible = cpumask_weight(&entry->def_intr.mask);
+		curr_cpu = cpumask_first(&entry->def_intr.mask);
+
+		if (possible == 1) {
+			/* only one CPU, everyone will use it */
+			cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
+			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
+		} else {
+			/*
+			 * The general/control context will be the first CPU in
+			 * the default list, so it is removed from the default
+			 * list and added to the general interrupt list.
+			 */
+			cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
+			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
+			curr_cpu = cpumask_next(curr_cpu,
+						&entry->def_intr.mask);
+
+			/*
+			 * Remove the remaining kernel receive queues from
+			 * the default list and add them to the receive list.
+			 */
+			for (i = 0;
+			     i < (dd->n_krcv_queues - 1) *
+				  hfi1_per_node_cntr[dd->node];
+			     i++) {
+				cpumask_clear_cpu(curr_cpu,
+						  &entry->def_intr.mask);
+				cpumask_set_cpu(curr_cpu,
+						&entry->rcv_intr.mask);
+				curr_cpu = cpumask_next(curr_cpu,
+							&entry->def_intr.mask);
+				if (curr_cpu >= nr_cpu_ids)
+					break;
+			}
+
+			/*
+			 * If there ends up being 0 CPU cores leftover for SDMA
+			 * engines, use the same CPU cores as general/control
+			 * context.
+			 */
+			if (cpumask_weight(&entry->def_intr.mask) == 0)
+				cpumask_copy(&entry->def_intr.mask,
+					     &entry->general_intr_mask);
+		}
+
+		/* Determine completion vector CPUs for the entire node */
+		cpumask_and(&entry->comp_vect_mask,
+			    &node_affinity.real_cpu_mask, local_mask);
+		cpumask_andnot(&entry->comp_vect_mask,
+			       &entry->comp_vect_mask,
+			       &entry->rcv_intr.mask);
+		cpumask_andnot(&entry->comp_vect_mask,
+			       &entry->comp_vect_mask,
+			       &entry->general_intr_mask);
+
+		/*
+		 * If there ends up being 0 CPU cores leftover for completion
+		 * vectors, use the same CPU core as the general/control
+		 * context.
+		 */
+		if (cpumask_weight(&entry->comp_vect_mask) == 0)
+			cpumask_copy(&entry->comp_vect_mask,
+				     &entry->general_intr_mask);
+	}
+
+	ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry);
+	if (ret < 0)
+		goto fail;
+
+	if (new_entry)
+		node_affinity_add_tail(entry);
+
+	mutex_unlock(&node_affinity.lock);
+
+	return 0;
+
+fail:
+	if (new_entry)
+		node_affinity_destroy(entry);
+	mutex_unlock(&node_affinity.lock);
+	return ret;
+}
+
+void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd)
+{
+	struct hfi1_affinity_node *entry;
+
+	if (dd->node < 0)
+		return;
+
+	mutex_lock(&node_affinity.lock);
+	entry = node_affinity_lookup(dd->node);
+	if (!entry)
+		goto unlock;
+
+	/*
+	 * Free device completion vector CPUs to be used by future
+	 * completion vectors
+	 */
+	_dev_comp_vect_cpu_mask_clean_up(dd, entry);
+unlock:
+	mutex_unlock(&node_affinity.lock);
+	dd->node = -1;
+}
+
+/*
+ * Function updates the irq affinity hint for msix after it has been changed
+ * by the user using the /proc/irq interface. This function only accepts
+ * one cpu in the mask.
+ */
+static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
+{
+	struct sdma_engine *sde = msix->arg;
+	struct hfi1_devdata *dd = sde->dd;
+	struct hfi1_affinity_node *entry;
+	struct cpu_mask_set *set;
+	int i, old_cpu;
+
+	if (cpu > num_online_cpus() || cpu == sde->cpu)
+		return;
+
+	mutex_lock(&node_affinity.lock);
+	entry = node_affinity_lookup(dd->node);
+	if (!entry)
+		goto unlock;
+
+	old_cpu = sde->cpu;
+	sde->cpu = cpu;
+	cpumask_clear(&msix->mask);
+	cpumask_set_cpu(cpu, &msix->mask);
+	dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
+		   msix->irq, irq_type_names[msix->type],
+		   sde->this_idx, cpu);
+	irq_set_affinity_hint(msix->irq, &msix->mask);
+
+	/*
+	 * Set the new cpu in the hfi1_affinity_node and clean
+	 * the old cpu if it is not used by any other IRQ
+	 */
+	set = &entry->def_intr;
+	cpumask_set_cpu(cpu, &set->mask);
+	cpumask_set_cpu(cpu, &set->used);
+	for (i = 0; i < dd->num_msix_entries; i++) {
+		struct hfi1_msix_entry *other_msix;
+
+		other_msix = &dd->msix_entries[i];
+		if (other_msix->type != IRQ_SDMA || other_msix == msix)
+			continue;
+
+		if (cpumask_test_cpu(old_cpu, &other_msix->mask))
+			goto unlock;
+	}
+	cpumask_clear_cpu(old_cpu, &set->mask);
+	cpumask_clear_cpu(old_cpu, &set->used);
+unlock:
+	mutex_unlock(&node_affinity.lock);
+}
+
+static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
+				     const cpumask_t *mask)
+{
+	int cpu = cpumask_first(mask);
+	struct hfi1_msix_entry *msix = container_of(notify,
+						    struct hfi1_msix_entry,
+						    notify);
+
+	/* Only one CPU configuration supported currently */
+	hfi1_update_sdma_affinity(msix, cpu);
+}
+
+static void hfi1_irq_notifier_release(struct kref *ref)
+{
+	/*
+	 * This is required by affinity notifier. We don't have anything to
+	 * free here.
+	 */
+}
+
+static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
+{
+	struct irq_affinity_notify *notify = &msix->notify;
+
+	notify->irq = msix->irq;
+	notify->notify = hfi1_irq_notifier_notify;
+	notify->release = hfi1_irq_notifier_release;
+
+	if (irq_set_affinity_notifier(notify->irq, notify))
+		pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
+		       notify->irq);
+}
+
+static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
+{
+	struct irq_affinity_notify *notify = &msix->notify;
+
+	if (irq_set_affinity_notifier(notify->irq, NULL))
+		pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
+		       notify->irq);
+}
+
+/*
+ * Function sets the irq affinity for msix.
+ * It *must* be called with node_affinity.lock held.
+ */
+static int get_irq_affinity(struct hfi1_devdata *dd,
+			    struct hfi1_msix_entry *msix)
+{
+	cpumask_var_t diff;
+	struct hfi1_affinity_node *entry;
+	struct cpu_mask_set *set = NULL;
+	struct sdma_engine *sde = NULL;
+	struct hfi1_ctxtdata *rcd = NULL;
+	char extra[64];
+	int cpu = -1;
+
+	extra[0] = '\0';
+	cpumask_clear(&msix->mask);
+
+	entry = node_affinity_lookup(dd->node);
+
+	switch (msix->type) {
+	case IRQ_SDMA:
+		sde = (struct sdma_engine *)msix->arg;
+		scnprintf(extra, 64, "engine %u", sde->this_idx);
+		set = &entry->def_intr;
+		break;
+	case IRQ_GENERAL:
+		cpu = cpumask_first(&entry->general_intr_mask);
+		break;
+	case IRQ_RCVCTXT:
+		rcd = (struct hfi1_ctxtdata *)msix->arg;
+		if (rcd->ctxt == HFI1_CTRL_CTXT)
+			cpu = cpumask_first(&entry->general_intr_mask);
+		else
+			set = &entry->rcv_intr;
+		scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
+		break;
+	default:
+		dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
+		return -EINVAL;
+	}
+
+	/*
+	 * The general and control contexts are placed on a particular
+	 * CPU, which is set above. Skip accounting for it. Everything else
+	 * finds its CPU here.
+	 */
+	if (cpu == -1 && set) {
+		if (!zalloc_cpumask_var(&diff, GFP_KERNEL))
+			return -ENOMEM;
+
+		cpu = cpu_mask_set_get_first(set, diff);
+		if (cpu < 0) {
+			free_cpumask_var(diff);
+			dd_dev_err(dd, "Failure to obtain CPU for IRQ\n");
+			return cpu;
+		}
+
+		free_cpumask_var(diff);
+	}
+
+	cpumask_set_cpu(cpu, &msix->mask);
+	dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
+		    msix->irq, irq_type_names[msix->type],
+		    extra, cpu);
+	irq_set_affinity_hint(msix->irq, &msix->mask);
+
+	if (msix->type == IRQ_SDMA) {
+		sde->cpu = cpu;
+		hfi1_setup_sdma_notifier(msix);
+	}
+
+	return 0;
+}
+
+int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
+{
+	int ret;
+
+	mutex_lock(&node_affinity.lock);
+	ret = get_irq_affinity(dd, msix);
+	mutex_unlock(&node_affinity.lock);
+	return ret;
+}
+
+void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
+			   struct hfi1_msix_entry *msix)
+{
+	struct cpu_mask_set *set = NULL;
+	struct hfi1_ctxtdata *rcd;
+	struct hfi1_affinity_node *entry;
+
+	mutex_lock(&node_affinity.lock);
+	entry = node_affinity_lookup(dd->node);
+
+	switch (msix->type) {
+	case IRQ_SDMA:
+		set = &entry->def_intr;
+		hfi1_cleanup_sdma_notifier(msix);
+		break;
+	case IRQ_GENERAL:
+		/* Don't do accounting for general contexts */
+		break;
+	case IRQ_RCVCTXT:
+		rcd = (struct hfi1_ctxtdata *)msix->arg;
+		/* Don't do accounting for control contexts */
+		if (rcd->ctxt != HFI1_CTRL_CTXT)
+			set = &entry->rcv_intr;
+		break;
+	default:
+		mutex_unlock(&node_affinity.lock);
+		return;
+	}
+
+	if (set) {
+		cpumask_andnot(&set->used, &set->used, &msix->mask);
+		_cpu_mask_set_gen_dec(set);
+	}
+
+	irq_set_affinity_hint(msix->irq, NULL);
+	cpumask_clear(&msix->mask);
+	mutex_unlock(&node_affinity.lock);
+}
+
+/* This should be called with node_affinity.lock held */
+static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
+				struct hfi1_affinity_node_list *affinity)
+{
+	int possible, curr_cpu, i;
+	uint num_cores_per_socket = node_affinity.num_online_cpus /
+					affinity->num_core_siblings /
+						node_affinity.num_online_nodes;
+
+	cpumask_copy(hw_thread_mask, &affinity->proc.mask);
+	if (affinity->num_core_siblings > 0) {
+		/* Removing other siblings not needed for now */
+		possible = cpumask_weight(hw_thread_mask);
+		curr_cpu = cpumask_first(hw_thread_mask);
+		for (i = 0;
+		     i < num_cores_per_socket * node_affinity.num_online_nodes;
+		     i++)
+			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
+
+		for (; i < possible; i++) {
+			cpumask_clear_cpu(curr_cpu, hw_thread_mask);
+			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
+		}
+
+		/* Identifying correct HW threads within physical cores */
+		cpumask_shift_left(hw_thread_mask, hw_thread_mask,
+				   num_cores_per_socket *
+				   node_affinity.num_online_nodes *
+				   hw_thread_no);
+	}
+}
+
+int hfi1_get_proc_affinity(int node)
+{
+	int cpu = -1, ret, i;
+	struct hfi1_affinity_node *entry;
+	cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
+	const struct cpumask *node_mask,
+		*proc_mask = &current->cpus_allowed;
+	struct hfi1_affinity_node_list *affinity = &node_affinity;
+	struct cpu_mask_set *set = &affinity->proc;
+
+	/*
+	 * check whether process/context affinity has already
+	 * been set
+	 */
+	if (cpumask_weight(proc_mask) == 1) {
+		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
+			  current->pid, current->comm,
+			  cpumask_pr_args(proc_mask));
+		/*
+		 * Mark the pre-set CPU as used. This is atomic so we don't
+		 * need the lock
+		 */
+		cpu = cpumask_first(proc_mask);
+		cpumask_set_cpu(cpu, &set->used);
+		goto done;
+	} else if (cpumask_weight(proc_mask) < cpumask_weight(&set->mask)) {
+		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
+			  current->pid, current->comm,
+			  cpumask_pr_args(proc_mask));
+		goto done;
+	}
+
+	/*
+	 * The process does not have a preset CPU affinity so find one to
+	 * recommend using the following algorithm:
+	 *
+	 * For each user process that is opening a context on HFI Y:
+	 *  a) If all cores are filled, reinitialize the bitmask
+	 *  b) Fill real cores first, then HT cores (First set of HT
+	 *     cores on all physical cores, then second set of HT core,
+	 *     and, so on) in the following order:
+	 *
+	 *     1. Same NUMA node as HFI Y and not running an IRQ
+	 *        handler
+	 *     2. Same NUMA node as HFI Y and running an IRQ handler
+	 *     3. Different NUMA node to HFI Y and not running an IRQ
+	 *        handler
+	 *     4. Different NUMA node to HFI Y and running an IRQ
+	 *        handler
+	 *  c) Mark core as filled in the bitmask. As user processes are
+	 *     done, clear cores from the bitmask.
+	 */
+
+	ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
+	if (!ret)
+		goto done;
+	ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
+	if (!ret)
+		goto free_diff;
+	ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
+	if (!ret)
+		goto free_hw_thread_mask;
+	ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
+	if (!ret)
+		goto free_available_mask;
+
+	mutex_lock(&affinity->lock);
+	/*
+	 * If we've used all available HW threads, clear the mask and start
+	 * overloading.
+	 */
+	_cpu_mask_set_gen_inc(set);
+
+	/*
+	 * If NUMA node has CPUs used by interrupt handlers, include them in the
+	 * interrupt handler mask.
+	 */
+	entry = node_affinity_lookup(node);
+	if (entry) {
+		cpumask_copy(intrs_mask, (entry->def_intr.gen ?
+					  &entry->def_intr.mask :
+					  &entry->def_intr.used));
+		cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
+						    &entry->rcv_intr.mask :
+						    &entry->rcv_intr.used));
+		cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
+	}
+	hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
+		  cpumask_pr_args(intrs_mask));
+
+	cpumask_copy(hw_thread_mask, &set->mask);
+
+	/*
+	 * If HT cores are enabled, identify which HW threads within the
+	 * physical cores should be used.
+	 */
+	if (affinity->num_core_siblings > 0) {
+		for (i = 0; i < affinity->num_core_siblings; i++) {
+			find_hw_thread_mask(i, hw_thread_mask, affinity);
+
+			/*
+			 * If there's at least one available core for this HW
+			 * thread number, stop looking for a core.
+			 *
+			 * diff will always be not empty at least once in this
+			 * loop as the used mask gets reset when
+			 * (set->mask == set->used) before this loop.
+			 */
+			cpumask_andnot(diff, hw_thread_mask, &set->used);
+			if (!cpumask_empty(diff))
+				break;
+		}
+	}
+	hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
+		  cpumask_pr_args(hw_thread_mask));
+
+	node_mask = cpumask_of_node(node);
+	hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
+		  cpumask_pr_args(node_mask));
+
+	/* Get cpumask of available CPUs on preferred NUMA */
+	cpumask_and(available_mask, hw_thread_mask, node_mask);
+	cpumask_andnot(available_mask, available_mask, &set->used);
+	hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
+		  cpumask_pr_args(available_mask));
+
+	/*
+	 * At first, we don't want to place processes on the same
+	 * CPUs as interrupt handlers. Then, CPUs running interrupt
+	 * handlers are used.
+	 *
+	 * 1) If diff is not empty, then there are CPUs not running
+	 *    non-interrupt handlers available, so diff gets copied
+	 *    over to available_mask.
+	 * 2) If diff is empty, then all CPUs not running interrupt
+	 *    handlers are taken, so available_mask contains all
+	 *    available CPUs running interrupt handlers.
+	 * 3) If available_mask is empty, then all CPUs on the
+	 *    preferred NUMA node are taken, so other NUMA nodes are
+	 *    used for process assignments using the same method as
+	 *    the preferred NUMA node.
+	 */
+	cpumask_andnot(diff, available_mask, intrs_mask);
+	if (!cpumask_empty(diff))
+		cpumask_copy(available_mask, diff);
+
+	/* If we don't have CPUs on the preferred node, use other NUMA nodes */
+	if (cpumask_empty(available_mask)) {
+		cpumask_andnot(available_mask, hw_thread_mask, &set->used);
+		/* Excluding preferred NUMA cores */
+		cpumask_andnot(available_mask, available_mask, node_mask);
+		hfi1_cdbg(PROC,
+			  "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
+			  cpumask_pr_args(available_mask));
+
+		/*
+		 * At first, we don't want to place processes on the same
+		 * CPUs as interrupt handlers.
+		 */
+		cpumask_andnot(diff, available_mask, intrs_mask);
+		if (!cpumask_empty(diff))
+			cpumask_copy(available_mask, diff);
+	}
+	hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
+		  cpumask_pr_args(available_mask));
+
+	cpu = cpumask_first(available_mask);
+	if (cpu >= nr_cpu_ids) /* empty */
+		cpu = -1;
+	else
+		cpumask_set_cpu(cpu, &set->used);
+
+	mutex_unlock(&affinity->lock);
+	hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
+
+	free_cpumask_var(intrs_mask);
+free_available_mask:
+	free_cpumask_var(available_mask);
+free_hw_thread_mask:
+	free_cpumask_var(hw_thread_mask);
+free_diff:
+	free_cpumask_var(diff);
+done:
+	return cpu;
+}
+
+void hfi1_put_proc_affinity(int cpu)
+{
+	struct hfi1_affinity_node_list *affinity = &node_affinity;
+	struct cpu_mask_set *set = &affinity->proc;
+
+	if (cpu < 0)
+		return;
+
+	mutex_lock(&affinity->lock);
+	cpu_mask_set_put(set, cpu);
+	hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
+	mutex_unlock(&affinity->lock);
+}