blob: b855f56489acc3cd01c771c92d4d721a0e207d7b [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001#ifndef _ASM_POWERPC_IO_H
2#define _ASM_POWERPC_IO_H
3#ifdef __KERNEL__
4
5#define ARCH_HAS_IOREMAP_WC
6
7/*
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14/* Check of existence of legacy devices */
15extern int check_legacy_ioport(unsigned long base_port);
16#define I8042_DATA_REG 0x60
17#define FDC_BASE 0x3f0
18
19#if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20extern struct pci_dev *isa_bridge_pcidev;
21/*
22 * has legacy ISA devices ?
23 */
24#define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special)
25#endif
26
27#include <linux/device.h>
28#include <linux/compiler.h>
29#include <asm/page.h>
30#include <asm/byteorder.h>
31#include <asm/synch.h>
32#include <asm/delay.h>
33#include <asm/mmu.h>
34#include <asm/ppc_asm.h>
35
36#ifdef CONFIG_PPC64
37#include <asm/paca.h>
38#endif
39
40#define SIO_CONFIG_RA 0x398
41#define SIO_CONFIG_RD 0x399
42
43#define SLOW_DOWN_IO
44
45/* 32 bits uses slightly different variables for the various IO
46 * bases. Most of this file only uses _IO_BASE though which we
47 * define properly based on the platform
48 */
49#ifndef CONFIG_PCI
50#define _IO_BASE 0
51#define _ISA_MEM_BASE 0
52#define PCI_DRAM_OFFSET 0
53#elif defined(CONFIG_PPC32)
54#define _IO_BASE isa_io_base
55#define _ISA_MEM_BASE isa_mem_base
56#define PCI_DRAM_OFFSET pci_dram_offset
57#else
58#define _IO_BASE pci_io_base
59#define _ISA_MEM_BASE isa_mem_base
60#define PCI_DRAM_OFFSET 0
61#endif
62
63extern unsigned long isa_io_base;
64extern unsigned long pci_io_base;
65extern unsigned long pci_dram_offset;
66
67extern resource_size_t isa_mem_base;
68
69/* Boolean set by platform if PIO accesses are suppored while _IO_BASE
70 * is not set or addresses cannot be translated to MMIO. This is typically
71 * set when the platform supports "special" PIO accesses via a non memory
72 * mapped mechanism, and allows things like the early udbg UART code to
73 * function.
74 */
75extern bool isa_io_special;
76
77#ifdef CONFIG_PPC32
78#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
79#error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
80#endif
81#endif
82
83/*
84 *
85 * Low level MMIO accessors
86 *
87 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
88 * specific and thus shouldn't be used in generic code. The accessors
89 * provided here are:
90 *
91 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
92 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
93 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
94 *
95 * Those operate directly on a kernel virtual address. Note that the prototype
96 * for the out_* accessors has the arguments in opposite order from the usual
97 * linux PCI accessors. Unlike those, they take the address first and the value
98 * next.
99 *
100 * Note: I might drop the _ns suffix on the stream operations soon as it is
101 * simply normal for stream operations to not swap in the first place.
102 *
103 */
104
105#ifdef CONFIG_PPC64
106#define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0)
107#else
108#define IO_SET_SYNC_FLAG()
109#endif
110
111/* gcc 4.0 and older doesn't have 'Z' constraint */
112#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
113#define DEF_MMIO_IN_X(name, size, insn) \
114static inline u##size name(const volatile u##size __iomem *addr) \
115{ \
116 u##size ret; \
117 __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync" \
118 : "=r" (ret) : "r" (addr), "m" (*addr) : "memory"); \
119 return ret; \
120}
121
122#define DEF_MMIO_OUT_X(name, size, insn) \
123static inline void name(volatile u##size __iomem *addr, u##size val) \
124{ \
125 __asm__ __volatile__("sync;"#insn" %1,0,%2" \
126 : "=m" (*addr) : "r" (val), "r" (addr) : "memory"); \
127 IO_SET_SYNC_FLAG(); \
128}
129#else /* newer gcc */
130#define DEF_MMIO_IN_X(name, size, insn) \
131static inline u##size name(const volatile u##size __iomem *addr) \
132{ \
133 u##size ret; \
134 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \
135 : "=r" (ret) : "Z" (*addr) : "memory"); \
136 return ret; \
137}
138
139#define DEF_MMIO_OUT_X(name, size, insn) \
140static inline void name(volatile u##size __iomem *addr, u##size val) \
141{ \
142 __asm__ __volatile__("sync;"#insn" %1,%y0" \
143 : "=Z" (*addr) : "r" (val) : "memory"); \
144 IO_SET_SYNC_FLAG(); \
145}
146#endif
147
148#define DEF_MMIO_IN_D(name, size, insn) \
149static inline u##size name(const volatile u##size __iomem *addr) \
150{ \
151 u##size ret; \
152 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
153 : "=r" (ret) : "m" (*addr) : "memory"); \
154 return ret; \
155}
156
157#define DEF_MMIO_OUT_D(name, size, insn) \
158static inline void name(volatile u##size __iomem *addr, u##size val) \
159{ \
160 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \
161 : "=m" (*addr) : "r" (val) : "memory"); \
162 IO_SET_SYNC_FLAG(); \
163}
164
165DEF_MMIO_IN_D(in_8, 8, lbz);
166DEF_MMIO_OUT_D(out_8, 8, stb);
167
168#ifdef __BIG_ENDIAN__
169DEF_MMIO_IN_D(in_be16, 16, lhz);
170DEF_MMIO_IN_D(in_be32, 32, lwz);
171DEF_MMIO_IN_X(in_le16, 16, lhbrx);
172DEF_MMIO_IN_X(in_le32, 32, lwbrx);
173
174DEF_MMIO_OUT_D(out_be16, 16, sth);
175DEF_MMIO_OUT_D(out_be32, 32, stw);
176DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
177DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
178#else
179DEF_MMIO_IN_X(in_be16, 16, lhbrx);
180DEF_MMIO_IN_X(in_be32, 32, lwbrx);
181DEF_MMIO_IN_D(in_le16, 16, lhz);
182DEF_MMIO_IN_D(in_le32, 32, lwz);
183
184DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
185DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
186DEF_MMIO_OUT_D(out_le16, 16, sth);
187DEF_MMIO_OUT_D(out_le32, 32, stw);
188
189#endif /* __BIG_ENDIAN */
190
191#ifdef __powerpc64__
192
193#ifdef __BIG_ENDIAN__
194DEF_MMIO_OUT_D(out_be64, 64, std);
195DEF_MMIO_IN_D(in_be64, 64, ld);
196
197/* There is no asm instructions for 64 bits reverse loads and stores */
198static inline u64 in_le64(const volatile u64 __iomem *addr)
199{
200 return swab64(in_be64(addr));
201}
202
203static inline void out_le64(volatile u64 __iomem *addr, u64 val)
204{
205 out_be64(addr, swab64(val));
206}
207#else
208DEF_MMIO_OUT_D(out_le64, 64, std);
209DEF_MMIO_IN_D(in_le64, 64, ld);
210
211/* There is no asm instructions for 64 bits reverse loads and stores */
212static inline u64 in_be64(const volatile u64 __iomem *addr)
213{
214 return swab64(in_le64(addr));
215}
216
217static inline void out_be64(volatile u64 __iomem *addr, u64 val)
218{
219 out_le64(addr, swab64(val));
220}
221
222#endif
223#endif /* __powerpc64__ */
224
225/*
226 * Low level IO stream instructions are defined out of line for now
227 */
228extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
229extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
230extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
231extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
232extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
233extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
234
235/* The _ns naming is historical and will be removed. For now, just #define
236 * the non _ns equivalent names
237 */
238#define _insw _insw_ns
239#define _insl _insl_ns
240#define _outsw _outsw_ns
241#define _outsl _outsl_ns
242
243
244/*
245 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
246 */
247
248extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
249extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
250 unsigned long n);
251extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
252 unsigned long n);
253
254/*
255 *
256 * PCI and standard ISA accessors
257 *
258 * Those are globally defined linux accessors for devices on PCI or ISA
259 * busses. They follow the Linux defined semantics. The current implementation
260 * for PowerPC is as close as possible to the x86 version of these, and thus
261 * provides fairly heavy weight barriers for the non-raw versions
262 *
263 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
264 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
265 * own implementation of some or all of the accessors.
266 */
267
268/*
269 * Include the EEH definitions when EEH is enabled only so they don't get
270 * in the way when building for 32 bits
271 */
272#ifdef CONFIG_EEH
273#include <asm/eeh.h>
274#endif
275
276/* Shortcut to the MMIO argument pointer */
277#define PCI_IO_ADDR volatile void __iomem *
278
279/* Indirect IO address tokens:
280 *
281 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
282 * on all MMIOs. (Note that this is all 64 bits only for now)
283 *
284 * To help platforms who may need to differentiate MMIO addresses in
285 * their hooks, a bitfield is reserved for use by the platform near the
286 * top of MMIO addresses (not PIO, those have to cope the hard way).
287 *
288 * The highest address in the kernel virtual space are:
289 *
290 * d0003fffffffffff # with Hash MMU
291 * c00fffffffffffff # with Radix MMU
292 *
293 * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits
294 * that can be used for the field.
295 *
296 * The direct IO mapping operations will then mask off those bits
297 * before doing the actual access, though that only happen when
298 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
299 * mechanism
300 *
301 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
302 * all PIO functions call through a hook.
303 */
304
305#ifdef CONFIG_PPC_INDIRECT_MMIO
306#define PCI_IO_IND_TOKEN_SHIFT 52
307#define PCI_IO_IND_TOKEN_MASK (0xfful << PCI_IO_IND_TOKEN_SHIFT)
308#define PCI_FIX_ADDR(addr) \
309 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
310#define PCI_GET_ADDR_TOKEN(addr) \
311 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \
312 PCI_IO_IND_TOKEN_SHIFT)
313#define PCI_SET_ADDR_TOKEN(addr, token) \
314do { \
315 unsigned long __a = (unsigned long)(addr); \
316 __a &= ~PCI_IO_IND_TOKEN_MASK; \
317 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \
318 (addr) = (void __iomem *)__a; \
319} while(0)
320#else
321#define PCI_FIX_ADDR(addr) (addr)
322#endif
323
324
325/*
326 * Non ordered and non-swapping "raw" accessors
327 */
328
329static inline unsigned char __raw_readb(const volatile void __iomem *addr)
330{
331 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
332}
333static inline unsigned short __raw_readw(const volatile void __iomem *addr)
334{
335 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
336}
337static inline unsigned int __raw_readl(const volatile void __iomem *addr)
338{
339 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
340}
341static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
342{
343 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
344}
345static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
346{
347 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
348}
349static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
350{
351 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
352}
353
354#ifdef __powerpc64__
355static inline unsigned long __raw_readq(const volatile void __iomem *addr)
356{
357 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
358}
359static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
360{
361 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
362}
363
364static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
365{
366 __raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
367}
368
369/*
370 * Real mode versions of the above. Those instructions are only supposed
371 * to be used in hypervisor real mode as per the architecture spec.
372 */
373static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
374{
375 __asm__ __volatile__("stbcix %0,0,%1"
376 : : "r" (val), "r" (paddr) : "memory");
377}
378
379static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
380{
381 __asm__ __volatile__("sthcix %0,0,%1"
382 : : "r" (val), "r" (paddr) : "memory");
383}
384
385static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
386{
387 __asm__ __volatile__("stwcix %0,0,%1"
388 : : "r" (val), "r" (paddr) : "memory");
389}
390
391static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
392{
393 __asm__ __volatile__("stdcix %0,0,%1"
394 : : "r" (val), "r" (paddr) : "memory");
395}
396
397static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
398{
399 __raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
400}
401
402static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
403{
404 u8 ret;
405 __asm__ __volatile__("lbzcix %0,0, %1"
406 : "=r" (ret) : "r" (paddr) : "memory");
407 return ret;
408}
409
410static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
411{
412 u16 ret;
413 __asm__ __volatile__("lhzcix %0,0, %1"
414 : "=r" (ret) : "r" (paddr) : "memory");
415 return ret;
416}
417
418static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
419{
420 u32 ret;
421 __asm__ __volatile__("lwzcix %0,0, %1"
422 : "=r" (ret) : "r" (paddr) : "memory");
423 return ret;
424}
425
426static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
427{
428 u64 ret;
429 __asm__ __volatile__("ldcix %0,0, %1"
430 : "=r" (ret) : "r" (paddr) : "memory");
431 return ret;
432}
433#endif /* __powerpc64__ */
434
435/*
436 *
437 * PCI PIO and MMIO accessors.
438 *
439 *
440 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
441 * machine checks (which they occasionally do when probing non existing
442 * IO ports on some platforms, like PowerMac and 8xx).
443 * I always found it to be of dubious reliability and I am tempted to get
444 * rid of it one of these days. So if you think it's important to keep it,
445 * please voice up asap. We never had it for 64 bits and I do not intend
446 * to port it over
447 */
448
449#ifdef CONFIG_PPC32
450
451#define __do_in_asm(name, op) \
452static inline unsigned int name(unsigned int port) \
453{ \
454 unsigned int x; \
455 __asm__ __volatile__( \
456 "sync\n" \
457 "0:" op " %0,0,%1\n" \
458 "1: twi 0,%0,0\n" \
459 "2: isync\n" \
460 "3: nop\n" \
461 "4:\n" \
462 ".section .fixup,\"ax\"\n" \
463 "5: li %0,-1\n" \
464 " b 4b\n" \
465 ".previous\n" \
466 EX_TABLE(0b, 5b) \
467 EX_TABLE(1b, 5b) \
468 EX_TABLE(2b, 5b) \
469 EX_TABLE(3b, 5b) \
470 : "=&r" (x) \
471 : "r" (port + _IO_BASE) \
472 : "memory"); \
473 return x; \
474}
475
476#define __do_out_asm(name, op) \
477static inline void name(unsigned int val, unsigned int port) \
478{ \
479 __asm__ __volatile__( \
480 "sync\n" \
481 "0:" op " %0,0,%1\n" \
482 "1: sync\n" \
483 "2:\n" \
484 EX_TABLE(0b, 2b) \
485 EX_TABLE(1b, 2b) \
486 : : "r" (val), "r" (port + _IO_BASE) \
487 : "memory"); \
488}
489
490__do_in_asm(_rec_inb, "lbzx")
491__do_in_asm(_rec_inw, "lhbrx")
492__do_in_asm(_rec_inl, "lwbrx")
493__do_out_asm(_rec_outb, "stbx")
494__do_out_asm(_rec_outw, "sthbrx")
495__do_out_asm(_rec_outl, "stwbrx")
496
497#endif /* CONFIG_PPC32 */
498
499/* The "__do_*" operations below provide the actual "base" implementation
500 * for each of the defined accessors. Some of them use the out_* functions
501 * directly, some of them still use EEH, though we might change that in the
502 * future. Those macros below provide the necessary argument swapping and
503 * handling of the IO base for PIO.
504 *
505 * They are themselves used by the macros that define the actual accessors
506 * and can be used by the hooks if any.
507 *
508 * Note that PIO operations are always defined in terms of their corresonding
509 * MMIO operations. That allows platforms like iSeries who want to modify the
510 * behaviour of both to only hook on the MMIO version and get both. It's also
511 * possible to hook directly at the toplevel PIO operation if they have to
512 * be handled differently
513 */
514#define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val)
515#define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val)
516#define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val)
517#define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val)
518#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
519#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
520#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
521
522#ifdef CONFIG_EEH
523#define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr))
524#define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr))
525#define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr))
526#define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr))
527#define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr))
528#define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr))
529#define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr))
530#else /* CONFIG_EEH */
531#define __do_readb(addr) in_8(PCI_FIX_ADDR(addr))
532#define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr))
533#define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr))
534#define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr))
535#define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr))
536#define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr))
537#define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr))
538#endif /* !defined(CONFIG_EEH) */
539
540#ifdef CONFIG_PPC32
541#define __do_outb(val, port) _rec_outb(val, port)
542#define __do_outw(val, port) _rec_outw(val, port)
543#define __do_outl(val, port) _rec_outl(val, port)
544#define __do_inb(port) _rec_inb(port)
545#define __do_inw(port) _rec_inw(port)
546#define __do_inl(port) _rec_inl(port)
547#else /* CONFIG_PPC32 */
548#define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
549#define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port);
550#define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port);
551#define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port);
552#define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port);
553#define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port);
554#endif /* !CONFIG_PPC32 */
555
556#ifdef CONFIG_EEH
557#define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
558#define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
559#define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
560#else /* CONFIG_EEH */
561#define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n))
562#define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n))
563#define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n))
564#endif /* !CONFIG_EEH */
565#define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n))
566#define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n))
567#define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n))
568
569#define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
570#define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
571#define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
572#define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
573#define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
574#define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
575
576#define __do_memset_io(addr, c, n) \
577 _memset_io(PCI_FIX_ADDR(addr), c, n)
578#define __do_memcpy_toio(dst, src, n) \
579 _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
580
581#ifdef CONFIG_EEH
582#define __do_memcpy_fromio(dst, src, n) \
583 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
584#else /* CONFIG_EEH */
585#define __do_memcpy_fromio(dst, src, n) \
586 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
587#endif /* !CONFIG_EEH */
588
589#ifdef CONFIG_PPC_INDIRECT_PIO
590#define DEF_PCI_HOOK_pio(x) x
591#else
592#define DEF_PCI_HOOK_pio(x) NULL
593#endif
594
595#ifdef CONFIG_PPC_INDIRECT_MMIO
596#define DEF_PCI_HOOK_mem(x) x
597#else
598#define DEF_PCI_HOOK_mem(x) NULL
599#endif
600
601/* Structure containing all the hooks */
602extern struct ppc_pci_io {
603
604#define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at;
605#define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at;
606
607#include <asm/io-defs.h>
608
609#undef DEF_PCI_AC_RET
610#undef DEF_PCI_AC_NORET
611
612} ppc_pci_io;
613
614/* The inline wrappers */
615#define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \
616static inline ret name at \
617{ \
618 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
619 return ppc_pci_io.name al; \
620 return __do_##name al; \
621}
622
623#define DEF_PCI_AC_NORET(name, at, al, space, aa) \
624static inline void name at \
625{ \
626 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
627 ppc_pci_io.name al; \
628 else \
629 __do_##name al; \
630}
631
632#include <asm/io-defs.h>
633
634#undef DEF_PCI_AC_RET
635#undef DEF_PCI_AC_NORET
636
637/* Some drivers check for the presence of readq & writeq with
638 * a #ifdef, so we make them happy here.
639 */
640#ifdef __powerpc64__
641#define readq readq
642#define writeq writeq
643#endif
644
645/*
646 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
647 * access
648 */
649#define xlate_dev_mem_ptr(p) __va(p)
650
651/*
652 * Convert a virtual cached pointer to an uncached pointer
653 */
654#define xlate_dev_kmem_ptr(p) p
655
656/*
657 * We don't do relaxed operations yet, at least not with this semantic
658 */
659#define readb_relaxed(addr) readb(addr)
660#define readw_relaxed(addr) readw(addr)
661#define readl_relaxed(addr) readl(addr)
662#define readq_relaxed(addr) readq(addr)
663#define writeb_relaxed(v, addr) writeb(v, addr)
664#define writew_relaxed(v, addr) writew(v, addr)
665#define writel_relaxed(v, addr) writel(v, addr)
666#define writeq_relaxed(v, addr) writeq(v, addr)
667
668#include <asm-generic/iomap.h>
669
670#ifdef CONFIG_PPC32
671#define mmiowb()
672#else
673/*
674 * Enforce synchronisation of stores vs. spin_unlock
675 * (this does it explicitly, though our implementation of spin_unlock
676 * does it implicitely too)
677 */
678static inline void mmiowb(void)
679{
680 unsigned long tmp;
681
682 __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
683 : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
684 : "memory");
685}
686#endif /* !CONFIG_PPC32 */
687
688static inline void iosync(void)
689{
690 __asm__ __volatile__ ("sync" : : : "memory");
691}
692
693/* Enforce in-order execution of data I/O.
694 * No distinction between read/write on PPC; use eieio for all three.
695 * Those are fairly week though. They don't provide a barrier between
696 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
697 * they only provide barriers between 2 __raw MMIO operations and
698 * possibly break write combining.
699 */
700#define iobarrier_rw() eieio()
701#define iobarrier_r() eieio()
702#define iobarrier_w() eieio()
703
704
705/*
706 * output pause versions need a delay at least for the
707 * w83c105 ide controller in a p610.
708 */
709#define inb_p(port) inb(port)
710#define outb_p(val, port) (udelay(1), outb((val), (port)))
711#define inw_p(port) inw(port)
712#define outw_p(val, port) (udelay(1), outw((val), (port)))
713#define inl_p(port) inl(port)
714#define outl_p(val, port) (udelay(1), outl((val), (port)))
715
716
717#define IO_SPACE_LIMIT ~(0UL)
718
719
720/**
721 * ioremap - map bus memory into CPU space
722 * @address: bus address of the memory
723 * @size: size of the resource to map
724 *
725 * ioremap performs a platform specific sequence of operations to
726 * make bus memory CPU accessible via the readb/readw/readl/writeb/
727 * writew/writel functions and the other mmio helpers. The returned
728 * address is not guaranteed to be usable directly as a virtual
729 * address.
730 *
731 * We provide a few variations of it:
732 *
733 * * ioremap is the standard one and provides non-cacheable guarded mappings
734 * and can be hooked by the platform via ppc_md
735 *
736 * * ioremap_prot allows to specify the page flags as an argument and can
737 * also be hooked by the platform via ppc_md.
738 *
739 * * ioremap_nocache is identical to ioremap
740 *
741 * * ioremap_wc enables write combining
742 *
743 * * iounmap undoes such a mapping and can be hooked
744 *
745 * * __ioremap_at (and the pending __iounmap_at) are low level functions to
746 * create hand-made mappings for use only by the PCI code and cannot
747 * currently be hooked. Must be page aligned.
748 *
749 * * __ioremap is the low level implementation used by ioremap and
750 * ioremap_prot and cannot be hooked (but can be used by a hook on one
751 * of the previous ones)
752 *
753 * * __ioremap_caller is the same as above but takes an explicit caller
754 * reference rather than using __builtin_return_address(0)
755 *
756 * * __iounmap, is the low level implementation used by iounmap and cannot
757 * be hooked (but can be used by a hook on iounmap)
758 *
759 */
760extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
761extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
762 unsigned long flags);
763extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
764#define ioremap_nocache(addr, size) ioremap((addr), (size))
765#define ioremap_uc(addr, size) ioremap((addr), (size))
766#define ioremap_cache(addr, size) \
767 ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
768
769extern void iounmap(volatile void __iomem *addr);
770
771extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
772 unsigned long flags);
773extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
774 unsigned long flags, void *caller);
775
776extern void __iounmap(volatile void __iomem *addr);
777
778extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
779 unsigned long size, unsigned long flags);
780extern void __iounmap_at(void *ea, unsigned long size);
781
782/*
783 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
784 * which needs some additional definitions here. They basically allow PIO
785 * space overall to be 1GB. This will work as long as we never try to use
786 * iomap to map MMIO below 1GB which should be fine on ppc64
787 */
788#define HAVE_ARCH_PIO_SIZE 1
789#define PIO_OFFSET 0x00000000UL
790#define PIO_MASK (FULL_IO_SIZE - 1)
791#define PIO_RESERVED (FULL_IO_SIZE)
792
793#define mmio_read16be(addr) readw_be(addr)
794#define mmio_read32be(addr) readl_be(addr)
795#define mmio_write16be(val, addr) writew_be(val, addr)
796#define mmio_write32be(val, addr) writel_be(val, addr)
797#define mmio_insb(addr, dst, count) readsb(addr, dst, count)
798#define mmio_insw(addr, dst, count) readsw(addr, dst, count)
799#define mmio_insl(addr, dst, count) readsl(addr, dst, count)
800#define mmio_outsb(addr, src, count) writesb(addr, src, count)
801#define mmio_outsw(addr, src, count) writesw(addr, src, count)
802#define mmio_outsl(addr, src, count) writesl(addr, src, count)
803
804/**
805 * virt_to_phys - map virtual addresses to physical
806 * @address: address to remap
807 *
808 * The returned physical address is the physical (CPU) mapping for
809 * the memory address given. It is only valid to use this function on
810 * addresses directly mapped or allocated via kmalloc.
811 *
812 * This function does not give bus mappings for DMA transfers. In
813 * almost all conceivable cases a device driver should not be using
814 * this function
815 */
816static inline unsigned long virt_to_phys(volatile void * address)
817{
818 return __pa((unsigned long)address);
819}
820
821/**
822 * phys_to_virt - map physical address to virtual
823 * @address: address to remap
824 *
825 * The returned virtual address is a current CPU mapping for
826 * the memory address given. It is only valid to use this function on
827 * addresses that have a kernel mapping
828 *
829 * This function does not handle bus mappings for DMA transfers. In
830 * almost all conceivable cases a device driver should not be using
831 * this function
832 */
833static inline void * phys_to_virt(unsigned long address)
834{
835 return (void *)__va(address);
836}
837
838/*
839 * Change "struct page" to physical address.
840 */
841#define page_to_phys(page) ((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
842
843/*
844 * 32 bits still uses virt_to_bus() for it's implementation of DMA
845 * mappings se we have to keep it defined here. We also have some old
846 * drivers (shame shame shame) that use bus_to_virt() and haven't been
847 * fixed yet so I need to define it here.
848 */
849#ifdef CONFIG_PPC32
850
851static inline unsigned long virt_to_bus(volatile void * address)
852{
853 if (address == NULL)
854 return 0;
855 return __pa(address) + PCI_DRAM_OFFSET;
856}
857
858static inline void * bus_to_virt(unsigned long address)
859{
860 if (address == 0)
861 return NULL;
862 return __va(address - PCI_DRAM_OFFSET);
863}
864
865#define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET)
866
867#endif /* CONFIG_PPC32 */
868
869/* access ports */
870#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v))
871#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
872
873#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v))
874#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
875
876#define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v))
877#define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
878
879/* Clear and set bits in one shot. These macros can be used to clear and
880 * set multiple bits in a register using a single read-modify-write. These
881 * macros can also be used to set a multiple-bit bit pattern using a mask,
882 * by specifying the mask in the 'clear' parameter and the new bit pattern
883 * in the 'set' parameter.
884 */
885
886#define clrsetbits(type, addr, clear, set) \
887 out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
888
889#ifdef __powerpc64__
890#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
891#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
892#endif
893
894#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
895#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
896
897#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
898#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
899
900#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
901
902#endif /* __KERNEL__ */
903
904#endif /* _ASM_POWERPC_IO_H */