v4.19.13 snapshot.
diff --git a/arch/mips/math-emu/dp_maddf.c b/arch/mips/math-emu/dp_maddf.c
new file mode 100644
index 0000000..7ea2f82
--- /dev/null
+++ b/arch/mips/math-emu/dp_maddf.c
@@ -0,0 +1,345 @@
+/*
+ * IEEE754 floating point arithmetic
+ * double precision: MADDF.f (Fused Multiply Add)
+ * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
+ *
+ * MIPS floating point support
+ * Copyright (C) 2015 Imagination Technologies, Ltd.
+ * Author: Markos Chandras <markos.chandras@imgtec.com>
+ *
+ *  This program is free software; you can distribute it and/or modify it
+ *  under the terms of the GNU General Public License as published by the
+ *  Free Software Foundation; version 2 of the License.
+ */
+
+#include "ieee754dp.h"
+
+
+/* 128 bits shift right logical with rounding. */
+static void srl128(u64 *hptr, u64 *lptr, int count)
+{
+	u64 low;
+
+	if (count >= 128) {
+		*lptr = *hptr != 0 || *lptr != 0;
+		*hptr = 0;
+	} else if (count >= 64) {
+		if (count == 64) {
+			*lptr = *hptr | (*lptr != 0);
+		} else {
+			low = *lptr;
+			*lptr = *hptr >> (count - 64);
+			*lptr |= (*hptr << (128 - count)) != 0 || low != 0;
+		}
+		*hptr = 0;
+	} else {
+		low = *lptr;
+		*lptr = low >> count | *hptr << (64 - count);
+		*lptr |= (low << (64 - count)) != 0;
+		*hptr = *hptr >> count;
+	}
+}
+
+static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x,
+				 union ieee754dp y, enum maddf_flags flags)
+{
+	int re;
+	int rs;
+	unsigned int lxm;
+	unsigned int hxm;
+	unsigned int lym;
+	unsigned int hym;
+	u64 lrm;
+	u64 hrm;
+	u64 lzm;
+	u64 hzm;
+	u64 t;
+	u64 at;
+	int s;
+
+	COMPXDP;
+	COMPYDP;
+	COMPZDP;
+
+	EXPLODEXDP;
+	EXPLODEYDP;
+	EXPLODEZDP;
+
+	FLUSHXDP;
+	FLUSHYDP;
+	FLUSHZDP;
+
+	ieee754_clearcx();
+
+	/*
+	 * Handle the cases when at least one of x, y or z is a NaN.
+	 * Order of precedence is sNaN, qNaN and z, x, y.
+	 */
+	if (zc == IEEE754_CLASS_SNAN)
+		return ieee754dp_nanxcpt(z);
+	if (xc == IEEE754_CLASS_SNAN)
+		return ieee754dp_nanxcpt(x);
+	if (yc == IEEE754_CLASS_SNAN)
+		return ieee754dp_nanxcpt(y);
+	if (zc == IEEE754_CLASS_QNAN)
+		return z;
+	if (xc == IEEE754_CLASS_QNAN)
+		return x;
+	if (yc == IEEE754_CLASS_QNAN)
+		return y;
+
+	if (zc == IEEE754_CLASS_DNORM)
+		DPDNORMZ;
+	/* ZERO z cases are handled separately below */
+
+	switch (CLPAIR(xc, yc)) {
+
+	/*
+	 * Infinity handling
+	 */
+	case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
+	case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
+		ieee754_setcx(IEEE754_INVALID_OPERATION);
+		return ieee754dp_indef();
+
+	case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
+	case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
+	case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
+	case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
+	case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
+		if ((zc == IEEE754_CLASS_INF) &&
+		    ((!(flags & MADDF_NEGATE_PRODUCT) && (zs != (xs ^ ys))) ||
+		     ((flags & MADDF_NEGATE_PRODUCT) && (zs == (xs ^ ys))))) {
+			/*
+			 * Cases of addition of infinities with opposite signs
+			 * or subtraction of infinities with same signs.
+			 */
+			ieee754_setcx(IEEE754_INVALID_OPERATION);
+			return ieee754dp_indef();
+		}
+		/*
+		 * z is here either not an infinity, or an infinity having the
+		 * same sign as product (x*y) (in case of MADDF.D instruction)
+		 * or product -(x*y) (in MSUBF.D case). The result must be an
+		 * infinity, and its sign is determined only by the value of
+		 * (flags & MADDF_NEGATE_PRODUCT) and the signs of x and y.
+		 */
+		if (flags & MADDF_NEGATE_PRODUCT)
+			return ieee754dp_inf(1 ^ (xs ^ ys));
+		else
+			return ieee754dp_inf(xs ^ ys);
+
+	case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
+	case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
+	case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
+	case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
+	case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
+		if (zc == IEEE754_CLASS_INF)
+			return ieee754dp_inf(zs);
+		if (zc == IEEE754_CLASS_ZERO) {
+			/* Handle cases +0 + (-0) and similar ones. */
+			if ((!(flags & MADDF_NEGATE_PRODUCT)
+					&& (zs == (xs ^ ys))) ||
+			    ((flags & MADDF_NEGATE_PRODUCT)
+					&& (zs != (xs ^ ys))))
+				/*
+				 * Cases of addition of zeros of equal signs
+				 * or subtraction of zeroes of opposite signs.
+				 * The sign of the resulting zero is in any
+				 * such case determined only by the sign of z.
+				 */
+				return z;
+
+			return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
+		}
+		/* x*y is here 0, and z is not 0, so just return z */
+		return z;
+
+	case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
+		DPDNORMX;
+		/* fall through */
+
+	case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
+		if (zc == IEEE754_CLASS_INF)
+			return ieee754dp_inf(zs);
+		DPDNORMY;
+		break;
+
+	case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
+		if (zc == IEEE754_CLASS_INF)
+			return ieee754dp_inf(zs);
+		DPDNORMX;
+		break;
+
+	case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
+		if (zc == IEEE754_CLASS_INF)
+			return ieee754dp_inf(zs);
+		/* continue to real computations */
+	}
+
+	/* Finally get to do some computation */
+
+	/*
+	 * Do the multiplication bit first
+	 *
+	 * rm = xm * ym, re = xe + ye basically
+	 *
+	 * At this point xm and ym should have been normalized.
+	 */
+	assert(xm & DP_HIDDEN_BIT);
+	assert(ym & DP_HIDDEN_BIT);
+
+	re = xe + ye;
+	rs = xs ^ ys;
+	if (flags & MADDF_NEGATE_PRODUCT)
+		rs ^= 1;
+
+	/* shunt to top of word */
+	xm <<= 64 - (DP_FBITS + 1);
+	ym <<= 64 - (DP_FBITS + 1);
+
+	/*
+	 * Multiply 64 bits xm and ym to give 128 bits result in hrm:lrm.
+	 */
+
+	lxm = xm;
+	hxm = xm >> 32;
+	lym = ym;
+	hym = ym >> 32;
+
+	lrm = DPXMULT(lxm, lym);
+	hrm = DPXMULT(hxm, hym);
+
+	t = DPXMULT(lxm, hym);
+
+	at = lrm + (t << 32);
+	hrm += at < lrm;
+	lrm = at;
+
+	hrm = hrm + (t >> 32);
+
+	t = DPXMULT(hxm, lym);
+
+	at = lrm + (t << 32);
+	hrm += at < lrm;
+	lrm = at;
+
+	hrm = hrm + (t >> 32);
+
+	/* Put explicit bit at bit 126 if necessary */
+	if ((int64_t)hrm < 0) {
+		lrm = (hrm << 63) | (lrm >> 1);
+		hrm = hrm >> 1;
+		re++;
+	}
+
+	assert(hrm & (1 << 62));
+
+	if (zc == IEEE754_CLASS_ZERO) {
+		/*
+		 * Move explicit bit from bit 126 to bit 55 since the
+		 * ieee754dp_format code expects the mantissa to be
+		 * 56 bits wide (53 + 3 rounding bits).
+		 */
+		srl128(&hrm, &lrm, (126 - 55));
+		return ieee754dp_format(rs, re, lrm);
+	}
+
+	/* Move explicit bit from bit 52 to bit 126 */
+	lzm = 0;
+	hzm = zm << 10;
+	assert(hzm & (1 << 62));
+
+	/* Make the exponents the same */
+	if (ze > re) {
+		/*
+		 * Have to shift y fraction right to align.
+		 */
+		s = ze - re;
+		srl128(&hrm, &lrm, s);
+		re += s;
+	} else if (re > ze) {
+		/*
+		 * Have to shift x fraction right to align.
+		 */
+		s = re - ze;
+		srl128(&hzm, &lzm, s);
+		ze += s;
+	}
+	assert(ze == re);
+	assert(ze <= DP_EMAX);
+
+	/* Do the addition */
+	if (zs == rs) {
+		/*
+		 * Generate 128 bit result by adding two 127 bit numbers
+		 * leaving result in hzm:lzm, zs and ze.
+		 */
+		hzm = hzm + hrm + (lzm > (lzm + lrm));
+		lzm = lzm + lrm;
+		if ((int64_t)hzm < 0) {        /* carry out */
+			srl128(&hzm, &lzm, 1);
+			ze++;
+		}
+	} else {
+		if (hzm > hrm || (hzm == hrm && lzm >= lrm)) {
+			hzm = hzm - hrm - (lzm < lrm);
+			lzm = lzm - lrm;
+		} else {
+			hzm = hrm - hzm - (lrm < lzm);
+			lzm = lrm - lzm;
+			zs = rs;
+		}
+		if (lzm == 0 && hzm == 0)
+			return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
+
+		/*
+		 * Put explicit bit at bit 126 if necessary.
+		 */
+		if (hzm == 0) {
+			/* left shift by 63 or 64 bits */
+			if ((int64_t)lzm < 0) {
+				/* MSB of lzm is the explicit bit */
+				hzm = lzm >> 1;
+				lzm = lzm << 63;
+				ze -= 63;
+			} else {
+				hzm = lzm;
+				lzm = 0;
+				ze -= 64;
+			}
+		}
+
+		t = 0;
+		while ((hzm >> (62 - t)) == 0)
+			t++;
+
+		assert(t <= 62);
+		if (t) {
+			hzm = hzm << t | lzm >> (64 - t);
+			lzm = lzm << t;
+			ze -= t;
+		}
+	}
+
+	/*
+	 * Move explicit bit from bit 126 to bit 55 since the
+	 * ieee754dp_format code expects the mantissa to be
+	 * 56 bits wide (53 + 3 rounding bits).
+	 */
+	srl128(&hzm, &lzm, (126 - 55));
+
+	return ieee754dp_format(zs, ze, lzm);
+}
+
+union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x,
+				union ieee754dp y)
+{
+	return _dp_maddf(z, x, y, 0);
+}
+
+union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x,
+				union ieee754dp y)
+{
+	return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
+}