Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| 4 | * All Rights Reserved. |
| 5 | */ |
| 6 | #include "xfs.h" |
| 7 | #include "xfs_fs.h" |
| 8 | #include "xfs_shared.h" |
| 9 | #include "xfs_format.h" |
| 10 | #include "xfs_log_format.h" |
| 11 | #include "xfs_trans_resv.h" |
| 12 | #include "xfs_mount.h" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 13 | #include "xfs_inode.h" |
| 14 | #include "xfs_trans.h" |
| 15 | #include "xfs_inode_item.h" |
| 16 | #include "xfs_bmap.h" |
| 17 | #include "xfs_bmap_util.h" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 18 | #include "xfs_dir2.h" |
| 19 | #include "xfs_dir2_priv.h" |
| 20 | #include "xfs_ioctl.h" |
| 21 | #include "xfs_trace.h" |
| 22 | #include "xfs_log.h" |
| 23 | #include "xfs_icache.h" |
| 24 | #include "xfs_pnfs.h" |
| 25 | #include "xfs_iomap.h" |
| 26 | #include "xfs_reflink.h" |
| 27 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 28 | #include <linux/falloc.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 29 | #include <linux/backing-dev.h> |
| 30 | #include <linux/mman.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 31 | #include <linux/fadvise.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 32 | |
| 33 | static const struct vm_operations_struct xfs_file_vm_ops; |
| 34 | |
| 35 | int |
| 36 | xfs_update_prealloc_flags( |
| 37 | struct xfs_inode *ip, |
| 38 | enum xfs_prealloc_flags flags) |
| 39 | { |
| 40 | struct xfs_trans *tp; |
| 41 | int error; |
| 42 | |
| 43 | error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, |
| 44 | 0, 0, 0, &tp); |
| 45 | if (error) |
| 46 | return error; |
| 47 | |
| 48 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 49 | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| 50 | |
| 51 | if (!(flags & XFS_PREALLOC_INVISIBLE)) { |
| 52 | VFS_I(ip)->i_mode &= ~S_ISUID; |
| 53 | if (VFS_I(ip)->i_mode & S_IXGRP) |
| 54 | VFS_I(ip)->i_mode &= ~S_ISGID; |
| 55 | xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 56 | } |
| 57 | |
| 58 | if (flags & XFS_PREALLOC_SET) |
| 59 | ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; |
| 60 | if (flags & XFS_PREALLOC_CLEAR) |
| 61 | ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; |
| 62 | |
| 63 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| 64 | if (flags & XFS_PREALLOC_SYNC) |
| 65 | xfs_trans_set_sync(tp); |
| 66 | return xfs_trans_commit(tp); |
| 67 | } |
| 68 | |
| 69 | /* |
| 70 | * Fsync operations on directories are much simpler than on regular files, |
| 71 | * as there is no file data to flush, and thus also no need for explicit |
| 72 | * cache flush operations, and there are no non-transaction metadata updates |
| 73 | * on directories either. |
| 74 | */ |
| 75 | STATIC int |
| 76 | xfs_dir_fsync( |
| 77 | struct file *file, |
| 78 | loff_t start, |
| 79 | loff_t end, |
| 80 | int datasync) |
| 81 | { |
| 82 | struct xfs_inode *ip = XFS_I(file->f_mapping->host); |
| 83 | struct xfs_mount *mp = ip->i_mount; |
| 84 | xfs_lsn_t lsn = 0; |
| 85 | |
| 86 | trace_xfs_dir_fsync(ip); |
| 87 | |
| 88 | xfs_ilock(ip, XFS_ILOCK_SHARED); |
| 89 | if (xfs_ipincount(ip)) |
| 90 | lsn = ip->i_itemp->ili_last_lsn; |
| 91 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| 92 | |
| 93 | if (!lsn) |
| 94 | return 0; |
| 95 | return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); |
| 96 | } |
| 97 | |
| 98 | STATIC int |
| 99 | xfs_file_fsync( |
| 100 | struct file *file, |
| 101 | loff_t start, |
| 102 | loff_t end, |
| 103 | int datasync) |
| 104 | { |
| 105 | struct inode *inode = file->f_mapping->host; |
| 106 | struct xfs_inode *ip = XFS_I(inode); |
| 107 | struct xfs_mount *mp = ip->i_mount; |
| 108 | int error = 0; |
| 109 | int log_flushed = 0; |
| 110 | xfs_lsn_t lsn = 0; |
| 111 | |
| 112 | trace_xfs_file_fsync(ip); |
| 113 | |
| 114 | error = file_write_and_wait_range(file, start, end); |
| 115 | if (error) |
| 116 | return error; |
| 117 | |
| 118 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 119 | return -EIO; |
| 120 | |
| 121 | xfs_iflags_clear(ip, XFS_ITRUNCATED); |
| 122 | |
| 123 | /* |
| 124 | * If we have an RT and/or log subvolume we need to make sure to flush |
| 125 | * the write cache the device used for file data first. This is to |
| 126 | * ensure newly written file data make it to disk before logging the new |
| 127 | * inode size in case of an extending write. |
| 128 | */ |
| 129 | if (XFS_IS_REALTIME_INODE(ip)) |
| 130 | xfs_blkdev_issue_flush(mp->m_rtdev_targp); |
| 131 | else if (mp->m_logdev_targp != mp->m_ddev_targp) |
| 132 | xfs_blkdev_issue_flush(mp->m_ddev_targp); |
| 133 | |
| 134 | /* |
| 135 | * All metadata updates are logged, which means that we just have to |
| 136 | * flush the log up to the latest LSN that touched the inode. If we have |
| 137 | * concurrent fsync/fdatasync() calls, we need them to all block on the |
| 138 | * log force before we clear the ili_fsync_fields field. This ensures |
| 139 | * that we don't get a racing sync operation that does not wait for the |
| 140 | * metadata to hit the journal before returning. If we race with |
| 141 | * clearing the ili_fsync_fields, then all that will happen is the log |
| 142 | * force will do nothing as the lsn will already be on disk. We can't |
| 143 | * race with setting ili_fsync_fields because that is done under |
| 144 | * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared |
| 145 | * until after the ili_fsync_fields is cleared. |
| 146 | */ |
| 147 | xfs_ilock(ip, XFS_ILOCK_SHARED); |
| 148 | if (xfs_ipincount(ip)) { |
| 149 | if (!datasync || |
| 150 | (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) |
| 151 | lsn = ip->i_itemp->ili_last_lsn; |
| 152 | } |
| 153 | |
| 154 | if (lsn) { |
| 155 | error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); |
| 156 | ip->i_itemp->ili_fsync_fields = 0; |
| 157 | } |
| 158 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| 159 | |
| 160 | /* |
| 161 | * If we only have a single device, and the log force about was |
| 162 | * a no-op we might have to flush the data device cache here. |
| 163 | * This can only happen for fdatasync/O_DSYNC if we were overwriting |
| 164 | * an already allocated file and thus do not have any metadata to |
| 165 | * commit. |
| 166 | */ |
| 167 | if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && |
| 168 | mp->m_logdev_targp == mp->m_ddev_targp) |
| 169 | xfs_blkdev_issue_flush(mp->m_ddev_targp); |
| 170 | |
| 171 | return error; |
| 172 | } |
| 173 | |
| 174 | STATIC ssize_t |
| 175 | xfs_file_dio_aio_read( |
| 176 | struct kiocb *iocb, |
| 177 | struct iov_iter *to) |
| 178 | { |
| 179 | struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); |
| 180 | size_t count = iov_iter_count(to); |
| 181 | ssize_t ret; |
| 182 | |
| 183 | trace_xfs_file_direct_read(ip, count, iocb->ki_pos); |
| 184 | |
| 185 | if (!count) |
| 186 | return 0; /* skip atime */ |
| 187 | |
| 188 | file_accessed(iocb->ki_filp); |
| 189 | |
| 190 | xfs_ilock(ip, XFS_IOLOCK_SHARED); |
| 191 | ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); |
| 192 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| 193 | |
| 194 | return ret; |
| 195 | } |
| 196 | |
| 197 | static noinline ssize_t |
| 198 | xfs_file_dax_read( |
| 199 | struct kiocb *iocb, |
| 200 | struct iov_iter *to) |
| 201 | { |
| 202 | struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); |
| 203 | size_t count = iov_iter_count(to); |
| 204 | ssize_t ret = 0; |
| 205 | |
| 206 | trace_xfs_file_dax_read(ip, count, iocb->ki_pos); |
| 207 | |
| 208 | if (!count) |
| 209 | return 0; /* skip atime */ |
| 210 | |
| 211 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 212 | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) |
| 213 | return -EAGAIN; |
| 214 | } else { |
| 215 | xfs_ilock(ip, XFS_IOLOCK_SHARED); |
| 216 | } |
| 217 | |
| 218 | ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); |
| 219 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| 220 | |
| 221 | file_accessed(iocb->ki_filp); |
| 222 | return ret; |
| 223 | } |
| 224 | |
| 225 | STATIC ssize_t |
| 226 | xfs_file_buffered_aio_read( |
| 227 | struct kiocb *iocb, |
| 228 | struct iov_iter *to) |
| 229 | { |
| 230 | struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); |
| 231 | ssize_t ret; |
| 232 | |
| 233 | trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); |
| 234 | |
| 235 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 236 | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) |
| 237 | return -EAGAIN; |
| 238 | } else { |
| 239 | xfs_ilock(ip, XFS_IOLOCK_SHARED); |
| 240 | } |
| 241 | ret = generic_file_read_iter(iocb, to); |
| 242 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| 243 | |
| 244 | return ret; |
| 245 | } |
| 246 | |
| 247 | STATIC ssize_t |
| 248 | xfs_file_read_iter( |
| 249 | struct kiocb *iocb, |
| 250 | struct iov_iter *to) |
| 251 | { |
| 252 | struct inode *inode = file_inode(iocb->ki_filp); |
| 253 | struct xfs_mount *mp = XFS_I(inode)->i_mount; |
| 254 | ssize_t ret = 0; |
| 255 | |
| 256 | XFS_STATS_INC(mp, xs_read_calls); |
| 257 | |
| 258 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 259 | return -EIO; |
| 260 | |
| 261 | if (IS_DAX(inode)) |
| 262 | ret = xfs_file_dax_read(iocb, to); |
| 263 | else if (iocb->ki_flags & IOCB_DIRECT) |
| 264 | ret = xfs_file_dio_aio_read(iocb, to); |
| 265 | else |
| 266 | ret = xfs_file_buffered_aio_read(iocb, to); |
| 267 | |
| 268 | if (ret > 0) |
| 269 | XFS_STATS_ADD(mp, xs_read_bytes, ret); |
| 270 | return ret; |
| 271 | } |
| 272 | |
| 273 | /* |
| 274 | * Common pre-write limit and setup checks. |
| 275 | * |
| 276 | * Called with the iolocked held either shared and exclusive according to |
| 277 | * @iolock, and returns with it held. Might upgrade the iolock to exclusive |
| 278 | * if called for a direct write beyond i_size. |
| 279 | */ |
| 280 | STATIC ssize_t |
| 281 | xfs_file_aio_write_checks( |
| 282 | struct kiocb *iocb, |
| 283 | struct iov_iter *from, |
| 284 | int *iolock) |
| 285 | { |
| 286 | struct file *file = iocb->ki_filp; |
| 287 | struct inode *inode = file->f_mapping->host; |
| 288 | struct xfs_inode *ip = XFS_I(inode); |
| 289 | ssize_t error = 0; |
| 290 | size_t count = iov_iter_count(from); |
| 291 | bool drained_dio = false; |
| 292 | loff_t isize; |
| 293 | |
| 294 | restart: |
| 295 | error = generic_write_checks(iocb, from); |
| 296 | if (error <= 0) |
| 297 | return error; |
| 298 | |
| 299 | error = xfs_break_layouts(inode, iolock, BREAK_WRITE); |
| 300 | if (error) |
| 301 | return error; |
| 302 | |
| 303 | /* |
| 304 | * For changing security info in file_remove_privs() we need i_rwsem |
| 305 | * exclusively. |
| 306 | */ |
| 307 | if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { |
| 308 | xfs_iunlock(ip, *iolock); |
| 309 | *iolock = XFS_IOLOCK_EXCL; |
| 310 | xfs_ilock(ip, *iolock); |
| 311 | goto restart; |
| 312 | } |
| 313 | /* |
| 314 | * If the offset is beyond the size of the file, we need to zero any |
| 315 | * blocks that fall between the existing EOF and the start of this |
| 316 | * write. If zeroing is needed and we are currently holding the |
| 317 | * iolock shared, we need to update it to exclusive which implies |
| 318 | * having to redo all checks before. |
| 319 | * |
| 320 | * We need to serialise against EOF updates that occur in IO |
| 321 | * completions here. We want to make sure that nobody is changing the |
| 322 | * size while we do this check until we have placed an IO barrier (i.e. |
| 323 | * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. |
| 324 | * The spinlock effectively forms a memory barrier once we have the |
| 325 | * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value |
| 326 | * and hence be able to correctly determine if we need to run zeroing. |
| 327 | */ |
| 328 | spin_lock(&ip->i_flags_lock); |
| 329 | isize = i_size_read(inode); |
| 330 | if (iocb->ki_pos > isize) { |
| 331 | spin_unlock(&ip->i_flags_lock); |
| 332 | if (!drained_dio) { |
| 333 | if (*iolock == XFS_IOLOCK_SHARED) { |
| 334 | xfs_iunlock(ip, *iolock); |
| 335 | *iolock = XFS_IOLOCK_EXCL; |
| 336 | xfs_ilock(ip, *iolock); |
| 337 | iov_iter_reexpand(from, count); |
| 338 | } |
| 339 | /* |
| 340 | * We now have an IO submission barrier in place, but |
| 341 | * AIO can do EOF updates during IO completion and hence |
| 342 | * we now need to wait for all of them to drain. Non-AIO |
| 343 | * DIO will have drained before we are given the |
| 344 | * XFS_IOLOCK_EXCL, and so for most cases this wait is a |
| 345 | * no-op. |
| 346 | */ |
| 347 | inode_dio_wait(inode); |
| 348 | drained_dio = true; |
| 349 | goto restart; |
| 350 | } |
| 351 | |
| 352 | trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); |
| 353 | error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, |
| 354 | NULL, &xfs_iomap_ops); |
| 355 | if (error) |
| 356 | return error; |
| 357 | } else |
| 358 | spin_unlock(&ip->i_flags_lock); |
| 359 | |
| 360 | /* |
| 361 | * Updating the timestamps will grab the ilock again from |
| 362 | * xfs_fs_dirty_inode, so we have to call it after dropping the |
| 363 | * lock above. Eventually we should look into a way to avoid |
| 364 | * the pointless lock roundtrip. |
| 365 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 366 | return file_modified(file); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 367 | } |
| 368 | |
| 369 | static int |
| 370 | xfs_dio_write_end_io( |
| 371 | struct kiocb *iocb, |
| 372 | ssize_t size, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 373 | int error, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 374 | unsigned flags) |
| 375 | { |
| 376 | struct inode *inode = file_inode(iocb->ki_filp); |
| 377 | struct xfs_inode *ip = XFS_I(inode); |
| 378 | loff_t offset = iocb->ki_pos; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 379 | unsigned int nofs_flag; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 380 | |
| 381 | trace_xfs_end_io_direct_write(ip, offset, size); |
| 382 | |
| 383 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) |
| 384 | return -EIO; |
| 385 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 386 | if (error) |
| 387 | return error; |
| 388 | if (!size) |
| 389 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 390 | |
| 391 | /* |
| 392 | * Capture amount written on completion as we can't reliably account |
| 393 | * for it on submission. |
| 394 | */ |
| 395 | XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); |
| 396 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 397 | /* |
| 398 | * We can allocate memory here while doing writeback on behalf of |
| 399 | * memory reclaim. To avoid memory allocation deadlocks set the |
| 400 | * task-wide nofs context for the following operations. |
| 401 | */ |
| 402 | nofs_flag = memalloc_nofs_save(); |
| 403 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 404 | if (flags & IOMAP_DIO_COW) { |
| 405 | error = xfs_reflink_end_cow(ip, offset, size); |
| 406 | if (error) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 407 | goto out; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 408 | } |
| 409 | |
| 410 | /* |
| 411 | * Unwritten conversion updates the in-core isize after extent |
| 412 | * conversion but before updating the on-disk size. Updating isize any |
| 413 | * earlier allows a racing dio read to find unwritten extents before |
| 414 | * they are converted. |
| 415 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 416 | if (flags & IOMAP_DIO_UNWRITTEN) { |
| 417 | error = xfs_iomap_write_unwritten(ip, offset, size, true); |
| 418 | goto out; |
| 419 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 420 | |
| 421 | /* |
| 422 | * We need to update the in-core inode size here so that we don't end up |
| 423 | * with the on-disk inode size being outside the in-core inode size. We |
| 424 | * have no other method of updating EOF for AIO, so always do it here |
| 425 | * if necessary. |
| 426 | * |
| 427 | * We need to lock the test/set EOF update as we can be racing with |
| 428 | * other IO completions here to update the EOF. Failing to serialise |
| 429 | * here can result in EOF moving backwards and Bad Things Happen when |
| 430 | * that occurs. |
| 431 | */ |
| 432 | spin_lock(&ip->i_flags_lock); |
| 433 | if (offset + size > i_size_read(inode)) { |
| 434 | i_size_write(inode, offset + size); |
| 435 | spin_unlock(&ip->i_flags_lock); |
| 436 | error = xfs_setfilesize(ip, offset, size); |
| 437 | } else { |
| 438 | spin_unlock(&ip->i_flags_lock); |
| 439 | } |
| 440 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 441 | out: |
| 442 | memalloc_nofs_restore(nofs_flag); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 443 | return error; |
| 444 | } |
| 445 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 446 | static const struct iomap_dio_ops xfs_dio_write_ops = { |
| 447 | .end_io = xfs_dio_write_end_io, |
| 448 | }; |
| 449 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 450 | /* |
| 451 | * xfs_file_dio_aio_write - handle direct IO writes |
| 452 | * |
| 453 | * Lock the inode appropriately to prepare for and issue a direct IO write. |
| 454 | * By separating it from the buffered write path we remove all the tricky to |
| 455 | * follow locking changes and looping. |
| 456 | * |
| 457 | * If there are cached pages or we're extending the file, we need IOLOCK_EXCL |
| 458 | * until we're sure the bytes at the new EOF have been zeroed and/or the cached |
| 459 | * pages are flushed out. |
| 460 | * |
| 461 | * In most cases the direct IO writes will be done holding IOLOCK_SHARED |
| 462 | * allowing them to be done in parallel with reads and other direct IO writes. |
| 463 | * However, if the IO is not aligned to filesystem blocks, the direct IO layer |
| 464 | * needs to do sub-block zeroing and that requires serialisation against other |
| 465 | * direct IOs to the same block. In this case we need to serialise the |
| 466 | * submission of the unaligned IOs so that we don't get racing block zeroing in |
| 467 | * the dio layer. To avoid the problem with aio, we also need to wait for |
| 468 | * outstanding IOs to complete so that unwritten extent conversion is completed |
| 469 | * before we try to map the overlapping block. This is currently implemented by |
| 470 | * hitting it with a big hammer (i.e. inode_dio_wait()). |
| 471 | * |
| 472 | * Returns with locks held indicated by @iolock and errors indicated by |
| 473 | * negative return values. |
| 474 | */ |
| 475 | STATIC ssize_t |
| 476 | xfs_file_dio_aio_write( |
| 477 | struct kiocb *iocb, |
| 478 | struct iov_iter *from) |
| 479 | { |
| 480 | struct file *file = iocb->ki_filp; |
| 481 | struct address_space *mapping = file->f_mapping; |
| 482 | struct inode *inode = mapping->host; |
| 483 | struct xfs_inode *ip = XFS_I(inode); |
| 484 | struct xfs_mount *mp = ip->i_mount; |
| 485 | ssize_t ret = 0; |
| 486 | int unaligned_io = 0; |
| 487 | int iolock; |
| 488 | size_t count = iov_iter_count(from); |
| 489 | struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? |
| 490 | mp->m_rtdev_targp : mp->m_ddev_targp; |
| 491 | |
| 492 | /* DIO must be aligned to device logical sector size */ |
| 493 | if ((iocb->ki_pos | count) & target->bt_logical_sectormask) |
| 494 | return -EINVAL; |
| 495 | |
| 496 | /* |
| 497 | * Don't take the exclusive iolock here unless the I/O is unaligned to |
| 498 | * the file system block size. We don't need to consider the EOF |
| 499 | * extension case here because xfs_file_aio_write_checks() will relock |
| 500 | * the inode as necessary for EOF zeroing cases and fill out the new |
| 501 | * inode size as appropriate. |
| 502 | */ |
| 503 | if ((iocb->ki_pos & mp->m_blockmask) || |
| 504 | ((iocb->ki_pos + count) & mp->m_blockmask)) { |
| 505 | unaligned_io = 1; |
| 506 | |
| 507 | /* |
| 508 | * We can't properly handle unaligned direct I/O to reflink |
| 509 | * files yet, as we can't unshare a partial block. |
| 510 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 511 | if (xfs_is_cow_inode(ip)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 512 | trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); |
| 513 | return -EREMCHG; |
| 514 | } |
| 515 | iolock = XFS_IOLOCK_EXCL; |
| 516 | } else { |
| 517 | iolock = XFS_IOLOCK_SHARED; |
| 518 | } |
| 519 | |
| 520 | if (iocb->ki_flags & IOCB_NOWAIT) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 521 | /* unaligned dio always waits, bail */ |
| 522 | if (unaligned_io) |
| 523 | return -EAGAIN; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 524 | if (!xfs_ilock_nowait(ip, iolock)) |
| 525 | return -EAGAIN; |
| 526 | } else { |
| 527 | xfs_ilock(ip, iolock); |
| 528 | } |
| 529 | |
| 530 | ret = xfs_file_aio_write_checks(iocb, from, &iolock); |
| 531 | if (ret) |
| 532 | goto out; |
| 533 | count = iov_iter_count(from); |
| 534 | |
| 535 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 536 | * If we are doing unaligned IO, we can't allow any other overlapping IO |
| 537 | * in-flight at the same time or we risk data corruption. Wait for all |
| 538 | * other IO to drain before we submit. If the IO is aligned, demote the |
| 539 | * iolock if we had to take the exclusive lock in |
| 540 | * xfs_file_aio_write_checks() for other reasons. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 541 | */ |
| 542 | if (unaligned_io) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 543 | inode_dio_wait(inode); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 544 | } else if (iolock == XFS_IOLOCK_EXCL) { |
| 545 | xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); |
| 546 | iolock = XFS_IOLOCK_SHARED; |
| 547 | } |
| 548 | |
| 549 | trace_xfs_file_direct_write(ip, count, iocb->ki_pos); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 550 | ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, &xfs_dio_write_ops); |
| 551 | |
| 552 | /* |
| 553 | * If unaligned, this is the only IO in-flight. If it has not yet |
| 554 | * completed, wait on it before we release the iolock to prevent |
| 555 | * subsequent overlapping IO. |
| 556 | */ |
| 557 | if (ret == -EIOCBQUEUED && unaligned_io) |
| 558 | inode_dio_wait(inode); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 559 | out: |
| 560 | xfs_iunlock(ip, iolock); |
| 561 | |
| 562 | /* |
| 563 | * No fallback to buffered IO on errors for XFS, direct IO will either |
| 564 | * complete fully or fail. |
| 565 | */ |
| 566 | ASSERT(ret < 0 || ret == count); |
| 567 | return ret; |
| 568 | } |
| 569 | |
| 570 | static noinline ssize_t |
| 571 | xfs_file_dax_write( |
| 572 | struct kiocb *iocb, |
| 573 | struct iov_iter *from) |
| 574 | { |
| 575 | struct inode *inode = iocb->ki_filp->f_mapping->host; |
| 576 | struct xfs_inode *ip = XFS_I(inode); |
| 577 | int iolock = XFS_IOLOCK_EXCL; |
| 578 | ssize_t ret, error = 0; |
| 579 | size_t count; |
| 580 | loff_t pos; |
| 581 | |
| 582 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 583 | if (!xfs_ilock_nowait(ip, iolock)) |
| 584 | return -EAGAIN; |
| 585 | } else { |
| 586 | xfs_ilock(ip, iolock); |
| 587 | } |
| 588 | |
| 589 | ret = xfs_file_aio_write_checks(iocb, from, &iolock); |
| 590 | if (ret) |
| 591 | goto out; |
| 592 | |
| 593 | pos = iocb->ki_pos; |
| 594 | count = iov_iter_count(from); |
| 595 | |
| 596 | trace_xfs_file_dax_write(ip, count, pos); |
| 597 | ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); |
| 598 | if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { |
| 599 | i_size_write(inode, iocb->ki_pos); |
| 600 | error = xfs_setfilesize(ip, pos, ret); |
| 601 | } |
| 602 | out: |
| 603 | xfs_iunlock(ip, iolock); |
| 604 | if (error) |
| 605 | return error; |
| 606 | |
| 607 | if (ret > 0) { |
| 608 | XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); |
| 609 | |
| 610 | /* Handle various SYNC-type writes */ |
| 611 | ret = generic_write_sync(iocb, ret); |
| 612 | } |
| 613 | return ret; |
| 614 | } |
| 615 | |
| 616 | STATIC ssize_t |
| 617 | xfs_file_buffered_aio_write( |
| 618 | struct kiocb *iocb, |
| 619 | struct iov_iter *from) |
| 620 | { |
| 621 | struct file *file = iocb->ki_filp; |
| 622 | struct address_space *mapping = file->f_mapping; |
| 623 | struct inode *inode = mapping->host; |
| 624 | struct xfs_inode *ip = XFS_I(inode); |
| 625 | ssize_t ret; |
| 626 | int enospc = 0; |
| 627 | int iolock; |
| 628 | |
| 629 | if (iocb->ki_flags & IOCB_NOWAIT) |
| 630 | return -EOPNOTSUPP; |
| 631 | |
| 632 | write_retry: |
| 633 | iolock = XFS_IOLOCK_EXCL; |
| 634 | xfs_ilock(ip, iolock); |
| 635 | |
| 636 | ret = xfs_file_aio_write_checks(iocb, from, &iolock); |
| 637 | if (ret) |
| 638 | goto out; |
| 639 | |
| 640 | /* We can write back this queue in page reclaim */ |
| 641 | current->backing_dev_info = inode_to_bdi(inode); |
| 642 | |
| 643 | trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); |
| 644 | ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); |
| 645 | if (likely(ret >= 0)) |
| 646 | iocb->ki_pos += ret; |
| 647 | |
| 648 | /* |
| 649 | * If we hit a space limit, try to free up some lingering preallocated |
| 650 | * space before returning an error. In the case of ENOSPC, first try to |
| 651 | * write back all dirty inodes to free up some of the excess reserved |
| 652 | * metadata space. This reduces the chances that the eofblocks scan |
| 653 | * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this |
| 654 | * also behaves as a filter to prevent too many eofblocks scans from |
| 655 | * running at the same time. |
| 656 | */ |
| 657 | if (ret == -EDQUOT && !enospc) { |
| 658 | xfs_iunlock(ip, iolock); |
| 659 | enospc = xfs_inode_free_quota_eofblocks(ip); |
| 660 | if (enospc) |
| 661 | goto write_retry; |
| 662 | enospc = xfs_inode_free_quota_cowblocks(ip); |
| 663 | if (enospc) |
| 664 | goto write_retry; |
| 665 | iolock = 0; |
| 666 | } else if (ret == -ENOSPC && !enospc) { |
| 667 | struct xfs_eofblocks eofb = {0}; |
| 668 | |
| 669 | enospc = 1; |
| 670 | xfs_flush_inodes(ip->i_mount); |
| 671 | |
| 672 | xfs_iunlock(ip, iolock); |
| 673 | eofb.eof_flags = XFS_EOF_FLAGS_SYNC; |
| 674 | xfs_icache_free_eofblocks(ip->i_mount, &eofb); |
| 675 | xfs_icache_free_cowblocks(ip->i_mount, &eofb); |
| 676 | goto write_retry; |
| 677 | } |
| 678 | |
| 679 | current->backing_dev_info = NULL; |
| 680 | out: |
| 681 | if (iolock) |
| 682 | xfs_iunlock(ip, iolock); |
| 683 | |
| 684 | if (ret > 0) { |
| 685 | XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); |
| 686 | /* Handle various SYNC-type writes */ |
| 687 | ret = generic_write_sync(iocb, ret); |
| 688 | } |
| 689 | return ret; |
| 690 | } |
| 691 | |
| 692 | STATIC ssize_t |
| 693 | xfs_file_write_iter( |
| 694 | struct kiocb *iocb, |
| 695 | struct iov_iter *from) |
| 696 | { |
| 697 | struct file *file = iocb->ki_filp; |
| 698 | struct address_space *mapping = file->f_mapping; |
| 699 | struct inode *inode = mapping->host; |
| 700 | struct xfs_inode *ip = XFS_I(inode); |
| 701 | ssize_t ret; |
| 702 | size_t ocount = iov_iter_count(from); |
| 703 | |
| 704 | XFS_STATS_INC(ip->i_mount, xs_write_calls); |
| 705 | |
| 706 | if (ocount == 0) |
| 707 | return 0; |
| 708 | |
| 709 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) |
| 710 | return -EIO; |
| 711 | |
| 712 | if (IS_DAX(inode)) |
| 713 | return xfs_file_dax_write(iocb, from); |
| 714 | |
| 715 | if (iocb->ki_flags & IOCB_DIRECT) { |
| 716 | /* |
| 717 | * Allow a directio write to fall back to a buffered |
| 718 | * write *only* in the case that we're doing a reflink |
| 719 | * CoW. In all other directio scenarios we do not |
| 720 | * allow an operation to fall back to buffered mode. |
| 721 | */ |
| 722 | ret = xfs_file_dio_aio_write(iocb, from); |
| 723 | if (ret != -EREMCHG) |
| 724 | return ret; |
| 725 | } |
| 726 | |
| 727 | return xfs_file_buffered_aio_write(iocb, from); |
| 728 | } |
| 729 | |
| 730 | static void |
| 731 | xfs_wait_dax_page( |
| 732 | struct inode *inode) |
| 733 | { |
| 734 | struct xfs_inode *ip = XFS_I(inode); |
| 735 | |
| 736 | xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); |
| 737 | schedule(); |
| 738 | xfs_ilock(ip, XFS_MMAPLOCK_EXCL); |
| 739 | } |
| 740 | |
| 741 | static int |
| 742 | xfs_break_dax_layouts( |
| 743 | struct inode *inode, |
| 744 | bool *retry) |
| 745 | { |
| 746 | struct page *page; |
| 747 | |
| 748 | ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); |
| 749 | |
| 750 | page = dax_layout_busy_page(inode->i_mapping); |
| 751 | if (!page) |
| 752 | return 0; |
| 753 | |
| 754 | *retry = true; |
| 755 | return ___wait_var_event(&page->_refcount, |
| 756 | atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, |
| 757 | 0, 0, xfs_wait_dax_page(inode)); |
| 758 | } |
| 759 | |
| 760 | int |
| 761 | xfs_break_layouts( |
| 762 | struct inode *inode, |
| 763 | uint *iolock, |
| 764 | enum layout_break_reason reason) |
| 765 | { |
| 766 | bool retry; |
| 767 | int error; |
| 768 | |
| 769 | ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); |
| 770 | |
| 771 | do { |
| 772 | retry = false; |
| 773 | switch (reason) { |
| 774 | case BREAK_UNMAP: |
| 775 | error = xfs_break_dax_layouts(inode, &retry); |
| 776 | if (error || retry) |
| 777 | break; |
| 778 | /* fall through */ |
| 779 | case BREAK_WRITE: |
| 780 | error = xfs_break_leased_layouts(inode, iolock, &retry); |
| 781 | break; |
| 782 | default: |
| 783 | WARN_ON_ONCE(1); |
| 784 | error = -EINVAL; |
| 785 | } |
| 786 | } while (error == 0 && retry); |
| 787 | |
| 788 | return error; |
| 789 | } |
| 790 | |
| 791 | #define XFS_FALLOC_FL_SUPPORTED \ |
| 792 | (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ |
| 793 | FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ |
| 794 | FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) |
| 795 | |
| 796 | STATIC long |
| 797 | xfs_file_fallocate( |
| 798 | struct file *file, |
| 799 | int mode, |
| 800 | loff_t offset, |
| 801 | loff_t len) |
| 802 | { |
| 803 | struct inode *inode = file_inode(file); |
| 804 | struct xfs_inode *ip = XFS_I(inode); |
| 805 | long error; |
| 806 | enum xfs_prealloc_flags flags = 0; |
| 807 | uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; |
| 808 | loff_t new_size = 0; |
| 809 | bool do_file_insert = false; |
| 810 | |
| 811 | if (!S_ISREG(inode->i_mode)) |
| 812 | return -EINVAL; |
| 813 | if (mode & ~XFS_FALLOC_FL_SUPPORTED) |
| 814 | return -EOPNOTSUPP; |
| 815 | |
| 816 | xfs_ilock(ip, iolock); |
| 817 | error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); |
| 818 | if (error) |
| 819 | goto out_unlock; |
| 820 | |
| 821 | if (mode & FALLOC_FL_PUNCH_HOLE) { |
| 822 | error = xfs_free_file_space(ip, offset, len); |
| 823 | if (error) |
| 824 | goto out_unlock; |
| 825 | } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { |
| 826 | unsigned int blksize_mask = i_blocksize(inode) - 1; |
| 827 | |
| 828 | if (offset & blksize_mask || len & blksize_mask) { |
| 829 | error = -EINVAL; |
| 830 | goto out_unlock; |
| 831 | } |
| 832 | |
| 833 | /* |
| 834 | * There is no need to overlap collapse range with EOF, |
| 835 | * in which case it is effectively a truncate operation |
| 836 | */ |
| 837 | if (offset + len >= i_size_read(inode)) { |
| 838 | error = -EINVAL; |
| 839 | goto out_unlock; |
| 840 | } |
| 841 | |
| 842 | new_size = i_size_read(inode) - len; |
| 843 | |
| 844 | error = xfs_collapse_file_space(ip, offset, len); |
| 845 | if (error) |
| 846 | goto out_unlock; |
| 847 | } else if (mode & FALLOC_FL_INSERT_RANGE) { |
| 848 | unsigned int blksize_mask = i_blocksize(inode) - 1; |
| 849 | loff_t isize = i_size_read(inode); |
| 850 | |
| 851 | if (offset & blksize_mask || len & blksize_mask) { |
| 852 | error = -EINVAL; |
| 853 | goto out_unlock; |
| 854 | } |
| 855 | |
| 856 | /* |
| 857 | * New inode size must not exceed ->s_maxbytes, accounting for |
| 858 | * possible signed overflow. |
| 859 | */ |
| 860 | if (inode->i_sb->s_maxbytes - isize < len) { |
| 861 | error = -EFBIG; |
| 862 | goto out_unlock; |
| 863 | } |
| 864 | new_size = isize + len; |
| 865 | |
| 866 | /* Offset should be less than i_size */ |
| 867 | if (offset >= isize) { |
| 868 | error = -EINVAL; |
| 869 | goto out_unlock; |
| 870 | } |
| 871 | do_file_insert = true; |
| 872 | } else { |
| 873 | flags |= XFS_PREALLOC_SET; |
| 874 | |
| 875 | if (!(mode & FALLOC_FL_KEEP_SIZE) && |
| 876 | offset + len > i_size_read(inode)) { |
| 877 | new_size = offset + len; |
| 878 | error = inode_newsize_ok(inode, new_size); |
| 879 | if (error) |
| 880 | goto out_unlock; |
| 881 | } |
| 882 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 883 | if (mode & FALLOC_FL_ZERO_RANGE) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 884 | error = xfs_zero_file_space(ip, offset, len); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 885 | } else if (mode & FALLOC_FL_UNSHARE_RANGE) { |
| 886 | error = xfs_reflink_unshare(ip, offset, len); |
| 887 | if (error) |
| 888 | goto out_unlock; |
| 889 | |
| 890 | if (!xfs_is_always_cow_inode(ip)) { |
| 891 | error = xfs_alloc_file_space(ip, offset, len, |
| 892 | XFS_BMAPI_PREALLOC); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 893 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 894 | } else { |
| 895 | /* |
| 896 | * If always_cow mode we can't use preallocations and |
| 897 | * thus should not create them. |
| 898 | */ |
| 899 | if (xfs_is_always_cow_inode(ip)) { |
| 900 | error = -EOPNOTSUPP; |
| 901 | goto out_unlock; |
| 902 | } |
| 903 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 904 | error = xfs_alloc_file_space(ip, offset, len, |
| 905 | XFS_BMAPI_PREALLOC); |
| 906 | } |
| 907 | if (error) |
| 908 | goto out_unlock; |
| 909 | } |
| 910 | |
| 911 | if (file->f_flags & O_DSYNC) |
| 912 | flags |= XFS_PREALLOC_SYNC; |
| 913 | |
| 914 | error = xfs_update_prealloc_flags(ip, flags); |
| 915 | if (error) |
| 916 | goto out_unlock; |
| 917 | |
| 918 | /* Change file size if needed */ |
| 919 | if (new_size) { |
| 920 | struct iattr iattr; |
| 921 | |
| 922 | iattr.ia_valid = ATTR_SIZE; |
| 923 | iattr.ia_size = new_size; |
| 924 | error = xfs_vn_setattr_size(file_dentry(file), &iattr); |
| 925 | if (error) |
| 926 | goto out_unlock; |
| 927 | } |
| 928 | |
| 929 | /* |
| 930 | * Perform hole insertion now that the file size has been |
| 931 | * updated so that if we crash during the operation we don't |
| 932 | * leave shifted extents past EOF and hence losing access to |
| 933 | * the data that is contained within them. |
| 934 | */ |
| 935 | if (do_file_insert) |
| 936 | error = xfs_insert_file_space(ip, offset, len); |
| 937 | |
| 938 | out_unlock: |
| 939 | xfs_iunlock(ip, iolock); |
| 940 | return error; |
| 941 | } |
| 942 | |
| 943 | STATIC int |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 944 | xfs_file_fadvise( |
| 945 | struct file *file, |
| 946 | loff_t start, |
| 947 | loff_t end, |
| 948 | int advice) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 949 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 950 | struct xfs_inode *ip = XFS_I(file_inode(file)); |
| 951 | int ret; |
| 952 | int lockflags = 0; |
| 953 | |
| 954 | /* |
| 955 | * Operations creating pages in page cache need protection from hole |
| 956 | * punching and similar ops |
| 957 | */ |
| 958 | if (advice == POSIX_FADV_WILLNEED) { |
| 959 | lockflags = XFS_IOLOCK_SHARED; |
| 960 | xfs_ilock(ip, lockflags); |
| 961 | } |
| 962 | ret = generic_fadvise(file, start, end, advice); |
| 963 | if (lockflags) |
| 964 | xfs_iunlock(ip, lockflags); |
| 965 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 966 | } |
| 967 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 968 | STATIC loff_t |
| 969 | xfs_file_remap_range( |
| 970 | struct file *file_in, |
| 971 | loff_t pos_in, |
| 972 | struct file *file_out, |
| 973 | loff_t pos_out, |
| 974 | loff_t len, |
| 975 | unsigned int remap_flags) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 976 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 977 | struct inode *inode_in = file_inode(file_in); |
| 978 | struct xfs_inode *src = XFS_I(inode_in); |
| 979 | struct inode *inode_out = file_inode(file_out); |
| 980 | struct xfs_inode *dest = XFS_I(inode_out); |
| 981 | struct xfs_mount *mp = src->i_mount; |
| 982 | loff_t remapped = 0; |
| 983 | xfs_extlen_t cowextsize; |
| 984 | int ret; |
| 985 | |
| 986 | if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) |
| 987 | return -EINVAL; |
| 988 | |
| 989 | if (!xfs_sb_version_hasreflink(&mp->m_sb)) |
| 990 | return -EOPNOTSUPP; |
| 991 | |
| 992 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 993 | return -EIO; |
| 994 | |
| 995 | /* Prepare and then clone file data. */ |
| 996 | ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, |
| 997 | &len, remap_flags); |
| 998 | if (ret < 0 || len == 0) |
| 999 | return ret; |
| 1000 | |
| 1001 | trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); |
| 1002 | |
| 1003 | ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, |
| 1004 | &remapped); |
| 1005 | if (ret) |
| 1006 | goto out_unlock; |
| 1007 | |
| 1008 | /* |
| 1009 | * Carry the cowextsize hint from src to dest if we're sharing the |
| 1010 | * entire source file to the entire destination file, the source file |
| 1011 | * has a cowextsize hint, and the destination file does not. |
| 1012 | */ |
| 1013 | cowextsize = 0; |
| 1014 | if (pos_in == 0 && len == i_size_read(inode_in) && |
| 1015 | (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) && |
| 1016 | pos_out == 0 && len >= i_size_read(inode_out) && |
| 1017 | !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)) |
| 1018 | cowextsize = src->i_d.di_cowextsize; |
| 1019 | |
| 1020 | ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, |
| 1021 | remap_flags); |
| 1022 | |
| 1023 | out_unlock: |
| 1024 | xfs_reflink_remap_unlock(file_in, file_out); |
| 1025 | if (ret) |
| 1026 | trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); |
| 1027 | return remapped > 0 ? remapped : ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1028 | } |
| 1029 | |
| 1030 | STATIC int |
| 1031 | xfs_file_open( |
| 1032 | struct inode *inode, |
| 1033 | struct file *file) |
| 1034 | { |
| 1035 | if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) |
| 1036 | return -EFBIG; |
| 1037 | if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) |
| 1038 | return -EIO; |
| 1039 | file->f_mode |= FMODE_NOWAIT; |
| 1040 | return 0; |
| 1041 | } |
| 1042 | |
| 1043 | STATIC int |
| 1044 | xfs_dir_open( |
| 1045 | struct inode *inode, |
| 1046 | struct file *file) |
| 1047 | { |
| 1048 | struct xfs_inode *ip = XFS_I(inode); |
| 1049 | int mode; |
| 1050 | int error; |
| 1051 | |
| 1052 | error = xfs_file_open(inode, file); |
| 1053 | if (error) |
| 1054 | return error; |
| 1055 | |
| 1056 | /* |
| 1057 | * If there are any blocks, read-ahead block 0 as we're almost |
| 1058 | * certain to have the next operation be a read there. |
| 1059 | */ |
| 1060 | mode = xfs_ilock_data_map_shared(ip); |
| 1061 | if (ip->i_d.di_nextents > 0) |
| 1062 | error = xfs_dir3_data_readahead(ip, 0, -1); |
| 1063 | xfs_iunlock(ip, mode); |
| 1064 | return error; |
| 1065 | } |
| 1066 | |
| 1067 | STATIC int |
| 1068 | xfs_file_release( |
| 1069 | struct inode *inode, |
| 1070 | struct file *filp) |
| 1071 | { |
| 1072 | return xfs_release(XFS_I(inode)); |
| 1073 | } |
| 1074 | |
| 1075 | STATIC int |
| 1076 | xfs_file_readdir( |
| 1077 | struct file *file, |
| 1078 | struct dir_context *ctx) |
| 1079 | { |
| 1080 | struct inode *inode = file_inode(file); |
| 1081 | xfs_inode_t *ip = XFS_I(inode); |
| 1082 | size_t bufsize; |
| 1083 | |
| 1084 | /* |
| 1085 | * The Linux API doesn't pass down the total size of the buffer |
| 1086 | * we read into down to the filesystem. With the filldir concept |
| 1087 | * it's not needed for correct information, but the XFS dir2 leaf |
| 1088 | * code wants an estimate of the buffer size to calculate it's |
| 1089 | * readahead window and size the buffers used for mapping to |
| 1090 | * physical blocks. |
| 1091 | * |
| 1092 | * Try to give it an estimate that's good enough, maybe at some |
| 1093 | * point we can change the ->readdir prototype to include the |
| 1094 | * buffer size. For now we use the current glibc buffer size. |
| 1095 | */ |
| 1096 | bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); |
| 1097 | |
| 1098 | return xfs_readdir(NULL, ip, ctx, bufsize); |
| 1099 | } |
| 1100 | |
| 1101 | STATIC loff_t |
| 1102 | xfs_file_llseek( |
| 1103 | struct file *file, |
| 1104 | loff_t offset, |
| 1105 | int whence) |
| 1106 | { |
| 1107 | struct inode *inode = file->f_mapping->host; |
| 1108 | |
| 1109 | if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) |
| 1110 | return -EIO; |
| 1111 | |
| 1112 | switch (whence) { |
| 1113 | default: |
| 1114 | return generic_file_llseek(file, offset, whence); |
| 1115 | case SEEK_HOLE: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1116 | offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1117 | break; |
| 1118 | case SEEK_DATA: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1119 | offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1120 | break; |
| 1121 | } |
| 1122 | |
| 1123 | if (offset < 0) |
| 1124 | return offset; |
| 1125 | return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); |
| 1126 | } |
| 1127 | |
| 1128 | /* |
| 1129 | * Locking for serialisation of IO during page faults. This results in a lock |
| 1130 | * ordering of: |
| 1131 | * |
| 1132 | * mmap_sem (MM) |
| 1133 | * sb_start_pagefault(vfs, freeze) |
| 1134 | * i_mmaplock (XFS - truncate serialisation) |
| 1135 | * page_lock (MM) |
| 1136 | * i_lock (XFS - extent map serialisation) |
| 1137 | */ |
| 1138 | static vm_fault_t |
| 1139 | __xfs_filemap_fault( |
| 1140 | struct vm_fault *vmf, |
| 1141 | enum page_entry_size pe_size, |
| 1142 | bool write_fault) |
| 1143 | { |
| 1144 | struct inode *inode = file_inode(vmf->vma->vm_file); |
| 1145 | struct xfs_inode *ip = XFS_I(inode); |
| 1146 | vm_fault_t ret; |
| 1147 | |
| 1148 | trace_xfs_filemap_fault(ip, pe_size, write_fault); |
| 1149 | |
| 1150 | if (write_fault) { |
| 1151 | sb_start_pagefault(inode->i_sb); |
| 1152 | file_update_time(vmf->vma->vm_file); |
| 1153 | } |
| 1154 | |
| 1155 | xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| 1156 | if (IS_DAX(inode)) { |
| 1157 | pfn_t pfn; |
| 1158 | |
| 1159 | ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops); |
| 1160 | if (ret & VM_FAULT_NEEDDSYNC) |
| 1161 | ret = dax_finish_sync_fault(vmf, pe_size, pfn); |
| 1162 | } else { |
| 1163 | if (write_fault) |
| 1164 | ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); |
| 1165 | else |
| 1166 | ret = filemap_fault(vmf); |
| 1167 | } |
| 1168 | xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| 1169 | |
| 1170 | if (write_fault) |
| 1171 | sb_end_pagefault(inode->i_sb); |
| 1172 | return ret; |
| 1173 | } |
| 1174 | |
| 1175 | static vm_fault_t |
| 1176 | xfs_filemap_fault( |
| 1177 | struct vm_fault *vmf) |
| 1178 | { |
| 1179 | /* DAX can shortcut the normal fault path on write faults! */ |
| 1180 | return __xfs_filemap_fault(vmf, PE_SIZE_PTE, |
| 1181 | IS_DAX(file_inode(vmf->vma->vm_file)) && |
| 1182 | (vmf->flags & FAULT_FLAG_WRITE)); |
| 1183 | } |
| 1184 | |
| 1185 | static vm_fault_t |
| 1186 | xfs_filemap_huge_fault( |
| 1187 | struct vm_fault *vmf, |
| 1188 | enum page_entry_size pe_size) |
| 1189 | { |
| 1190 | if (!IS_DAX(file_inode(vmf->vma->vm_file))) |
| 1191 | return VM_FAULT_FALLBACK; |
| 1192 | |
| 1193 | /* DAX can shortcut the normal fault path on write faults! */ |
| 1194 | return __xfs_filemap_fault(vmf, pe_size, |
| 1195 | (vmf->flags & FAULT_FLAG_WRITE)); |
| 1196 | } |
| 1197 | |
| 1198 | static vm_fault_t |
| 1199 | xfs_filemap_page_mkwrite( |
| 1200 | struct vm_fault *vmf) |
| 1201 | { |
| 1202 | return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); |
| 1203 | } |
| 1204 | |
| 1205 | /* |
| 1206 | * pfn_mkwrite was originally intended to ensure we capture time stamp updates |
| 1207 | * on write faults. In reality, it needs to serialise against truncate and |
| 1208 | * prepare memory for writing so handle is as standard write fault. |
| 1209 | */ |
| 1210 | static vm_fault_t |
| 1211 | xfs_filemap_pfn_mkwrite( |
| 1212 | struct vm_fault *vmf) |
| 1213 | { |
| 1214 | |
| 1215 | return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); |
| 1216 | } |
| 1217 | |
| 1218 | static const struct vm_operations_struct xfs_file_vm_ops = { |
| 1219 | .fault = xfs_filemap_fault, |
| 1220 | .huge_fault = xfs_filemap_huge_fault, |
| 1221 | .map_pages = filemap_map_pages, |
| 1222 | .page_mkwrite = xfs_filemap_page_mkwrite, |
| 1223 | .pfn_mkwrite = xfs_filemap_pfn_mkwrite, |
| 1224 | }; |
| 1225 | |
| 1226 | STATIC int |
| 1227 | xfs_file_mmap( |
| 1228 | struct file *filp, |
| 1229 | struct vm_area_struct *vma) |
| 1230 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1231 | struct dax_device *dax_dev; |
| 1232 | |
| 1233 | dax_dev = xfs_find_daxdev_for_inode(file_inode(filp)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1234 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1235 | * We don't support synchronous mappings for non-DAX files and |
| 1236 | * for DAX files if underneath dax_device is not synchronous. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1237 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1238 | if (!daxdev_mapping_supported(vma, dax_dev)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1239 | return -EOPNOTSUPP; |
| 1240 | |
| 1241 | file_accessed(filp); |
| 1242 | vma->vm_ops = &xfs_file_vm_ops; |
| 1243 | if (IS_DAX(file_inode(filp))) |
| 1244 | vma->vm_flags |= VM_HUGEPAGE; |
| 1245 | return 0; |
| 1246 | } |
| 1247 | |
| 1248 | const struct file_operations xfs_file_operations = { |
| 1249 | .llseek = xfs_file_llseek, |
| 1250 | .read_iter = xfs_file_read_iter, |
| 1251 | .write_iter = xfs_file_write_iter, |
| 1252 | .splice_read = generic_file_splice_read, |
| 1253 | .splice_write = iter_file_splice_write, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1254 | .iopoll = iomap_dio_iopoll, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1255 | .unlocked_ioctl = xfs_file_ioctl, |
| 1256 | #ifdef CONFIG_COMPAT |
| 1257 | .compat_ioctl = xfs_file_compat_ioctl, |
| 1258 | #endif |
| 1259 | .mmap = xfs_file_mmap, |
| 1260 | .mmap_supported_flags = MAP_SYNC, |
| 1261 | .open = xfs_file_open, |
| 1262 | .release = xfs_file_release, |
| 1263 | .fsync = xfs_file_fsync, |
| 1264 | .get_unmapped_area = thp_get_unmapped_area, |
| 1265 | .fallocate = xfs_file_fallocate, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1266 | .fadvise = xfs_file_fadvise, |
| 1267 | .remap_file_range = xfs_file_remap_range, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1268 | }; |
| 1269 | |
| 1270 | const struct file_operations xfs_dir_file_operations = { |
| 1271 | .open = xfs_dir_open, |
| 1272 | .read = generic_read_dir, |
| 1273 | .iterate_shared = xfs_file_readdir, |
| 1274 | .llseek = generic_file_llseek, |
| 1275 | .unlocked_ioctl = xfs_file_ioctl, |
| 1276 | #ifdef CONFIG_COMPAT |
| 1277 | .compat_ioctl = xfs_file_compat_ioctl, |
| 1278 | #endif |
| 1279 | .fsync = xfs_dir_fsync, |
| 1280 | }; |