Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* bit search implementation |
| 2 | * |
| 3 | * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. |
| 4 | * Written by David Howells (dhowells@redhat.com) |
| 5 | * |
| 6 | * Copyright (C) 2008 IBM Corporation |
| 7 | * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au> |
| 8 | * (Inspired by David Howell's find_next_bit implementation) |
| 9 | * |
| 10 | * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease |
| 11 | * size and improve performance, 2015. |
| 12 | * |
| 13 | * This program is free software; you can redistribute it and/or |
| 14 | * modify it under the terms of the GNU General Public License |
| 15 | * as published by the Free Software Foundation; either version |
| 16 | * 2 of the License, or (at your option) any later version. |
| 17 | */ |
| 18 | |
| 19 | #include <linux/bitops.h> |
| 20 | #include <linux/bitmap.h> |
| 21 | #include <linux/export.h> |
| 22 | #include <linux/kernel.h> |
| 23 | |
| 24 | #if !defined(find_next_bit) || !defined(find_next_zero_bit) || \ |
| 25 | !defined(find_next_and_bit) |
| 26 | |
| 27 | /* |
| 28 | * This is a common helper function for find_next_bit, find_next_zero_bit, and |
| 29 | * find_next_and_bit. The differences are: |
| 30 | * - The "invert" argument, which is XORed with each fetched word before |
| 31 | * searching it for one bits. |
| 32 | * - The optional "addr2", which is anded with "addr1" if present. |
| 33 | */ |
| 34 | static inline unsigned long _find_next_bit(const unsigned long *addr1, |
| 35 | const unsigned long *addr2, unsigned long nbits, |
| 36 | unsigned long start, unsigned long invert) |
| 37 | { |
| 38 | unsigned long tmp; |
| 39 | |
| 40 | if (unlikely(start >= nbits)) |
| 41 | return nbits; |
| 42 | |
| 43 | tmp = addr1[start / BITS_PER_LONG]; |
| 44 | if (addr2) |
| 45 | tmp &= addr2[start / BITS_PER_LONG]; |
| 46 | tmp ^= invert; |
| 47 | |
| 48 | /* Handle 1st word. */ |
| 49 | tmp &= BITMAP_FIRST_WORD_MASK(start); |
| 50 | start = round_down(start, BITS_PER_LONG); |
| 51 | |
| 52 | while (!tmp) { |
| 53 | start += BITS_PER_LONG; |
| 54 | if (start >= nbits) |
| 55 | return nbits; |
| 56 | |
| 57 | tmp = addr1[start / BITS_PER_LONG]; |
| 58 | if (addr2) |
| 59 | tmp &= addr2[start / BITS_PER_LONG]; |
| 60 | tmp ^= invert; |
| 61 | } |
| 62 | |
| 63 | return min(start + __ffs(tmp), nbits); |
| 64 | } |
| 65 | #endif |
| 66 | |
| 67 | #ifndef find_next_bit |
| 68 | /* |
| 69 | * Find the next set bit in a memory region. |
| 70 | */ |
| 71 | unsigned long find_next_bit(const unsigned long *addr, unsigned long size, |
| 72 | unsigned long offset) |
| 73 | { |
| 74 | return _find_next_bit(addr, NULL, size, offset, 0UL); |
| 75 | } |
| 76 | EXPORT_SYMBOL(find_next_bit); |
| 77 | #endif |
| 78 | |
| 79 | #ifndef find_next_zero_bit |
| 80 | unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size, |
| 81 | unsigned long offset) |
| 82 | { |
| 83 | return _find_next_bit(addr, NULL, size, offset, ~0UL); |
| 84 | } |
| 85 | EXPORT_SYMBOL(find_next_zero_bit); |
| 86 | #endif |
| 87 | |
| 88 | #if !defined(find_next_and_bit) |
| 89 | unsigned long find_next_and_bit(const unsigned long *addr1, |
| 90 | const unsigned long *addr2, unsigned long size, |
| 91 | unsigned long offset) |
| 92 | { |
| 93 | return _find_next_bit(addr1, addr2, size, offset, 0UL); |
| 94 | } |
| 95 | EXPORT_SYMBOL(find_next_and_bit); |
| 96 | #endif |
| 97 | |
| 98 | #ifndef find_first_bit |
| 99 | /* |
| 100 | * Find the first set bit in a memory region. |
| 101 | */ |
| 102 | unsigned long find_first_bit(const unsigned long *addr, unsigned long size) |
| 103 | { |
| 104 | unsigned long idx; |
| 105 | |
| 106 | for (idx = 0; idx * BITS_PER_LONG < size; idx++) { |
| 107 | if (addr[idx]) |
| 108 | return min(idx * BITS_PER_LONG + __ffs(addr[idx]), size); |
| 109 | } |
| 110 | |
| 111 | return size; |
| 112 | } |
| 113 | EXPORT_SYMBOL(find_first_bit); |
| 114 | #endif |
| 115 | |
| 116 | #ifndef find_first_zero_bit |
| 117 | /* |
| 118 | * Find the first cleared bit in a memory region. |
| 119 | */ |
| 120 | unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size) |
| 121 | { |
| 122 | unsigned long idx; |
| 123 | |
| 124 | for (idx = 0; idx * BITS_PER_LONG < size; idx++) { |
| 125 | if (addr[idx] != ~0UL) |
| 126 | return min(idx * BITS_PER_LONG + ffz(addr[idx]), size); |
| 127 | } |
| 128 | |
| 129 | return size; |
| 130 | } |
| 131 | EXPORT_SYMBOL(find_first_zero_bit); |
| 132 | #endif |
| 133 | |
| 134 | #ifndef find_last_bit |
| 135 | unsigned long find_last_bit(const unsigned long *addr, unsigned long size) |
| 136 | { |
| 137 | if (size) { |
| 138 | unsigned long val = BITMAP_LAST_WORD_MASK(size); |
| 139 | unsigned long idx = (size-1) / BITS_PER_LONG; |
| 140 | |
| 141 | do { |
| 142 | val &= addr[idx]; |
| 143 | if (val) |
| 144 | return idx * BITS_PER_LONG + __fls(val); |
| 145 | |
| 146 | val = ~0ul; |
| 147 | } while (idx--); |
| 148 | } |
| 149 | return size; |
| 150 | } |
| 151 | EXPORT_SYMBOL(find_last_bit); |
| 152 | #endif |
| 153 | |
| 154 | #ifdef __BIG_ENDIAN |
| 155 | |
| 156 | /* include/linux/byteorder does not support "unsigned long" type */ |
| 157 | static inline unsigned long ext2_swab(const unsigned long y) |
| 158 | { |
| 159 | #if BITS_PER_LONG == 64 |
| 160 | return (unsigned long) __swab64((u64) y); |
| 161 | #elif BITS_PER_LONG == 32 |
| 162 | return (unsigned long) __swab32((u32) y); |
| 163 | #else |
| 164 | #error BITS_PER_LONG not defined |
| 165 | #endif |
| 166 | } |
| 167 | |
| 168 | #if !defined(find_next_bit_le) || !defined(find_next_zero_bit_le) |
| 169 | static inline unsigned long _find_next_bit_le(const unsigned long *addr1, |
| 170 | const unsigned long *addr2, unsigned long nbits, |
| 171 | unsigned long start, unsigned long invert) |
| 172 | { |
| 173 | unsigned long tmp; |
| 174 | |
| 175 | if (unlikely(start >= nbits)) |
| 176 | return nbits; |
| 177 | |
| 178 | tmp = addr1[start / BITS_PER_LONG]; |
| 179 | if (addr2) |
| 180 | tmp &= addr2[start / BITS_PER_LONG]; |
| 181 | tmp ^= invert; |
| 182 | |
| 183 | /* Handle 1st word. */ |
| 184 | tmp &= ext2_swab(BITMAP_FIRST_WORD_MASK(start)); |
| 185 | start = round_down(start, BITS_PER_LONG); |
| 186 | |
| 187 | while (!tmp) { |
| 188 | start += BITS_PER_LONG; |
| 189 | if (start >= nbits) |
| 190 | return nbits; |
| 191 | |
| 192 | tmp = addr1[start / BITS_PER_LONG]; |
| 193 | if (addr2) |
| 194 | tmp &= addr2[start / BITS_PER_LONG]; |
| 195 | tmp ^= invert; |
| 196 | } |
| 197 | |
| 198 | return min(start + __ffs(ext2_swab(tmp)), nbits); |
| 199 | } |
| 200 | #endif |
| 201 | |
| 202 | #ifndef find_next_zero_bit_le |
| 203 | unsigned long find_next_zero_bit_le(const void *addr, unsigned |
| 204 | long size, unsigned long offset) |
| 205 | { |
| 206 | return _find_next_bit_le(addr, NULL, size, offset, ~0UL); |
| 207 | } |
| 208 | EXPORT_SYMBOL(find_next_zero_bit_le); |
| 209 | #endif |
| 210 | |
| 211 | #ifndef find_next_bit_le |
| 212 | unsigned long find_next_bit_le(const void *addr, unsigned |
| 213 | long size, unsigned long offset) |
| 214 | { |
| 215 | return _find_next_bit_le(addr, NULL, size, offset, 0UL); |
| 216 | } |
| 217 | EXPORT_SYMBOL(find_next_bit_le); |
| 218 | #endif |
| 219 | |
| 220 | #endif /* __BIG_ENDIAN */ |