blob: 203065a647652e1e3e9c3a07e3d8b06978ebe9c6 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_inode_item.h"
16#include "xfs_bmap.h"
17#include "xfs_bmap_util.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000018#include "xfs_dir2.h"
19#include "xfs_dir2_priv.h"
20#include "xfs_ioctl.h"
21#include "xfs_trace.h"
22#include "xfs_log.h"
23#include "xfs_icache.h"
24#include "xfs_pnfs.h"
25#include "xfs_iomap.h"
26#include "xfs_reflink.h"
27
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000028#include <linux/falloc.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000029#include <linux/backing-dev.h>
30#include <linux/mman.h>
David Brazdil0f672f62019-12-10 10:32:29 +000031#include <linux/fadvise.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000032
33static const struct vm_operations_struct xfs_file_vm_ops;
34
35int
36xfs_update_prealloc_flags(
37 struct xfs_inode *ip,
38 enum xfs_prealloc_flags flags)
39{
40 struct xfs_trans *tp;
41 int error;
42
43 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
44 0, 0, 0, &tp);
45 if (error)
46 return error;
47
48 xfs_ilock(ip, XFS_ILOCK_EXCL);
49 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
50
51 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
52 VFS_I(ip)->i_mode &= ~S_ISUID;
53 if (VFS_I(ip)->i_mode & S_IXGRP)
54 VFS_I(ip)->i_mode &= ~S_ISGID;
55 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
56 }
57
58 if (flags & XFS_PREALLOC_SET)
59 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
60 if (flags & XFS_PREALLOC_CLEAR)
61 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
62
63 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
64 if (flags & XFS_PREALLOC_SYNC)
65 xfs_trans_set_sync(tp);
66 return xfs_trans_commit(tp);
67}
68
69/*
70 * Fsync operations on directories are much simpler than on regular files,
71 * as there is no file data to flush, and thus also no need for explicit
72 * cache flush operations, and there are no non-transaction metadata updates
73 * on directories either.
74 */
75STATIC int
76xfs_dir_fsync(
77 struct file *file,
78 loff_t start,
79 loff_t end,
80 int datasync)
81{
82 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
83 struct xfs_mount *mp = ip->i_mount;
84 xfs_lsn_t lsn = 0;
85
86 trace_xfs_dir_fsync(ip);
87
88 xfs_ilock(ip, XFS_ILOCK_SHARED);
89 if (xfs_ipincount(ip))
90 lsn = ip->i_itemp->ili_last_lsn;
91 xfs_iunlock(ip, XFS_ILOCK_SHARED);
92
93 if (!lsn)
94 return 0;
95 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
96}
97
98STATIC int
99xfs_file_fsync(
100 struct file *file,
101 loff_t start,
102 loff_t end,
103 int datasync)
104{
105 struct inode *inode = file->f_mapping->host;
106 struct xfs_inode *ip = XFS_I(inode);
107 struct xfs_mount *mp = ip->i_mount;
108 int error = 0;
109 int log_flushed = 0;
110 xfs_lsn_t lsn = 0;
111
112 trace_xfs_file_fsync(ip);
113
114 error = file_write_and_wait_range(file, start, end);
115 if (error)
116 return error;
117
118 if (XFS_FORCED_SHUTDOWN(mp))
119 return -EIO;
120
121 xfs_iflags_clear(ip, XFS_ITRUNCATED);
122
123 /*
124 * If we have an RT and/or log subvolume we need to make sure to flush
125 * the write cache the device used for file data first. This is to
126 * ensure newly written file data make it to disk before logging the new
127 * inode size in case of an extending write.
128 */
129 if (XFS_IS_REALTIME_INODE(ip))
130 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
131 else if (mp->m_logdev_targp != mp->m_ddev_targp)
132 xfs_blkdev_issue_flush(mp->m_ddev_targp);
133
134 /*
135 * All metadata updates are logged, which means that we just have to
136 * flush the log up to the latest LSN that touched the inode. If we have
137 * concurrent fsync/fdatasync() calls, we need them to all block on the
138 * log force before we clear the ili_fsync_fields field. This ensures
139 * that we don't get a racing sync operation that does not wait for the
140 * metadata to hit the journal before returning. If we race with
141 * clearing the ili_fsync_fields, then all that will happen is the log
142 * force will do nothing as the lsn will already be on disk. We can't
143 * race with setting ili_fsync_fields because that is done under
144 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
145 * until after the ili_fsync_fields is cleared.
146 */
147 xfs_ilock(ip, XFS_ILOCK_SHARED);
148 if (xfs_ipincount(ip)) {
149 if (!datasync ||
150 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
151 lsn = ip->i_itemp->ili_last_lsn;
152 }
153
154 if (lsn) {
155 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
156 ip->i_itemp->ili_fsync_fields = 0;
157 }
158 xfs_iunlock(ip, XFS_ILOCK_SHARED);
159
160 /*
161 * If we only have a single device, and the log force about was
162 * a no-op we might have to flush the data device cache here.
163 * This can only happen for fdatasync/O_DSYNC if we were overwriting
164 * an already allocated file and thus do not have any metadata to
165 * commit.
166 */
167 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
168 mp->m_logdev_targp == mp->m_ddev_targp)
169 xfs_blkdev_issue_flush(mp->m_ddev_targp);
170
171 return error;
172}
173
174STATIC ssize_t
175xfs_file_dio_aio_read(
176 struct kiocb *iocb,
177 struct iov_iter *to)
178{
179 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
180 size_t count = iov_iter_count(to);
181 ssize_t ret;
182
183 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
184
185 if (!count)
186 return 0; /* skip atime */
187
188 file_accessed(iocb->ki_filp);
189
190 xfs_ilock(ip, XFS_IOLOCK_SHARED);
191 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
192 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
193
194 return ret;
195}
196
197static noinline ssize_t
198xfs_file_dax_read(
199 struct kiocb *iocb,
200 struct iov_iter *to)
201{
202 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
203 size_t count = iov_iter_count(to);
204 ssize_t ret = 0;
205
206 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
207
208 if (!count)
209 return 0; /* skip atime */
210
211 if (iocb->ki_flags & IOCB_NOWAIT) {
212 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
213 return -EAGAIN;
214 } else {
215 xfs_ilock(ip, XFS_IOLOCK_SHARED);
216 }
217
218 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
219 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
220
221 file_accessed(iocb->ki_filp);
222 return ret;
223}
224
225STATIC ssize_t
226xfs_file_buffered_aio_read(
227 struct kiocb *iocb,
228 struct iov_iter *to)
229{
230 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
231 ssize_t ret;
232
233 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
234
235 if (iocb->ki_flags & IOCB_NOWAIT) {
236 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
237 return -EAGAIN;
238 } else {
239 xfs_ilock(ip, XFS_IOLOCK_SHARED);
240 }
241 ret = generic_file_read_iter(iocb, to);
242 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
243
244 return ret;
245}
246
247STATIC ssize_t
248xfs_file_read_iter(
249 struct kiocb *iocb,
250 struct iov_iter *to)
251{
252 struct inode *inode = file_inode(iocb->ki_filp);
253 struct xfs_mount *mp = XFS_I(inode)->i_mount;
254 ssize_t ret = 0;
255
256 XFS_STATS_INC(mp, xs_read_calls);
257
258 if (XFS_FORCED_SHUTDOWN(mp))
259 return -EIO;
260
261 if (IS_DAX(inode))
262 ret = xfs_file_dax_read(iocb, to);
263 else if (iocb->ki_flags & IOCB_DIRECT)
264 ret = xfs_file_dio_aio_read(iocb, to);
265 else
266 ret = xfs_file_buffered_aio_read(iocb, to);
267
268 if (ret > 0)
269 XFS_STATS_ADD(mp, xs_read_bytes, ret);
270 return ret;
271}
272
273/*
274 * Common pre-write limit and setup checks.
275 *
276 * Called with the iolocked held either shared and exclusive according to
277 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
278 * if called for a direct write beyond i_size.
279 */
280STATIC ssize_t
281xfs_file_aio_write_checks(
282 struct kiocb *iocb,
283 struct iov_iter *from,
284 int *iolock)
285{
286 struct file *file = iocb->ki_filp;
287 struct inode *inode = file->f_mapping->host;
288 struct xfs_inode *ip = XFS_I(inode);
289 ssize_t error = 0;
290 size_t count = iov_iter_count(from);
291 bool drained_dio = false;
292 loff_t isize;
293
294restart:
295 error = generic_write_checks(iocb, from);
296 if (error <= 0)
297 return error;
298
299 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
300 if (error)
301 return error;
302
303 /*
304 * For changing security info in file_remove_privs() we need i_rwsem
305 * exclusively.
306 */
307 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
308 xfs_iunlock(ip, *iolock);
309 *iolock = XFS_IOLOCK_EXCL;
310 xfs_ilock(ip, *iolock);
311 goto restart;
312 }
313 /*
314 * If the offset is beyond the size of the file, we need to zero any
315 * blocks that fall between the existing EOF and the start of this
316 * write. If zeroing is needed and we are currently holding the
317 * iolock shared, we need to update it to exclusive which implies
318 * having to redo all checks before.
319 *
320 * We need to serialise against EOF updates that occur in IO
321 * completions here. We want to make sure that nobody is changing the
322 * size while we do this check until we have placed an IO barrier (i.e.
323 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
324 * The spinlock effectively forms a memory barrier once we have the
325 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
326 * and hence be able to correctly determine if we need to run zeroing.
327 */
328 spin_lock(&ip->i_flags_lock);
329 isize = i_size_read(inode);
330 if (iocb->ki_pos > isize) {
331 spin_unlock(&ip->i_flags_lock);
332 if (!drained_dio) {
333 if (*iolock == XFS_IOLOCK_SHARED) {
334 xfs_iunlock(ip, *iolock);
335 *iolock = XFS_IOLOCK_EXCL;
336 xfs_ilock(ip, *iolock);
337 iov_iter_reexpand(from, count);
338 }
339 /*
340 * We now have an IO submission barrier in place, but
341 * AIO can do EOF updates during IO completion and hence
342 * we now need to wait for all of them to drain. Non-AIO
343 * DIO will have drained before we are given the
344 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
345 * no-op.
346 */
347 inode_dio_wait(inode);
348 drained_dio = true;
349 goto restart;
350 }
351
352 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
353 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
354 NULL, &xfs_iomap_ops);
355 if (error)
356 return error;
357 } else
358 spin_unlock(&ip->i_flags_lock);
359
360 /*
361 * Updating the timestamps will grab the ilock again from
362 * xfs_fs_dirty_inode, so we have to call it after dropping the
363 * lock above. Eventually we should look into a way to avoid
364 * the pointless lock roundtrip.
365 */
David Brazdil0f672f62019-12-10 10:32:29 +0000366 return file_modified(file);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000367}
368
369static int
370xfs_dio_write_end_io(
371 struct kiocb *iocb,
372 ssize_t size,
David Brazdil0f672f62019-12-10 10:32:29 +0000373 int error,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000374 unsigned flags)
375{
376 struct inode *inode = file_inode(iocb->ki_filp);
377 struct xfs_inode *ip = XFS_I(inode);
378 loff_t offset = iocb->ki_pos;
David Brazdil0f672f62019-12-10 10:32:29 +0000379 unsigned int nofs_flag;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000380
381 trace_xfs_end_io_direct_write(ip, offset, size);
382
383 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
384 return -EIO;
385
David Brazdil0f672f62019-12-10 10:32:29 +0000386 if (error)
387 return error;
388 if (!size)
389 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000390
391 /*
392 * Capture amount written on completion as we can't reliably account
393 * for it on submission.
394 */
395 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
396
David Brazdil0f672f62019-12-10 10:32:29 +0000397 /*
398 * We can allocate memory here while doing writeback on behalf of
399 * memory reclaim. To avoid memory allocation deadlocks set the
400 * task-wide nofs context for the following operations.
401 */
402 nofs_flag = memalloc_nofs_save();
403
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000404 if (flags & IOMAP_DIO_COW) {
405 error = xfs_reflink_end_cow(ip, offset, size);
406 if (error)
David Brazdil0f672f62019-12-10 10:32:29 +0000407 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000408 }
409
410 /*
411 * Unwritten conversion updates the in-core isize after extent
412 * conversion but before updating the on-disk size. Updating isize any
413 * earlier allows a racing dio read to find unwritten extents before
414 * they are converted.
415 */
David Brazdil0f672f62019-12-10 10:32:29 +0000416 if (flags & IOMAP_DIO_UNWRITTEN) {
417 error = xfs_iomap_write_unwritten(ip, offset, size, true);
418 goto out;
419 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000420
421 /*
422 * We need to update the in-core inode size here so that we don't end up
423 * with the on-disk inode size being outside the in-core inode size. We
424 * have no other method of updating EOF for AIO, so always do it here
425 * if necessary.
426 *
427 * We need to lock the test/set EOF update as we can be racing with
428 * other IO completions here to update the EOF. Failing to serialise
429 * here can result in EOF moving backwards and Bad Things Happen when
430 * that occurs.
431 */
432 spin_lock(&ip->i_flags_lock);
433 if (offset + size > i_size_read(inode)) {
434 i_size_write(inode, offset + size);
435 spin_unlock(&ip->i_flags_lock);
436 error = xfs_setfilesize(ip, offset, size);
437 } else {
438 spin_unlock(&ip->i_flags_lock);
439 }
440
David Brazdil0f672f62019-12-10 10:32:29 +0000441out:
442 memalloc_nofs_restore(nofs_flag);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000443 return error;
444}
445
David Brazdil0f672f62019-12-10 10:32:29 +0000446static const struct iomap_dio_ops xfs_dio_write_ops = {
447 .end_io = xfs_dio_write_end_io,
448};
449
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000450/*
451 * xfs_file_dio_aio_write - handle direct IO writes
452 *
453 * Lock the inode appropriately to prepare for and issue a direct IO write.
454 * By separating it from the buffered write path we remove all the tricky to
455 * follow locking changes and looping.
456 *
457 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
458 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
459 * pages are flushed out.
460 *
461 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
462 * allowing them to be done in parallel with reads and other direct IO writes.
463 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
464 * needs to do sub-block zeroing and that requires serialisation against other
465 * direct IOs to the same block. In this case we need to serialise the
466 * submission of the unaligned IOs so that we don't get racing block zeroing in
467 * the dio layer. To avoid the problem with aio, we also need to wait for
468 * outstanding IOs to complete so that unwritten extent conversion is completed
469 * before we try to map the overlapping block. This is currently implemented by
470 * hitting it with a big hammer (i.e. inode_dio_wait()).
471 *
472 * Returns with locks held indicated by @iolock and errors indicated by
473 * negative return values.
474 */
475STATIC ssize_t
476xfs_file_dio_aio_write(
477 struct kiocb *iocb,
478 struct iov_iter *from)
479{
480 struct file *file = iocb->ki_filp;
481 struct address_space *mapping = file->f_mapping;
482 struct inode *inode = mapping->host;
483 struct xfs_inode *ip = XFS_I(inode);
484 struct xfs_mount *mp = ip->i_mount;
485 ssize_t ret = 0;
486 int unaligned_io = 0;
487 int iolock;
488 size_t count = iov_iter_count(from);
489 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
490 mp->m_rtdev_targp : mp->m_ddev_targp;
491
492 /* DIO must be aligned to device logical sector size */
493 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
494 return -EINVAL;
495
496 /*
497 * Don't take the exclusive iolock here unless the I/O is unaligned to
498 * the file system block size. We don't need to consider the EOF
499 * extension case here because xfs_file_aio_write_checks() will relock
500 * the inode as necessary for EOF zeroing cases and fill out the new
501 * inode size as appropriate.
502 */
503 if ((iocb->ki_pos & mp->m_blockmask) ||
504 ((iocb->ki_pos + count) & mp->m_blockmask)) {
505 unaligned_io = 1;
506
507 /*
508 * We can't properly handle unaligned direct I/O to reflink
509 * files yet, as we can't unshare a partial block.
510 */
David Brazdil0f672f62019-12-10 10:32:29 +0000511 if (xfs_is_cow_inode(ip)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000512 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
513 return -EREMCHG;
514 }
515 iolock = XFS_IOLOCK_EXCL;
516 } else {
517 iolock = XFS_IOLOCK_SHARED;
518 }
519
520 if (iocb->ki_flags & IOCB_NOWAIT) {
David Brazdil0f672f62019-12-10 10:32:29 +0000521 /* unaligned dio always waits, bail */
522 if (unaligned_io)
523 return -EAGAIN;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000524 if (!xfs_ilock_nowait(ip, iolock))
525 return -EAGAIN;
526 } else {
527 xfs_ilock(ip, iolock);
528 }
529
530 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
531 if (ret)
532 goto out;
533 count = iov_iter_count(from);
534
535 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000536 * If we are doing unaligned IO, we can't allow any other overlapping IO
537 * in-flight at the same time or we risk data corruption. Wait for all
538 * other IO to drain before we submit. If the IO is aligned, demote the
539 * iolock if we had to take the exclusive lock in
540 * xfs_file_aio_write_checks() for other reasons.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000541 */
542 if (unaligned_io) {
David Brazdil0f672f62019-12-10 10:32:29 +0000543 inode_dio_wait(inode);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000544 } else if (iolock == XFS_IOLOCK_EXCL) {
545 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
546 iolock = XFS_IOLOCK_SHARED;
547 }
548
549 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
David Brazdil0f672f62019-12-10 10:32:29 +0000550 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, &xfs_dio_write_ops);
551
552 /*
553 * If unaligned, this is the only IO in-flight. If it has not yet
554 * completed, wait on it before we release the iolock to prevent
555 * subsequent overlapping IO.
556 */
557 if (ret == -EIOCBQUEUED && unaligned_io)
558 inode_dio_wait(inode);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000559out:
560 xfs_iunlock(ip, iolock);
561
562 /*
563 * No fallback to buffered IO on errors for XFS, direct IO will either
564 * complete fully or fail.
565 */
566 ASSERT(ret < 0 || ret == count);
567 return ret;
568}
569
570static noinline ssize_t
571xfs_file_dax_write(
572 struct kiocb *iocb,
573 struct iov_iter *from)
574{
575 struct inode *inode = iocb->ki_filp->f_mapping->host;
576 struct xfs_inode *ip = XFS_I(inode);
577 int iolock = XFS_IOLOCK_EXCL;
578 ssize_t ret, error = 0;
579 size_t count;
580 loff_t pos;
581
582 if (iocb->ki_flags & IOCB_NOWAIT) {
583 if (!xfs_ilock_nowait(ip, iolock))
584 return -EAGAIN;
585 } else {
586 xfs_ilock(ip, iolock);
587 }
588
589 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
590 if (ret)
591 goto out;
592
593 pos = iocb->ki_pos;
594 count = iov_iter_count(from);
595
596 trace_xfs_file_dax_write(ip, count, pos);
597 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
598 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
599 i_size_write(inode, iocb->ki_pos);
600 error = xfs_setfilesize(ip, pos, ret);
601 }
602out:
603 xfs_iunlock(ip, iolock);
604 if (error)
605 return error;
606
607 if (ret > 0) {
608 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
609
610 /* Handle various SYNC-type writes */
611 ret = generic_write_sync(iocb, ret);
612 }
613 return ret;
614}
615
616STATIC ssize_t
617xfs_file_buffered_aio_write(
618 struct kiocb *iocb,
619 struct iov_iter *from)
620{
621 struct file *file = iocb->ki_filp;
622 struct address_space *mapping = file->f_mapping;
623 struct inode *inode = mapping->host;
624 struct xfs_inode *ip = XFS_I(inode);
625 ssize_t ret;
626 int enospc = 0;
627 int iolock;
628
629 if (iocb->ki_flags & IOCB_NOWAIT)
630 return -EOPNOTSUPP;
631
632write_retry:
633 iolock = XFS_IOLOCK_EXCL;
634 xfs_ilock(ip, iolock);
635
636 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
637 if (ret)
638 goto out;
639
640 /* We can write back this queue in page reclaim */
641 current->backing_dev_info = inode_to_bdi(inode);
642
643 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
644 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
645 if (likely(ret >= 0))
646 iocb->ki_pos += ret;
647
648 /*
649 * If we hit a space limit, try to free up some lingering preallocated
650 * space before returning an error. In the case of ENOSPC, first try to
651 * write back all dirty inodes to free up some of the excess reserved
652 * metadata space. This reduces the chances that the eofblocks scan
653 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
654 * also behaves as a filter to prevent too many eofblocks scans from
655 * running at the same time.
656 */
657 if (ret == -EDQUOT && !enospc) {
658 xfs_iunlock(ip, iolock);
659 enospc = xfs_inode_free_quota_eofblocks(ip);
660 if (enospc)
661 goto write_retry;
662 enospc = xfs_inode_free_quota_cowblocks(ip);
663 if (enospc)
664 goto write_retry;
665 iolock = 0;
666 } else if (ret == -ENOSPC && !enospc) {
667 struct xfs_eofblocks eofb = {0};
668
669 enospc = 1;
670 xfs_flush_inodes(ip->i_mount);
671
672 xfs_iunlock(ip, iolock);
673 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
674 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
675 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
676 goto write_retry;
677 }
678
679 current->backing_dev_info = NULL;
680out:
681 if (iolock)
682 xfs_iunlock(ip, iolock);
683
684 if (ret > 0) {
685 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
686 /* Handle various SYNC-type writes */
687 ret = generic_write_sync(iocb, ret);
688 }
689 return ret;
690}
691
692STATIC ssize_t
693xfs_file_write_iter(
694 struct kiocb *iocb,
695 struct iov_iter *from)
696{
697 struct file *file = iocb->ki_filp;
698 struct address_space *mapping = file->f_mapping;
699 struct inode *inode = mapping->host;
700 struct xfs_inode *ip = XFS_I(inode);
701 ssize_t ret;
702 size_t ocount = iov_iter_count(from);
703
704 XFS_STATS_INC(ip->i_mount, xs_write_calls);
705
706 if (ocount == 0)
707 return 0;
708
709 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
710 return -EIO;
711
712 if (IS_DAX(inode))
713 return xfs_file_dax_write(iocb, from);
714
715 if (iocb->ki_flags & IOCB_DIRECT) {
716 /*
717 * Allow a directio write to fall back to a buffered
718 * write *only* in the case that we're doing a reflink
719 * CoW. In all other directio scenarios we do not
720 * allow an operation to fall back to buffered mode.
721 */
722 ret = xfs_file_dio_aio_write(iocb, from);
723 if (ret != -EREMCHG)
724 return ret;
725 }
726
727 return xfs_file_buffered_aio_write(iocb, from);
728}
729
730static void
731xfs_wait_dax_page(
732 struct inode *inode)
733{
734 struct xfs_inode *ip = XFS_I(inode);
735
736 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
737 schedule();
738 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
739}
740
741static int
742xfs_break_dax_layouts(
743 struct inode *inode,
744 bool *retry)
745{
746 struct page *page;
747
748 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
749
750 page = dax_layout_busy_page(inode->i_mapping);
751 if (!page)
752 return 0;
753
754 *retry = true;
755 return ___wait_var_event(&page->_refcount,
756 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
757 0, 0, xfs_wait_dax_page(inode));
758}
759
760int
761xfs_break_layouts(
762 struct inode *inode,
763 uint *iolock,
764 enum layout_break_reason reason)
765{
766 bool retry;
767 int error;
768
769 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
770
771 do {
772 retry = false;
773 switch (reason) {
774 case BREAK_UNMAP:
775 error = xfs_break_dax_layouts(inode, &retry);
776 if (error || retry)
777 break;
778 /* fall through */
779 case BREAK_WRITE:
780 error = xfs_break_leased_layouts(inode, iolock, &retry);
781 break;
782 default:
783 WARN_ON_ONCE(1);
784 error = -EINVAL;
785 }
786 } while (error == 0 && retry);
787
788 return error;
789}
790
791#define XFS_FALLOC_FL_SUPPORTED \
792 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
793 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
794 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
795
796STATIC long
797xfs_file_fallocate(
798 struct file *file,
799 int mode,
800 loff_t offset,
801 loff_t len)
802{
803 struct inode *inode = file_inode(file);
804 struct xfs_inode *ip = XFS_I(inode);
805 long error;
806 enum xfs_prealloc_flags flags = 0;
807 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
808 loff_t new_size = 0;
809 bool do_file_insert = false;
810
811 if (!S_ISREG(inode->i_mode))
812 return -EINVAL;
813 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
814 return -EOPNOTSUPP;
815
816 xfs_ilock(ip, iolock);
817 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
818 if (error)
819 goto out_unlock;
820
Olivier Deprez0e641232021-09-23 10:07:05 +0200821 /*
822 * Must wait for all AIO to complete before we continue as AIO can
823 * change the file size on completion without holding any locks we
824 * currently hold. We must do this first because AIO can update both
825 * the on disk and in memory inode sizes, and the operations that follow
826 * require the in-memory size to be fully up-to-date.
827 */
828 inode_dio_wait(inode);
829
830 /*
831 * Now AIO and DIO has drained we flush and (if necessary) invalidate
832 * the cached range over the first operation we are about to run.
833 *
834 * We care about zero and collapse here because they both run a hole
835 * punch over the range first. Because that can zero data, and the range
836 * of invalidation for the shift operations is much larger, we still do
837 * the required flush for collapse in xfs_prepare_shift().
838 *
839 * Insert has the same range requirements as collapse, and we extend the
840 * file first which can zero data. Hence insert has the same
841 * flush/invalidate requirements as collapse and so they are both
842 * handled at the right time by xfs_prepare_shift().
843 */
844 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
845 FALLOC_FL_COLLAPSE_RANGE)) {
846 error = xfs_flush_unmap_range(ip, offset, len);
847 if (error)
848 goto out_unlock;
849 }
850
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000851 if (mode & FALLOC_FL_PUNCH_HOLE) {
852 error = xfs_free_file_space(ip, offset, len);
853 if (error)
854 goto out_unlock;
855 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
856 unsigned int blksize_mask = i_blocksize(inode) - 1;
857
858 if (offset & blksize_mask || len & blksize_mask) {
859 error = -EINVAL;
860 goto out_unlock;
861 }
862
863 /*
864 * There is no need to overlap collapse range with EOF,
865 * in which case it is effectively a truncate operation
866 */
867 if (offset + len >= i_size_read(inode)) {
868 error = -EINVAL;
869 goto out_unlock;
870 }
871
872 new_size = i_size_read(inode) - len;
873
874 error = xfs_collapse_file_space(ip, offset, len);
875 if (error)
876 goto out_unlock;
877 } else if (mode & FALLOC_FL_INSERT_RANGE) {
878 unsigned int blksize_mask = i_blocksize(inode) - 1;
879 loff_t isize = i_size_read(inode);
880
881 if (offset & blksize_mask || len & blksize_mask) {
882 error = -EINVAL;
883 goto out_unlock;
884 }
885
886 /*
887 * New inode size must not exceed ->s_maxbytes, accounting for
888 * possible signed overflow.
889 */
890 if (inode->i_sb->s_maxbytes - isize < len) {
891 error = -EFBIG;
892 goto out_unlock;
893 }
894 new_size = isize + len;
895
896 /* Offset should be less than i_size */
897 if (offset >= isize) {
898 error = -EINVAL;
899 goto out_unlock;
900 }
901 do_file_insert = true;
902 } else {
903 flags |= XFS_PREALLOC_SET;
904
905 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
906 offset + len > i_size_read(inode)) {
907 new_size = offset + len;
908 error = inode_newsize_ok(inode, new_size);
909 if (error)
910 goto out_unlock;
911 }
912
David Brazdil0f672f62019-12-10 10:32:29 +0000913 if (mode & FALLOC_FL_ZERO_RANGE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000914 error = xfs_zero_file_space(ip, offset, len);
David Brazdil0f672f62019-12-10 10:32:29 +0000915 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
916 error = xfs_reflink_unshare(ip, offset, len);
917 if (error)
918 goto out_unlock;
919
920 if (!xfs_is_always_cow_inode(ip)) {
921 error = xfs_alloc_file_space(ip, offset, len,
922 XFS_BMAPI_PREALLOC);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000923 }
David Brazdil0f672f62019-12-10 10:32:29 +0000924 } else {
925 /*
926 * If always_cow mode we can't use preallocations and
927 * thus should not create them.
928 */
929 if (xfs_is_always_cow_inode(ip)) {
930 error = -EOPNOTSUPP;
931 goto out_unlock;
932 }
933
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000934 error = xfs_alloc_file_space(ip, offset, len,
935 XFS_BMAPI_PREALLOC);
936 }
937 if (error)
938 goto out_unlock;
939 }
940
941 if (file->f_flags & O_DSYNC)
942 flags |= XFS_PREALLOC_SYNC;
943
944 error = xfs_update_prealloc_flags(ip, flags);
945 if (error)
946 goto out_unlock;
947
948 /* Change file size if needed */
949 if (new_size) {
950 struct iattr iattr;
951
952 iattr.ia_valid = ATTR_SIZE;
953 iattr.ia_size = new_size;
954 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
955 if (error)
956 goto out_unlock;
957 }
958
959 /*
960 * Perform hole insertion now that the file size has been
961 * updated so that if we crash during the operation we don't
962 * leave shifted extents past EOF and hence losing access to
963 * the data that is contained within them.
964 */
965 if (do_file_insert)
966 error = xfs_insert_file_space(ip, offset, len);
967
968out_unlock:
969 xfs_iunlock(ip, iolock);
970 return error;
971}
972
973STATIC int
David Brazdil0f672f62019-12-10 10:32:29 +0000974xfs_file_fadvise(
975 struct file *file,
976 loff_t start,
977 loff_t end,
978 int advice)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000979{
David Brazdil0f672f62019-12-10 10:32:29 +0000980 struct xfs_inode *ip = XFS_I(file_inode(file));
981 int ret;
982 int lockflags = 0;
983
984 /*
985 * Operations creating pages in page cache need protection from hole
986 * punching and similar ops
987 */
988 if (advice == POSIX_FADV_WILLNEED) {
989 lockflags = XFS_IOLOCK_SHARED;
990 xfs_ilock(ip, lockflags);
991 }
992 ret = generic_fadvise(file, start, end, advice);
993 if (lockflags)
994 xfs_iunlock(ip, lockflags);
995 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000996}
997
David Brazdil0f672f62019-12-10 10:32:29 +0000998STATIC loff_t
999xfs_file_remap_range(
1000 struct file *file_in,
1001 loff_t pos_in,
1002 struct file *file_out,
1003 loff_t pos_out,
1004 loff_t len,
1005 unsigned int remap_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001006{
David Brazdil0f672f62019-12-10 10:32:29 +00001007 struct inode *inode_in = file_inode(file_in);
1008 struct xfs_inode *src = XFS_I(inode_in);
1009 struct inode *inode_out = file_inode(file_out);
1010 struct xfs_inode *dest = XFS_I(inode_out);
1011 struct xfs_mount *mp = src->i_mount;
1012 loff_t remapped = 0;
1013 xfs_extlen_t cowextsize;
1014 int ret;
1015
1016 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1017 return -EINVAL;
1018
1019 if (!xfs_sb_version_hasreflink(&mp->m_sb))
1020 return -EOPNOTSUPP;
1021
1022 if (XFS_FORCED_SHUTDOWN(mp))
1023 return -EIO;
1024
1025 /* Prepare and then clone file data. */
1026 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1027 &len, remap_flags);
1028 if (ret < 0 || len == 0)
1029 return ret;
1030
1031 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1032
1033 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1034 &remapped);
1035 if (ret)
1036 goto out_unlock;
1037
1038 /*
1039 * Carry the cowextsize hint from src to dest if we're sharing the
1040 * entire source file to the entire destination file, the source file
1041 * has a cowextsize hint, and the destination file does not.
1042 */
1043 cowextsize = 0;
1044 if (pos_in == 0 && len == i_size_read(inode_in) &&
1045 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1046 pos_out == 0 && len >= i_size_read(inode_out) &&
1047 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1048 cowextsize = src->i_d.di_cowextsize;
1049
1050 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1051 remap_flags);
1052
1053out_unlock:
1054 xfs_reflink_remap_unlock(file_in, file_out);
1055 if (ret)
1056 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1057 return remapped > 0 ? remapped : ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001058}
1059
1060STATIC int
1061xfs_file_open(
1062 struct inode *inode,
1063 struct file *file)
1064{
1065 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1066 return -EFBIG;
1067 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1068 return -EIO;
1069 file->f_mode |= FMODE_NOWAIT;
1070 return 0;
1071}
1072
1073STATIC int
1074xfs_dir_open(
1075 struct inode *inode,
1076 struct file *file)
1077{
1078 struct xfs_inode *ip = XFS_I(inode);
1079 int mode;
1080 int error;
1081
1082 error = xfs_file_open(inode, file);
1083 if (error)
1084 return error;
1085
1086 /*
1087 * If there are any blocks, read-ahead block 0 as we're almost
1088 * certain to have the next operation be a read there.
1089 */
1090 mode = xfs_ilock_data_map_shared(ip);
1091 if (ip->i_d.di_nextents > 0)
1092 error = xfs_dir3_data_readahead(ip, 0, -1);
1093 xfs_iunlock(ip, mode);
1094 return error;
1095}
1096
1097STATIC int
1098xfs_file_release(
1099 struct inode *inode,
1100 struct file *filp)
1101{
1102 return xfs_release(XFS_I(inode));
1103}
1104
1105STATIC int
1106xfs_file_readdir(
1107 struct file *file,
1108 struct dir_context *ctx)
1109{
1110 struct inode *inode = file_inode(file);
1111 xfs_inode_t *ip = XFS_I(inode);
1112 size_t bufsize;
1113
1114 /*
1115 * The Linux API doesn't pass down the total size of the buffer
1116 * we read into down to the filesystem. With the filldir concept
1117 * it's not needed for correct information, but the XFS dir2 leaf
1118 * code wants an estimate of the buffer size to calculate it's
1119 * readahead window and size the buffers used for mapping to
1120 * physical blocks.
1121 *
1122 * Try to give it an estimate that's good enough, maybe at some
1123 * point we can change the ->readdir prototype to include the
1124 * buffer size. For now we use the current glibc buffer size.
1125 */
1126 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1127
1128 return xfs_readdir(NULL, ip, ctx, bufsize);
1129}
1130
1131STATIC loff_t
1132xfs_file_llseek(
1133 struct file *file,
1134 loff_t offset,
1135 int whence)
1136{
1137 struct inode *inode = file->f_mapping->host;
1138
1139 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1140 return -EIO;
1141
1142 switch (whence) {
1143 default:
1144 return generic_file_llseek(file, offset, whence);
1145 case SEEK_HOLE:
David Brazdil0f672f62019-12-10 10:32:29 +00001146 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001147 break;
1148 case SEEK_DATA:
David Brazdil0f672f62019-12-10 10:32:29 +00001149 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001150 break;
1151 }
1152
1153 if (offset < 0)
1154 return offset;
1155 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1156}
1157
1158/*
1159 * Locking for serialisation of IO during page faults. This results in a lock
1160 * ordering of:
1161 *
1162 * mmap_sem (MM)
1163 * sb_start_pagefault(vfs, freeze)
1164 * i_mmaplock (XFS - truncate serialisation)
1165 * page_lock (MM)
1166 * i_lock (XFS - extent map serialisation)
1167 */
1168static vm_fault_t
1169__xfs_filemap_fault(
1170 struct vm_fault *vmf,
1171 enum page_entry_size pe_size,
1172 bool write_fault)
1173{
1174 struct inode *inode = file_inode(vmf->vma->vm_file);
1175 struct xfs_inode *ip = XFS_I(inode);
1176 vm_fault_t ret;
1177
1178 trace_xfs_filemap_fault(ip, pe_size, write_fault);
1179
1180 if (write_fault) {
1181 sb_start_pagefault(inode->i_sb);
1182 file_update_time(vmf->vma->vm_file);
1183 }
1184
1185 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1186 if (IS_DAX(inode)) {
1187 pfn_t pfn;
1188
1189 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1190 if (ret & VM_FAULT_NEEDDSYNC)
1191 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1192 } else {
1193 if (write_fault)
1194 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1195 else
1196 ret = filemap_fault(vmf);
1197 }
1198 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1199
1200 if (write_fault)
1201 sb_end_pagefault(inode->i_sb);
1202 return ret;
1203}
1204
Olivier Deprez0e641232021-09-23 10:07:05 +02001205static inline bool
1206xfs_is_write_fault(
1207 struct vm_fault *vmf)
1208{
1209 return (vmf->flags & FAULT_FLAG_WRITE) &&
1210 (vmf->vma->vm_flags & VM_SHARED);
1211}
1212
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001213static vm_fault_t
1214xfs_filemap_fault(
1215 struct vm_fault *vmf)
1216{
1217 /* DAX can shortcut the normal fault path on write faults! */
1218 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1219 IS_DAX(file_inode(vmf->vma->vm_file)) &&
Olivier Deprez0e641232021-09-23 10:07:05 +02001220 xfs_is_write_fault(vmf));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001221}
1222
1223static vm_fault_t
1224xfs_filemap_huge_fault(
1225 struct vm_fault *vmf,
1226 enum page_entry_size pe_size)
1227{
1228 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1229 return VM_FAULT_FALLBACK;
1230
1231 /* DAX can shortcut the normal fault path on write faults! */
1232 return __xfs_filemap_fault(vmf, pe_size,
Olivier Deprez0e641232021-09-23 10:07:05 +02001233 xfs_is_write_fault(vmf));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001234}
1235
1236static vm_fault_t
1237xfs_filemap_page_mkwrite(
1238 struct vm_fault *vmf)
1239{
1240 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1241}
1242
1243/*
1244 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1245 * on write faults. In reality, it needs to serialise against truncate and
1246 * prepare memory for writing so handle is as standard write fault.
1247 */
1248static vm_fault_t
1249xfs_filemap_pfn_mkwrite(
1250 struct vm_fault *vmf)
1251{
1252
1253 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1254}
1255
1256static const struct vm_operations_struct xfs_file_vm_ops = {
1257 .fault = xfs_filemap_fault,
1258 .huge_fault = xfs_filemap_huge_fault,
1259 .map_pages = filemap_map_pages,
1260 .page_mkwrite = xfs_filemap_page_mkwrite,
1261 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1262};
1263
1264STATIC int
1265xfs_file_mmap(
1266 struct file *filp,
1267 struct vm_area_struct *vma)
1268{
David Brazdil0f672f62019-12-10 10:32:29 +00001269 struct dax_device *dax_dev;
1270
1271 dax_dev = xfs_find_daxdev_for_inode(file_inode(filp));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001272 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001273 * We don't support synchronous mappings for non-DAX files and
1274 * for DAX files if underneath dax_device is not synchronous.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001275 */
David Brazdil0f672f62019-12-10 10:32:29 +00001276 if (!daxdev_mapping_supported(vma, dax_dev))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001277 return -EOPNOTSUPP;
1278
1279 file_accessed(filp);
1280 vma->vm_ops = &xfs_file_vm_ops;
1281 if (IS_DAX(file_inode(filp)))
1282 vma->vm_flags |= VM_HUGEPAGE;
1283 return 0;
1284}
1285
1286const struct file_operations xfs_file_operations = {
1287 .llseek = xfs_file_llseek,
1288 .read_iter = xfs_file_read_iter,
1289 .write_iter = xfs_file_write_iter,
1290 .splice_read = generic_file_splice_read,
1291 .splice_write = iter_file_splice_write,
David Brazdil0f672f62019-12-10 10:32:29 +00001292 .iopoll = iomap_dio_iopoll,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001293 .unlocked_ioctl = xfs_file_ioctl,
1294#ifdef CONFIG_COMPAT
1295 .compat_ioctl = xfs_file_compat_ioctl,
1296#endif
1297 .mmap = xfs_file_mmap,
1298 .mmap_supported_flags = MAP_SYNC,
1299 .open = xfs_file_open,
1300 .release = xfs_file_release,
1301 .fsync = xfs_file_fsync,
1302 .get_unmapped_area = thp_get_unmapped_area,
1303 .fallocate = xfs_file_fallocate,
David Brazdil0f672f62019-12-10 10:32:29 +00001304 .fadvise = xfs_file_fadvise,
1305 .remap_file_range = xfs_file_remap_range,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001306};
1307
1308const struct file_operations xfs_dir_file_operations = {
1309 .open = xfs_dir_open,
1310 .read = generic_read_dir,
1311 .iterate_shared = xfs_file_readdir,
1312 .llseek = generic_file_llseek,
1313 .unlocked_ioctl = xfs_file_ioctl,
1314#ifdef CONFIG_COMPAT
1315 .compat_ioctl = xfs_file_compat_ioctl,
1316#endif
1317 .fsync = xfs_dir_fsync,
1318};