blob: 4e68490fa7035b05a653087ed5a954797fb39dc5 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-or-later
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/* bit search implementation
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 *
7 * Copyright (C) 2008 IBM Corporation
8 * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au>
9 * (Inspired by David Howell's find_next_bit implementation)
10 *
11 * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease
12 * size and improve performance, 2015.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013 */
14
15#include <linux/bitops.h>
16#include <linux/bitmap.h>
17#include <linux/export.h>
18#include <linux/kernel.h>
19
20#if !defined(find_next_bit) || !defined(find_next_zero_bit) || \
21 !defined(find_next_and_bit)
22
23/*
24 * This is a common helper function for find_next_bit, find_next_zero_bit, and
25 * find_next_and_bit. The differences are:
26 * - The "invert" argument, which is XORed with each fetched word before
27 * searching it for one bits.
28 * - The optional "addr2", which is anded with "addr1" if present.
29 */
30static inline unsigned long _find_next_bit(const unsigned long *addr1,
31 const unsigned long *addr2, unsigned long nbits,
32 unsigned long start, unsigned long invert)
33{
34 unsigned long tmp;
35
36 if (unlikely(start >= nbits))
37 return nbits;
38
39 tmp = addr1[start / BITS_PER_LONG];
40 if (addr2)
41 tmp &= addr2[start / BITS_PER_LONG];
42 tmp ^= invert;
43
44 /* Handle 1st word. */
45 tmp &= BITMAP_FIRST_WORD_MASK(start);
46 start = round_down(start, BITS_PER_LONG);
47
48 while (!tmp) {
49 start += BITS_PER_LONG;
50 if (start >= nbits)
51 return nbits;
52
53 tmp = addr1[start / BITS_PER_LONG];
54 if (addr2)
55 tmp &= addr2[start / BITS_PER_LONG];
56 tmp ^= invert;
57 }
58
59 return min(start + __ffs(tmp), nbits);
60}
61#endif
62
63#ifndef find_next_bit
64/*
65 * Find the next set bit in a memory region.
66 */
67unsigned long find_next_bit(const unsigned long *addr, unsigned long size,
68 unsigned long offset)
69{
70 return _find_next_bit(addr, NULL, size, offset, 0UL);
71}
72EXPORT_SYMBOL(find_next_bit);
73#endif
74
75#ifndef find_next_zero_bit
76unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size,
77 unsigned long offset)
78{
79 return _find_next_bit(addr, NULL, size, offset, ~0UL);
80}
81EXPORT_SYMBOL(find_next_zero_bit);
82#endif
83
84#if !defined(find_next_and_bit)
85unsigned long find_next_and_bit(const unsigned long *addr1,
86 const unsigned long *addr2, unsigned long size,
87 unsigned long offset)
88{
89 return _find_next_bit(addr1, addr2, size, offset, 0UL);
90}
91EXPORT_SYMBOL(find_next_and_bit);
92#endif
93
94#ifndef find_first_bit
95/*
96 * Find the first set bit in a memory region.
97 */
98unsigned long find_first_bit(const unsigned long *addr, unsigned long size)
99{
100 unsigned long idx;
101
102 for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
103 if (addr[idx])
104 return min(idx * BITS_PER_LONG + __ffs(addr[idx]), size);
105 }
106
107 return size;
108}
109EXPORT_SYMBOL(find_first_bit);
110#endif
111
112#ifndef find_first_zero_bit
113/*
114 * Find the first cleared bit in a memory region.
115 */
116unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size)
117{
118 unsigned long idx;
119
120 for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
121 if (addr[idx] != ~0UL)
122 return min(idx * BITS_PER_LONG + ffz(addr[idx]), size);
123 }
124
125 return size;
126}
127EXPORT_SYMBOL(find_first_zero_bit);
128#endif
129
130#ifndef find_last_bit
131unsigned long find_last_bit(const unsigned long *addr, unsigned long size)
132{
133 if (size) {
134 unsigned long val = BITMAP_LAST_WORD_MASK(size);
135 unsigned long idx = (size-1) / BITS_PER_LONG;
136
137 do {
138 val &= addr[idx];
139 if (val)
140 return idx * BITS_PER_LONG + __fls(val);
141
142 val = ~0ul;
143 } while (idx--);
144 }
145 return size;
146}
147EXPORT_SYMBOL(find_last_bit);
148#endif
149
150#ifdef __BIG_ENDIAN
151
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000152#if !defined(find_next_bit_le) || !defined(find_next_zero_bit_le)
153static inline unsigned long _find_next_bit_le(const unsigned long *addr1,
154 const unsigned long *addr2, unsigned long nbits,
155 unsigned long start, unsigned long invert)
156{
157 unsigned long tmp;
158
159 if (unlikely(start >= nbits))
160 return nbits;
161
162 tmp = addr1[start / BITS_PER_LONG];
163 if (addr2)
164 tmp &= addr2[start / BITS_PER_LONG];
165 tmp ^= invert;
166
167 /* Handle 1st word. */
Olivier Deprez0e641232021-09-23 10:07:05 +0200168 tmp &= swab(BITMAP_FIRST_WORD_MASK(start));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000169 start = round_down(start, BITS_PER_LONG);
170
171 while (!tmp) {
172 start += BITS_PER_LONG;
173 if (start >= nbits)
174 return nbits;
175
176 tmp = addr1[start / BITS_PER_LONG];
177 if (addr2)
178 tmp &= addr2[start / BITS_PER_LONG];
179 tmp ^= invert;
180 }
181
Olivier Deprez0e641232021-09-23 10:07:05 +0200182 return min(start + __ffs(swab(tmp)), nbits);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000183}
184#endif
185
186#ifndef find_next_zero_bit_le
187unsigned long find_next_zero_bit_le(const void *addr, unsigned
188 long size, unsigned long offset)
189{
190 return _find_next_bit_le(addr, NULL, size, offset, ~0UL);
191}
192EXPORT_SYMBOL(find_next_zero_bit_le);
193#endif
194
195#ifndef find_next_bit_le
196unsigned long find_next_bit_le(const void *addr, unsigned
197 long size, unsigned long offset)
198{
199 return _find_next_bit_le(addr, NULL, size, offset, 0UL);
200}
201EXPORT_SYMBOL(find_next_bit_le);
202#endif
203
204#endif /* __BIG_ENDIAN */