blob: a63ec938636de5107579dfc5db3af416d1393b3d [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001/* SPDX-License-Identifier: GPL-2.0-or-later */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002#ifndef _ASM_POWERPC_IO_H
3#define _ASM_POWERPC_IO_H
4#ifdef __KERNEL__
5
6#define ARCH_HAS_IOREMAP_WC
David Brazdil0f672f62019-12-10 10:32:29 +00007#ifdef CONFIG_PPC32
8#define ARCH_HAS_IOREMAP_WT
9#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010
11/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012 */
13
14/* Check of existence of legacy devices */
15extern int check_legacy_ioport(unsigned long base_port);
16#define I8042_DATA_REG 0x60
17#define FDC_BASE 0x3f0
18
19#if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20extern struct pci_dev *isa_bridge_pcidev;
21/*
22 * has legacy ISA devices ?
23 */
24#define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special)
25#endif
26
27#include <linux/device.h>
28#include <linux/compiler.h>
David Brazdil0f672f62019-12-10 10:32:29 +000029#include <linux/mm.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000030#include <asm/page.h>
31#include <asm/byteorder.h>
32#include <asm/synch.h>
33#include <asm/delay.h>
David Brazdil0f672f62019-12-10 10:32:29 +000034#include <asm/mmiowb.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000035#include <asm/mmu.h>
36#include <asm/ppc_asm.h>
David Brazdil0f672f62019-12-10 10:32:29 +000037#include <asm/pgtable.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000038
39#define SIO_CONFIG_RA 0x398
40#define SIO_CONFIG_RD 0x399
41
42#define SLOW_DOWN_IO
43
44/* 32 bits uses slightly different variables for the various IO
45 * bases. Most of this file only uses _IO_BASE though which we
46 * define properly based on the platform
47 */
48#ifndef CONFIG_PCI
49#define _IO_BASE 0
50#define _ISA_MEM_BASE 0
51#define PCI_DRAM_OFFSET 0
52#elif defined(CONFIG_PPC32)
53#define _IO_BASE isa_io_base
54#define _ISA_MEM_BASE isa_mem_base
55#define PCI_DRAM_OFFSET pci_dram_offset
56#else
57#define _IO_BASE pci_io_base
58#define _ISA_MEM_BASE isa_mem_base
59#define PCI_DRAM_OFFSET 0
60#endif
61
62extern unsigned long isa_io_base;
63extern unsigned long pci_io_base;
64extern unsigned long pci_dram_offset;
65
66extern resource_size_t isa_mem_base;
67
68/* Boolean set by platform if PIO accesses are suppored while _IO_BASE
69 * is not set or addresses cannot be translated to MMIO. This is typically
70 * set when the platform supports "special" PIO accesses via a non memory
71 * mapped mechanism, and allows things like the early udbg UART code to
72 * function.
73 */
74extern bool isa_io_special;
75
76#ifdef CONFIG_PPC32
77#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
78#error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
79#endif
80#endif
81
82/*
83 *
84 * Low level MMIO accessors
85 *
86 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
87 * specific and thus shouldn't be used in generic code. The accessors
88 * provided here are:
89 *
90 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
91 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
92 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
93 *
94 * Those operate directly on a kernel virtual address. Note that the prototype
95 * for the out_* accessors has the arguments in opposite order from the usual
96 * linux PCI accessors. Unlike those, they take the address first and the value
97 * next.
98 *
99 * Note: I might drop the _ns suffix on the stream operations soon as it is
100 * simply normal for stream operations to not swap in the first place.
101 *
102 */
103
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000104#define DEF_MMIO_IN_X(name, size, insn) \
105static inline u##size name(const volatile u##size __iomem *addr) \
106{ \
107 u##size ret; \
108 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \
109 : "=r" (ret) : "Z" (*addr) : "memory"); \
110 return ret; \
111}
112
113#define DEF_MMIO_OUT_X(name, size, insn) \
114static inline void name(volatile u##size __iomem *addr, u##size val) \
115{ \
116 __asm__ __volatile__("sync;"#insn" %1,%y0" \
117 : "=Z" (*addr) : "r" (val) : "memory"); \
David Brazdil0f672f62019-12-10 10:32:29 +0000118 mmiowb_set_pending(); \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000119}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000120
121#define DEF_MMIO_IN_D(name, size, insn) \
122static inline u##size name(const volatile u##size __iomem *addr) \
123{ \
124 u##size ret; \
125 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
126 : "=r" (ret) : "m" (*addr) : "memory"); \
127 return ret; \
128}
129
130#define DEF_MMIO_OUT_D(name, size, insn) \
131static inline void name(volatile u##size __iomem *addr, u##size val) \
132{ \
133 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \
134 : "=m" (*addr) : "r" (val) : "memory"); \
David Brazdil0f672f62019-12-10 10:32:29 +0000135 mmiowb_set_pending(); \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000136}
137
138DEF_MMIO_IN_D(in_8, 8, lbz);
139DEF_MMIO_OUT_D(out_8, 8, stb);
140
141#ifdef __BIG_ENDIAN__
142DEF_MMIO_IN_D(in_be16, 16, lhz);
143DEF_MMIO_IN_D(in_be32, 32, lwz);
144DEF_MMIO_IN_X(in_le16, 16, lhbrx);
145DEF_MMIO_IN_X(in_le32, 32, lwbrx);
146
147DEF_MMIO_OUT_D(out_be16, 16, sth);
148DEF_MMIO_OUT_D(out_be32, 32, stw);
149DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
150DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
151#else
152DEF_MMIO_IN_X(in_be16, 16, lhbrx);
153DEF_MMIO_IN_X(in_be32, 32, lwbrx);
154DEF_MMIO_IN_D(in_le16, 16, lhz);
155DEF_MMIO_IN_D(in_le32, 32, lwz);
156
157DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
158DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
159DEF_MMIO_OUT_D(out_le16, 16, sth);
160DEF_MMIO_OUT_D(out_le32, 32, stw);
161
162#endif /* __BIG_ENDIAN */
163
164#ifdef __powerpc64__
165
166#ifdef __BIG_ENDIAN__
167DEF_MMIO_OUT_D(out_be64, 64, std);
168DEF_MMIO_IN_D(in_be64, 64, ld);
169
170/* There is no asm instructions for 64 bits reverse loads and stores */
171static inline u64 in_le64(const volatile u64 __iomem *addr)
172{
173 return swab64(in_be64(addr));
174}
175
176static inline void out_le64(volatile u64 __iomem *addr, u64 val)
177{
178 out_be64(addr, swab64(val));
179}
180#else
181DEF_MMIO_OUT_D(out_le64, 64, std);
182DEF_MMIO_IN_D(in_le64, 64, ld);
183
184/* There is no asm instructions for 64 bits reverse loads and stores */
185static inline u64 in_be64(const volatile u64 __iomem *addr)
186{
187 return swab64(in_le64(addr));
188}
189
190static inline void out_be64(volatile u64 __iomem *addr, u64 val)
191{
192 out_le64(addr, swab64(val));
193}
194
195#endif
196#endif /* __powerpc64__ */
197
198/*
199 * Low level IO stream instructions are defined out of line for now
200 */
201extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
202extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
203extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
204extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
205extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
206extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
207
208/* The _ns naming is historical and will be removed. For now, just #define
209 * the non _ns equivalent names
210 */
211#define _insw _insw_ns
212#define _insl _insl_ns
213#define _outsw _outsw_ns
214#define _outsl _outsl_ns
215
216
217/*
218 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
219 */
220
221extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
222extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
223 unsigned long n);
224extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
225 unsigned long n);
226
227/*
228 *
229 * PCI and standard ISA accessors
230 *
231 * Those are globally defined linux accessors for devices on PCI or ISA
232 * busses. They follow the Linux defined semantics. The current implementation
233 * for PowerPC is as close as possible to the x86 version of these, and thus
234 * provides fairly heavy weight barriers for the non-raw versions
235 *
236 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
237 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
238 * own implementation of some or all of the accessors.
239 */
240
241/*
242 * Include the EEH definitions when EEH is enabled only so they don't get
243 * in the way when building for 32 bits
244 */
245#ifdef CONFIG_EEH
246#include <asm/eeh.h>
247#endif
248
249/* Shortcut to the MMIO argument pointer */
250#define PCI_IO_ADDR volatile void __iomem *
251
252/* Indirect IO address tokens:
253 *
254 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
255 * on all MMIOs. (Note that this is all 64 bits only for now)
256 *
257 * To help platforms who may need to differentiate MMIO addresses in
258 * their hooks, a bitfield is reserved for use by the platform near the
259 * top of MMIO addresses (not PIO, those have to cope the hard way).
260 *
261 * The highest address in the kernel virtual space are:
262 *
263 * d0003fffffffffff # with Hash MMU
264 * c00fffffffffffff # with Radix MMU
265 *
266 * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits
267 * that can be used for the field.
268 *
269 * The direct IO mapping operations will then mask off those bits
270 * before doing the actual access, though that only happen when
271 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
272 * mechanism
273 *
274 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
275 * all PIO functions call through a hook.
276 */
277
278#ifdef CONFIG_PPC_INDIRECT_MMIO
279#define PCI_IO_IND_TOKEN_SHIFT 52
280#define PCI_IO_IND_TOKEN_MASK (0xfful << PCI_IO_IND_TOKEN_SHIFT)
281#define PCI_FIX_ADDR(addr) \
282 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
283#define PCI_GET_ADDR_TOKEN(addr) \
284 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \
285 PCI_IO_IND_TOKEN_SHIFT)
286#define PCI_SET_ADDR_TOKEN(addr, token) \
287do { \
288 unsigned long __a = (unsigned long)(addr); \
289 __a &= ~PCI_IO_IND_TOKEN_MASK; \
290 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \
291 (addr) = (void __iomem *)__a; \
292} while(0)
293#else
294#define PCI_FIX_ADDR(addr) (addr)
295#endif
296
297
298/*
299 * Non ordered and non-swapping "raw" accessors
300 */
301
302static inline unsigned char __raw_readb(const volatile void __iomem *addr)
303{
304 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
305}
306static inline unsigned short __raw_readw(const volatile void __iomem *addr)
307{
308 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
309}
310static inline unsigned int __raw_readl(const volatile void __iomem *addr)
311{
312 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
313}
314static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
315{
316 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
317}
318static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
319{
320 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
321}
322static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
323{
324 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
325}
326
327#ifdef __powerpc64__
328static inline unsigned long __raw_readq(const volatile void __iomem *addr)
329{
330 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
331}
332static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
333{
334 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
335}
336
337static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
338{
339 __raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
340}
341
342/*
343 * Real mode versions of the above. Those instructions are only supposed
344 * to be used in hypervisor real mode as per the architecture spec.
345 */
346static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
347{
348 __asm__ __volatile__("stbcix %0,0,%1"
349 : : "r" (val), "r" (paddr) : "memory");
350}
351
352static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
353{
354 __asm__ __volatile__("sthcix %0,0,%1"
355 : : "r" (val), "r" (paddr) : "memory");
356}
357
358static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
359{
360 __asm__ __volatile__("stwcix %0,0,%1"
361 : : "r" (val), "r" (paddr) : "memory");
362}
363
364static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
365{
366 __asm__ __volatile__("stdcix %0,0,%1"
367 : : "r" (val), "r" (paddr) : "memory");
368}
369
370static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
371{
372 __raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
373}
374
375static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
376{
377 u8 ret;
378 __asm__ __volatile__("lbzcix %0,0, %1"
379 : "=r" (ret) : "r" (paddr) : "memory");
380 return ret;
381}
382
383static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
384{
385 u16 ret;
386 __asm__ __volatile__("lhzcix %0,0, %1"
387 : "=r" (ret) : "r" (paddr) : "memory");
388 return ret;
389}
390
391static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
392{
393 u32 ret;
394 __asm__ __volatile__("lwzcix %0,0, %1"
395 : "=r" (ret) : "r" (paddr) : "memory");
396 return ret;
397}
398
399static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
400{
401 u64 ret;
402 __asm__ __volatile__("ldcix %0,0, %1"
403 : "=r" (ret) : "r" (paddr) : "memory");
404 return ret;
405}
406#endif /* __powerpc64__ */
407
408/*
409 *
410 * PCI PIO and MMIO accessors.
411 *
412 *
413 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
414 * machine checks (which they occasionally do when probing non existing
415 * IO ports on some platforms, like PowerMac and 8xx).
416 * I always found it to be of dubious reliability and I am tempted to get
417 * rid of it one of these days. So if you think it's important to keep it,
418 * please voice up asap. We never had it for 64 bits and I do not intend
419 * to port it over
420 */
421
422#ifdef CONFIG_PPC32
423
424#define __do_in_asm(name, op) \
425static inline unsigned int name(unsigned int port) \
426{ \
427 unsigned int x; \
428 __asm__ __volatile__( \
429 "sync\n" \
430 "0:" op " %0,0,%1\n" \
431 "1: twi 0,%0,0\n" \
432 "2: isync\n" \
433 "3: nop\n" \
434 "4:\n" \
435 ".section .fixup,\"ax\"\n" \
436 "5: li %0,-1\n" \
437 " b 4b\n" \
438 ".previous\n" \
439 EX_TABLE(0b, 5b) \
440 EX_TABLE(1b, 5b) \
441 EX_TABLE(2b, 5b) \
442 EX_TABLE(3b, 5b) \
443 : "=&r" (x) \
444 : "r" (port + _IO_BASE) \
445 : "memory"); \
446 return x; \
447}
448
449#define __do_out_asm(name, op) \
450static inline void name(unsigned int val, unsigned int port) \
451{ \
452 __asm__ __volatile__( \
453 "sync\n" \
454 "0:" op " %0,0,%1\n" \
455 "1: sync\n" \
456 "2:\n" \
457 EX_TABLE(0b, 2b) \
458 EX_TABLE(1b, 2b) \
459 : : "r" (val), "r" (port + _IO_BASE) \
460 : "memory"); \
461}
462
463__do_in_asm(_rec_inb, "lbzx")
464__do_in_asm(_rec_inw, "lhbrx")
465__do_in_asm(_rec_inl, "lwbrx")
466__do_out_asm(_rec_outb, "stbx")
467__do_out_asm(_rec_outw, "sthbrx")
468__do_out_asm(_rec_outl, "stwbrx")
469
470#endif /* CONFIG_PPC32 */
471
472/* The "__do_*" operations below provide the actual "base" implementation
473 * for each of the defined accessors. Some of them use the out_* functions
474 * directly, some of them still use EEH, though we might change that in the
475 * future. Those macros below provide the necessary argument swapping and
476 * handling of the IO base for PIO.
477 *
478 * They are themselves used by the macros that define the actual accessors
479 * and can be used by the hooks if any.
480 *
481 * Note that PIO operations are always defined in terms of their corresonding
482 * MMIO operations. That allows platforms like iSeries who want to modify the
483 * behaviour of both to only hook on the MMIO version and get both. It's also
484 * possible to hook directly at the toplevel PIO operation if they have to
485 * be handled differently
486 */
487#define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val)
488#define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val)
489#define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val)
490#define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val)
491#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
492#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
493#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
494
495#ifdef CONFIG_EEH
496#define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr))
497#define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr))
498#define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr))
499#define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr))
500#define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr))
501#define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr))
502#define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr))
503#else /* CONFIG_EEH */
504#define __do_readb(addr) in_8(PCI_FIX_ADDR(addr))
505#define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr))
506#define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr))
507#define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr))
508#define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr))
509#define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr))
510#define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr))
511#endif /* !defined(CONFIG_EEH) */
512
513#ifdef CONFIG_PPC32
514#define __do_outb(val, port) _rec_outb(val, port)
515#define __do_outw(val, port) _rec_outw(val, port)
516#define __do_outl(val, port) _rec_outl(val, port)
517#define __do_inb(port) _rec_inb(port)
518#define __do_inw(port) _rec_inw(port)
519#define __do_inl(port) _rec_inl(port)
520#else /* CONFIG_PPC32 */
521#define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
522#define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port);
523#define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port);
524#define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port);
525#define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port);
526#define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port);
527#endif /* !CONFIG_PPC32 */
528
529#ifdef CONFIG_EEH
530#define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
531#define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
532#define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
533#else /* CONFIG_EEH */
534#define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n))
535#define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n))
536#define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n))
537#endif /* !CONFIG_EEH */
538#define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n))
539#define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n))
540#define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n))
541
542#define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
543#define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
544#define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
545#define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
546#define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
547#define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
548
549#define __do_memset_io(addr, c, n) \
550 _memset_io(PCI_FIX_ADDR(addr), c, n)
551#define __do_memcpy_toio(dst, src, n) \
552 _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
553
554#ifdef CONFIG_EEH
555#define __do_memcpy_fromio(dst, src, n) \
556 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
557#else /* CONFIG_EEH */
558#define __do_memcpy_fromio(dst, src, n) \
559 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
560#endif /* !CONFIG_EEH */
561
562#ifdef CONFIG_PPC_INDIRECT_PIO
563#define DEF_PCI_HOOK_pio(x) x
564#else
565#define DEF_PCI_HOOK_pio(x) NULL
566#endif
567
568#ifdef CONFIG_PPC_INDIRECT_MMIO
569#define DEF_PCI_HOOK_mem(x) x
570#else
571#define DEF_PCI_HOOK_mem(x) NULL
572#endif
573
574/* Structure containing all the hooks */
575extern struct ppc_pci_io {
576
577#define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at;
578#define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at;
579
580#include <asm/io-defs.h>
581
582#undef DEF_PCI_AC_RET
583#undef DEF_PCI_AC_NORET
584
585} ppc_pci_io;
586
587/* The inline wrappers */
588#define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \
589static inline ret name at \
590{ \
591 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
592 return ppc_pci_io.name al; \
593 return __do_##name al; \
594}
595
596#define DEF_PCI_AC_NORET(name, at, al, space, aa) \
597static inline void name at \
598{ \
599 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
600 ppc_pci_io.name al; \
601 else \
602 __do_##name al; \
603}
604
605#include <asm/io-defs.h>
606
607#undef DEF_PCI_AC_RET
608#undef DEF_PCI_AC_NORET
609
610/* Some drivers check for the presence of readq & writeq with
611 * a #ifdef, so we make them happy here.
612 */
613#ifdef __powerpc64__
614#define readq readq
615#define writeq writeq
616#endif
617
618/*
619 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
620 * access
621 */
622#define xlate_dev_mem_ptr(p) __va(p)
623
624/*
625 * Convert a virtual cached pointer to an uncached pointer
626 */
627#define xlate_dev_kmem_ptr(p) p
628
629/*
630 * We don't do relaxed operations yet, at least not with this semantic
631 */
632#define readb_relaxed(addr) readb(addr)
633#define readw_relaxed(addr) readw(addr)
634#define readl_relaxed(addr) readl(addr)
635#define readq_relaxed(addr) readq(addr)
636#define writeb_relaxed(v, addr) writeb(v, addr)
637#define writew_relaxed(v, addr) writew(v, addr)
638#define writel_relaxed(v, addr) writel(v, addr)
639#define writeq_relaxed(v, addr) writeq(v, addr)
640
641#include <asm-generic/iomap.h>
642
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000643static inline void iosync(void)
644{
645 __asm__ __volatile__ ("sync" : : : "memory");
646}
647
648/* Enforce in-order execution of data I/O.
649 * No distinction between read/write on PPC; use eieio for all three.
650 * Those are fairly week though. They don't provide a barrier between
651 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
652 * they only provide barriers between 2 __raw MMIO operations and
653 * possibly break write combining.
654 */
655#define iobarrier_rw() eieio()
656#define iobarrier_r() eieio()
657#define iobarrier_w() eieio()
658
659
660/*
661 * output pause versions need a delay at least for the
662 * w83c105 ide controller in a p610.
663 */
664#define inb_p(port) inb(port)
665#define outb_p(val, port) (udelay(1), outb((val), (port)))
666#define inw_p(port) inw(port)
667#define outw_p(val, port) (udelay(1), outw((val), (port)))
668#define inl_p(port) inl(port)
669#define outl_p(val, port) (udelay(1), outl((val), (port)))
670
671
672#define IO_SPACE_LIMIT ~(0UL)
673
674
675/**
676 * ioremap - map bus memory into CPU space
677 * @address: bus address of the memory
678 * @size: size of the resource to map
679 *
680 * ioremap performs a platform specific sequence of operations to
681 * make bus memory CPU accessible via the readb/readw/readl/writeb/
682 * writew/writel functions and the other mmio helpers. The returned
683 * address is not guaranteed to be usable directly as a virtual
684 * address.
685 *
686 * We provide a few variations of it:
687 *
688 * * ioremap is the standard one and provides non-cacheable guarded mappings
689 * and can be hooked by the platform via ppc_md
690 *
691 * * ioremap_prot allows to specify the page flags as an argument and can
692 * also be hooked by the platform via ppc_md.
693 *
694 * * ioremap_nocache is identical to ioremap
695 *
696 * * ioremap_wc enables write combining
697 *
David Brazdil0f672f62019-12-10 10:32:29 +0000698 * * ioremap_wt enables write through
699 *
700 * * ioremap_coherent maps coherent cached memory
701 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000702 * * iounmap undoes such a mapping and can be hooked
703 *
704 * * __ioremap_at (and the pending __iounmap_at) are low level functions to
705 * create hand-made mappings for use only by the PCI code and cannot
706 * currently be hooked. Must be page aligned.
707 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000708 * * __ioremap_caller is the same as above but takes an explicit caller
709 * reference rather than using __builtin_return_address(0)
710 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000711 */
712extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
713extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
714 unsigned long flags);
715extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
David Brazdil0f672f62019-12-10 10:32:29 +0000716void __iomem *ioremap_wt(phys_addr_t address, unsigned long size);
717void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000718#define ioremap_nocache(addr, size) ioremap((addr), (size))
719#define ioremap_uc(addr, size) ioremap((addr), (size))
720#define ioremap_cache(addr, size) \
721 ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
722
723extern void iounmap(volatile void __iomem *addr);
724
David Brazdil0f672f62019-12-10 10:32:29 +0000725int early_ioremap_range(unsigned long ea, phys_addr_t pa,
726 unsigned long size, pgprot_t prot);
727void __iomem *do_ioremap(phys_addr_t pa, phys_addr_t offset, unsigned long size,
728 pgprot_t prot, void *caller);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000729
David Brazdil0f672f62019-12-10 10:32:29 +0000730extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
731 pgprot_t prot, void *caller);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000732
733extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
David Brazdil0f672f62019-12-10 10:32:29 +0000734 unsigned long size, pgprot_t prot);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000735extern void __iounmap_at(void *ea, unsigned long size);
736
737/*
738 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
739 * which needs some additional definitions here. They basically allow PIO
740 * space overall to be 1GB. This will work as long as we never try to use
741 * iomap to map MMIO below 1GB which should be fine on ppc64
742 */
743#define HAVE_ARCH_PIO_SIZE 1
744#define PIO_OFFSET 0x00000000UL
745#define PIO_MASK (FULL_IO_SIZE - 1)
746#define PIO_RESERVED (FULL_IO_SIZE)
747
748#define mmio_read16be(addr) readw_be(addr)
749#define mmio_read32be(addr) readl_be(addr)
David Brazdil0f672f62019-12-10 10:32:29 +0000750#define mmio_read64be(addr) readq_be(addr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000751#define mmio_write16be(val, addr) writew_be(val, addr)
752#define mmio_write32be(val, addr) writel_be(val, addr)
David Brazdil0f672f62019-12-10 10:32:29 +0000753#define mmio_write64be(val, addr) writeq_be(val, addr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000754#define mmio_insb(addr, dst, count) readsb(addr, dst, count)
755#define mmio_insw(addr, dst, count) readsw(addr, dst, count)
756#define mmio_insl(addr, dst, count) readsl(addr, dst, count)
757#define mmio_outsb(addr, src, count) writesb(addr, src, count)
758#define mmio_outsw(addr, src, count) writesw(addr, src, count)
759#define mmio_outsl(addr, src, count) writesl(addr, src, count)
760
761/**
762 * virt_to_phys - map virtual addresses to physical
763 * @address: address to remap
764 *
765 * The returned physical address is the physical (CPU) mapping for
766 * the memory address given. It is only valid to use this function on
767 * addresses directly mapped or allocated via kmalloc.
768 *
769 * This function does not give bus mappings for DMA transfers. In
770 * almost all conceivable cases a device driver should not be using
771 * this function
772 */
773static inline unsigned long virt_to_phys(volatile void * address)
774{
David Brazdil0f672f62019-12-10 10:32:29 +0000775 WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address));
776
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000777 return __pa((unsigned long)address);
778}
779
780/**
781 * phys_to_virt - map physical address to virtual
782 * @address: address to remap
783 *
784 * The returned virtual address is a current CPU mapping for
785 * the memory address given. It is only valid to use this function on
786 * addresses that have a kernel mapping
787 *
788 * This function does not handle bus mappings for DMA transfers. In
789 * almost all conceivable cases a device driver should not be using
790 * this function
791 */
792static inline void * phys_to_virt(unsigned long address)
793{
794 return (void *)__va(address);
795}
796
797/*
798 * Change "struct page" to physical address.
799 */
David Brazdil0f672f62019-12-10 10:32:29 +0000800static inline phys_addr_t page_to_phys(struct page *page)
801{
802 unsigned long pfn = page_to_pfn(page);
803
804 WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !pfn_valid(pfn));
805
806 return PFN_PHYS(pfn);
807}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000808
809/*
810 * 32 bits still uses virt_to_bus() for it's implementation of DMA
811 * mappings se we have to keep it defined here. We also have some old
812 * drivers (shame shame shame) that use bus_to_virt() and haven't been
813 * fixed yet so I need to define it here.
814 */
815#ifdef CONFIG_PPC32
816
817static inline unsigned long virt_to_bus(volatile void * address)
818{
819 if (address == NULL)
820 return 0;
821 return __pa(address) + PCI_DRAM_OFFSET;
822}
823
824static inline void * bus_to_virt(unsigned long address)
825{
826 if (address == 0)
827 return NULL;
828 return __va(address - PCI_DRAM_OFFSET);
829}
830
831#define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET)
832
833#endif /* CONFIG_PPC32 */
834
835/* access ports */
836#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v))
837#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
838
839#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v))
840#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
841
842#define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v))
843#define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
844
845/* Clear and set bits in one shot. These macros can be used to clear and
846 * set multiple bits in a register using a single read-modify-write. These
847 * macros can also be used to set a multiple-bit bit pattern using a mask,
848 * by specifying the mask in the 'clear' parameter and the new bit pattern
849 * in the 'set' parameter.
850 */
851
852#define clrsetbits(type, addr, clear, set) \
853 out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
854
855#ifdef __powerpc64__
856#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
857#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
858#endif
859
860#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
861#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
862
863#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
864#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
865
866#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
867
868#endif /* __KERNEL__ */
869
870#endif /* _ASM_POWERPC_IO_H */