David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * IEEE754 floating point arithmetic |
| 4 | * double precision: MADDF.f (Fused Multiply Add) |
| 5 | * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft]) |
| 6 | * |
| 7 | * MIPS floating point support |
| 8 | * Copyright (C) 2015 Imagination Technologies, Ltd. |
| 9 | * Author: Markos Chandras <markos.chandras@imgtec.com> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 10 | */ |
| 11 | |
| 12 | #include "ieee754dp.h" |
| 13 | |
| 14 | |
| 15 | /* 128 bits shift right logical with rounding. */ |
| 16 | static void srl128(u64 *hptr, u64 *lptr, int count) |
| 17 | { |
| 18 | u64 low; |
| 19 | |
| 20 | if (count >= 128) { |
| 21 | *lptr = *hptr != 0 || *lptr != 0; |
| 22 | *hptr = 0; |
| 23 | } else if (count >= 64) { |
| 24 | if (count == 64) { |
| 25 | *lptr = *hptr | (*lptr != 0); |
| 26 | } else { |
| 27 | low = *lptr; |
| 28 | *lptr = *hptr >> (count - 64); |
| 29 | *lptr |= (*hptr << (128 - count)) != 0 || low != 0; |
| 30 | } |
| 31 | *hptr = 0; |
| 32 | } else { |
| 33 | low = *lptr; |
| 34 | *lptr = low >> count | *hptr << (64 - count); |
| 35 | *lptr |= (low << (64 - count)) != 0; |
| 36 | *hptr = *hptr >> count; |
| 37 | } |
| 38 | } |
| 39 | |
| 40 | static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x, |
| 41 | union ieee754dp y, enum maddf_flags flags) |
| 42 | { |
| 43 | int re; |
| 44 | int rs; |
| 45 | unsigned int lxm; |
| 46 | unsigned int hxm; |
| 47 | unsigned int lym; |
| 48 | unsigned int hym; |
| 49 | u64 lrm; |
| 50 | u64 hrm; |
| 51 | u64 lzm; |
| 52 | u64 hzm; |
| 53 | u64 t; |
| 54 | u64 at; |
| 55 | int s; |
| 56 | |
| 57 | COMPXDP; |
| 58 | COMPYDP; |
| 59 | COMPZDP; |
| 60 | |
| 61 | EXPLODEXDP; |
| 62 | EXPLODEYDP; |
| 63 | EXPLODEZDP; |
| 64 | |
| 65 | FLUSHXDP; |
| 66 | FLUSHYDP; |
| 67 | FLUSHZDP; |
| 68 | |
| 69 | ieee754_clearcx(); |
| 70 | |
| 71 | /* |
| 72 | * Handle the cases when at least one of x, y or z is a NaN. |
| 73 | * Order of precedence is sNaN, qNaN and z, x, y. |
| 74 | */ |
| 75 | if (zc == IEEE754_CLASS_SNAN) |
| 76 | return ieee754dp_nanxcpt(z); |
| 77 | if (xc == IEEE754_CLASS_SNAN) |
| 78 | return ieee754dp_nanxcpt(x); |
| 79 | if (yc == IEEE754_CLASS_SNAN) |
| 80 | return ieee754dp_nanxcpt(y); |
| 81 | if (zc == IEEE754_CLASS_QNAN) |
| 82 | return z; |
| 83 | if (xc == IEEE754_CLASS_QNAN) |
| 84 | return x; |
| 85 | if (yc == IEEE754_CLASS_QNAN) |
| 86 | return y; |
| 87 | |
| 88 | if (zc == IEEE754_CLASS_DNORM) |
| 89 | DPDNORMZ; |
| 90 | /* ZERO z cases are handled separately below */ |
| 91 | |
| 92 | switch (CLPAIR(xc, yc)) { |
| 93 | |
| 94 | /* |
| 95 | * Infinity handling |
| 96 | */ |
| 97 | case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): |
| 98 | case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): |
| 99 | ieee754_setcx(IEEE754_INVALID_OPERATION); |
| 100 | return ieee754dp_indef(); |
| 101 | |
| 102 | case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): |
| 103 | case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): |
| 104 | case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): |
| 105 | case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): |
| 106 | case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): |
| 107 | if ((zc == IEEE754_CLASS_INF) && |
| 108 | ((!(flags & MADDF_NEGATE_PRODUCT) && (zs != (xs ^ ys))) || |
| 109 | ((flags & MADDF_NEGATE_PRODUCT) && (zs == (xs ^ ys))))) { |
| 110 | /* |
| 111 | * Cases of addition of infinities with opposite signs |
| 112 | * or subtraction of infinities with same signs. |
| 113 | */ |
| 114 | ieee754_setcx(IEEE754_INVALID_OPERATION); |
| 115 | return ieee754dp_indef(); |
| 116 | } |
| 117 | /* |
| 118 | * z is here either not an infinity, or an infinity having the |
| 119 | * same sign as product (x*y) (in case of MADDF.D instruction) |
| 120 | * or product -(x*y) (in MSUBF.D case). The result must be an |
| 121 | * infinity, and its sign is determined only by the value of |
| 122 | * (flags & MADDF_NEGATE_PRODUCT) and the signs of x and y. |
| 123 | */ |
| 124 | if (flags & MADDF_NEGATE_PRODUCT) |
| 125 | return ieee754dp_inf(1 ^ (xs ^ ys)); |
| 126 | else |
| 127 | return ieee754dp_inf(xs ^ ys); |
| 128 | |
| 129 | case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): |
| 130 | case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): |
| 131 | case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): |
| 132 | case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): |
| 133 | case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): |
| 134 | if (zc == IEEE754_CLASS_INF) |
| 135 | return ieee754dp_inf(zs); |
| 136 | if (zc == IEEE754_CLASS_ZERO) { |
| 137 | /* Handle cases +0 + (-0) and similar ones. */ |
| 138 | if ((!(flags & MADDF_NEGATE_PRODUCT) |
| 139 | && (zs == (xs ^ ys))) || |
| 140 | ((flags & MADDF_NEGATE_PRODUCT) |
| 141 | && (zs != (xs ^ ys)))) |
| 142 | /* |
| 143 | * Cases of addition of zeros of equal signs |
| 144 | * or subtraction of zeroes of opposite signs. |
| 145 | * The sign of the resulting zero is in any |
| 146 | * such case determined only by the sign of z. |
| 147 | */ |
| 148 | return z; |
| 149 | |
| 150 | return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD); |
| 151 | } |
| 152 | /* x*y is here 0, and z is not 0, so just return z */ |
| 153 | return z; |
| 154 | |
| 155 | case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): |
| 156 | DPDNORMX; |
| 157 | /* fall through */ |
| 158 | |
| 159 | case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): |
| 160 | if (zc == IEEE754_CLASS_INF) |
| 161 | return ieee754dp_inf(zs); |
| 162 | DPDNORMY; |
| 163 | break; |
| 164 | |
| 165 | case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): |
| 166 | if (zc == IEEE754_CLASS_INF) |
| 167 | return ieee754dp_inf(zs); |
| 168 | DPDNORMX; |
| 169 | break; |
| 170 | |
| 171 | case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): |
| 172 | if (zc == IEEE754_CLASS_INF) |
| 173 | return ieee754dp_inf(zs); |
| 174 | /* continue to real computations */ |
| 175 | } |
| 176 | |
| 177 | /* Finally get to do some computation */ |
| 178 | |
| 179 | /* |
| 180 | * Do the multiplication bit first |
| 181 | * |
| 182 | * rm = xm * ym, re = xe + ye basically |
| 183 | * |
| 184 | * At this point xm and ym should have been normalized. |
| 185 | */ |
| 186 | assert(xm & DP_HIDDEN_BIT); |
| 187 | assert(ym & DP_HIDDEN_BIT); |
| 188 | |
| 189 | re = xe + ye; |
| 190 | rs = xs ^ ys; |
| 191 | if (flags & MADDF_NEGATE_PRODUCT) |
| 192 | rs ^= 1; |
| 193 | |
| 194 | /* shunt to top of word */ |
| 195 | xm <<= 64 - (DP_FBITS + 1); |
| 196 | ym <<= 64 - (DP_FBITS + 1); |
| 197 | |
| 198 | /* |
| 199 | * Multiply 64 bits xm and ym to give 128 bits result in hrm:lrm. |
| 200 | */ |
| 201 | |
| 202 | lxm = xm; |
| 203 | hxm = xm >> 32; |
| 204 | lym = ym; |
| 205 | hym = ym >> 32; |
| 206 | |
| 207 | lrm = DPXMULT(lxm, lym); |
| 208 | hrm = DPXMULT(hxm, hym); |
| 209 | |
| 210 | t = DPXMULT(lxm, hym); |
| 211 | |
| 212 | at = lrm + (t << 32); |
| 213 | hrm += at < lrm; |
| 214 | lrm = at; |
| 215 | |
| 216 | hrm = hrm + (t >> 32); |
| 217 | |
| 218 | t = DPXMULT(hxm, lym); |
| 219 | |
| 220 | at = lrm + (t << 32); |
| 221 | hrm += at < lrm; |
| 222 | lrm = at; |
| 223 | |
| 224 | hrm = hrm + (t >> 32); |
| 225 | |
| 226 | /* Put explicit bit at bit 126 if necessary */ |
| 227 | if ((int64_t)hrm < 0) { |
| 228 | lrm = (hrm << 63) | (lrm >> 1); |
| 229 | hrm = hrm >> 1; |
| 230 | re++; |
| 231 | } |
| 232 | |
| 233 | assert(hrm & (1 << 62)); |
| 234 | |
| 235 | if (zc == IEEE754_CLASS_ZERO) { |
| 236 | /* |
| 237 | * Move explicit bit from bit 126 to bit 55 since the |
| 238 | * ieee754dp_format code expects the mantissa to be |
| 239 | * 56 bits wide (53 + 3 rounding bits). |
| 240 | */ |
| 241 | srl128(&hrm, &lrm, (126 - 55)); |
| 242 | return ieee754dp_format(rs, re, lrm); |
| 243 | } |
| 244 | |
| 245 | /* Move explicit bit from bit 52 to bit 126 */ |
| 246 | lzm = 0; |
| 247 | hzm = zm << 10; |
| 248 | assert(hzm & (1 << 62)); |
| 249 | |
| 250 | /* Make the exponents the same */ |
| 251 | if (ze > re) { |
| 252 | /* |
| 253 | * Have to shift y fraction right to align. |
| 254 | */ |
| 255 | s = ze - re; |
| 256 | srl128(&hrm, &lrm, s); |
| 257 | re += s; |
| 258 | } else if (re > ze) { |
| 259 | /* |
| 260 | * Have to shift x fraction right to align. |
| 261 | */ |
| 262 | s = re - ze; |
| 263 | srl128(&hzm, &lzm, s); |
| 264 | ze += s; |
| 265 | } |
| 266 | assert(ze == re); |
| 267 | assert(ze <= DP_EMAX); |
| 268 | |
| 269 | /* Do the addition */ |
| 270 | if (zs == rs) { |
| 271 | /* |
| 272 | * Generate 128 bit result by adding two 127 bit numbers |
| 273 | * leaving result in hzm:lzm, zs and ze. |
| 274 | */ |
| 275 | hzm = hzm + hrm + (lzm > (lzm + lrm)); |
| 276 | lzm = lzm + lrm; |
| 277 | if ((int64_t)hzm < 0) { /* carry out */ |
| 278 | srl128(&hzm, &lzm, 1); |
| 279 | ze++; |
| 280 | } |
| 281 | } else { |
| 282 | if (hzm > hrm || (hzm == hrm && lzm >= lrm)) { |
| 283 | hzm = hzm - hrm - (lzm < lrm); |
| 284 | lzm = lzm - lrm; |
| 285 | } else { |
| 286 | hzm = hrm - hzm - (lrm < lzm); |
| 287 | lzm = lrm - lzm; |
| 288 | zs = rs; |
| 289 | } |
| 290 | if (lzm == 0 && hzm == 0) |
| 291 | return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD); |
| 292 | |
| 293 | /* |
| 294 | * Put explicit bit at bit 126 if necessary. |
| 295 | */ |
| 296 | if (hzm == 0) { |
| 297 | /* left shift by 63 or 64 bits */ |
| 298 | if ((int64_t)lzm < 0) { |
| 299 | /* MSB of lzm is the explicit bit */ |
| 300 | hzm = lzm >> 1; |
| 301 | lzm = lzm << 63; |
| 302 | ze -= 63; |
| 303 | } else { |
| 304 | hzm = lzm; |
| 305 | lzm = 0; |
| 306 | ze -= 64; |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | t = 0; |
| 311 | while ((hzm >> (62 - t)) == 0) |
| 312 | t++; |
| 313 | |
| 314 | assert(t <= 62); |
| 315 | if (t) { |
| 316 | hzm = hzm << t | lzm >> (64 - t); |
| 317 | lzm = lzm << t; |
| 318 | ze -= t; |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | /* |
| 323 | * Move explicit bit from bit 126 to bit 55 since the |
| 324 | * ieee754dp_format code expects the mantissa to be |
| 325 | * 56 bits wide (53 + 3 rounding bits). |
| 326 | */ |
| 327 | srl128(&hzm, &lzm, (126 - 55)); |
| 328 | |
| 329 | return ieee754dp_format(zs, ze, lzm); |
| 330 | } |
| 331 | |
| 332 | union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x, |
| 333 | union ieee754dp y) |
| 334 | { |
| 335 | return _dp_maddf(z, x, y, 0); |
| 336 | } |
| 337 | |
| 338 | union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x, |
| 339 | union ieee754dp y) |
| 340 | { |
| 341 | return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); |
| 342 | } |