blob: d4a8ad6c6a4bb59ab75c3c4bc45568c152a49288 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001/* SPDX-License-Identifier: GPL-2.0-only */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000016 */
17
18/*
19 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
20 * so the code in this file is compiled twice, once per pte size.
21 */
22
23#if PTTYPE == 64
24 #define pt_element_t u64
25 #define guest_walker guest_walker64
26 #define FNAME(name) paging##64_##name
27 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
28 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
29 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
30 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
31 #define PT_LEVEL_BITS PT64_LEVEL_BITS
32 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
33 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
34 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
35 #ifdef CONFIG_X86_64
Olivier Deprez0e641232021-09-23 10:07:05 +020036 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000037 #define CMPXCHG cmpxchg
38 #else
39 #define CMPXCHG cmpxchg64
40 #define PT_MAX_FULL_LEVELS 2
41 #endif
42#elif PTTYPE == 32
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 #define PT_LEVEL_BITS PT32_LEVEL_BITS
51 #define PT_MAX_FULL_LEVELS 2
52 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
53 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
54 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
55 #define CMPXCHG cmpxchg
56#elif PTTYPE == PTTYPE_EPT
57 #define pt_element_t u64
58 #define guest_walker guest_walkerEPT
59 #define FNAME(name) ept_##name
60 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
61 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
62 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
63 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
64 #define PT_LEVEL_BITS PT64_LEVEL_BITS
65 #define PT_GUEST_DIRTY_SHIFT 9
66 #define PT_GUEST_ACCESSED_SHIFT 8
67 #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
68 #define CMPXCHG cmpxchg64
69 #define PT_MAX_FULL_LEVELS 4
70#else
71 #error Invalid PTTYPE value
72#endif
73
74#define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
75#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
76
77#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
78#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
79
80/*
81 * The guest_walker structure emulates the behavior of the hardware page
82 * table walker.
83 */
84struct guest_walker {
85 int level;
86 unsigned max_level;
87 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
88 pt_element_t ptes[PT_MAX_FULL_LEVELS];
89 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
90 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
91 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
92 bool pte_writable[PT_MAX_FULL_LEVELS];
Olivier Deprez0e641232021-09-23 10:07:05 +020093 unsigned int pt_access[PT_MAX_FULL_LEVELS];
94 unsigned int pte_access;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000095 gfn_t gfn;
96 struct x86_exception fault;
97};
98
99static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
100{
101 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
102}
103
104static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
105 unsigned gpte)
106{
107 unsigned mask;
108
109 /* dirty bit is not supported, so no need to track it */
110 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
111 return;
112
113 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
114
115 mask = (unsigned)~ACC_WRITE_MASK;
116 /* Allow write access to dirty gptes */
117 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
118 PT_WRITABLE_MASK;
119 *access &= mask;
120}
121
122static inline int FNAME(is_present_gpte)(unsigned long pte)
123{
124#if PTTYPE != PTTYPE_EPT
125 return pte & PT_PRESENT_MASK;
126#else
127 return pte & 7;
128#endif
129}
130
131static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
132 pt_element_t __user *ptep_user, unsigned index,
133 pt_element_t orig_pte, pt_element_t new_pte)
134{
135 int npages;
136 pt_element_t ret;
137 pt_element_t *table;
138 struct page *page;
139
David Brazdil0f672f62019-12-10 10:32:29 +0000140 npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
141 if (likely(npages == 1)) {
142 table = kmap_atomic(page);
143 ret = CMPXCHG(&table[index], orig_pte, new_pte);
144 kunmap_atomic(table);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000145
David Brazdil0f672f62019-12-10 10:32:29 +0000146 kvm_release_page_dirty(page);
147 } else {
148 struct vm_area_struct *vma;
149 unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
150 unsigned long pfn;
151 unsigned long paddr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000152
David Brazdil0f672f62019-12-10 10:32:29 +0000153 down_read(&current->mm->mmap_sem);
154 vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
155 if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
156 up_read(&current->mm->mmap_sem);
157 return -EFAULT;
158 }
159 pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
160 paddr = pfn << PAGE_SHIFT;
161 table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
162 if (!table) {
163 up_read(&current->mm->mmap_sem);
164 return -EFAULT;
165 }
166 ret = CMPXCHG(&table[index], orig_pte, new_pte);
167 memunmap(table);
168 up_read(&current->mm->mmap_sem);
169 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000170
171 return (ret != orig_pte);
172}
173
174static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
175 struct kvm_mmu_page *sp, u64 *spte,
176 u64 gpte)
177{
David Brazdil0f672f62019-12-10 10:32:29 +0000178 if (is_rsvd_bits_set(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000179 goto no_present;
180
181 if (!FNAME(is_present_gpte)(gpte))
182 goto no_present;
183
184 /* if accessed bit is not supported prefetch non accessed gpte */
David Brazdil0f672f62019-12-10 10:32:29 +0000185 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
186 !(gpte & PT_GUEST_ACCESSED_MASK))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000187 goto no_present;
188
189 return false;
190
191no_present:
192 drop_spte(vcpu->kvm, spte);
193 return true;
194}
195
196/*
197 * For PTTYPE_EPT, a page table can be executable but not readable
198 * on supported processors. Therefore, set_spte does not automatically
199 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
200 * to signify readability since it isn't used in the EPT case
201 */
202static inline unsigned FNAME(gpte_access)(u64 gpte)
203{
204 unsigned access;
205#if PTTYPE == PTTYPE_EPT
206 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
207 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
208 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
209#else
210 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
211 BUILD_BUG_ON(ACC_EXEC_MASK != 1);
212 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
213 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
214 access ^= (gpte >> PT64_NX_SHIFT);
215#endif
216
217 return access;
218}
219
220static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
221 struct kvm_mmu *mmu,
222 struct guest_walker *walker,
Olivier Deprez0e641232021-09-23 10:07:05 +0200223 gpa_t addr, int write_fault)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000224{
225 unsigned level, index;
226 pt_element_t pte, orig_pte;
227 pt_element_t __user *ptep_user;
228 gfn_t table_gfn;
229 int ret;
230
231 /* dirty/accessed bits are not supported, so no need to update them */
232 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
233 return 0;
234
235 for (level = walker->max_level; level >= walker->level; --level) {
236 pte = orig_pte = walker->ptes[level - 1];
237 table_gfn = walker->table_gfn[level - 1];
238 ptep_user = walker->ptep_user[level - 1];
239 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
240 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
241 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
242 pte |= PT_GUEST_ACCESSED_MASK;
243 }
244 if (level == walker->level && write_fault &&
245 !(pte & PT_GUEST_DIRTY_MASK)) {
246 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
247#if PTTYPE == PTTYPE_EPT
Olivier Deprez0e641232021-09-23 10:07:05 +0200248 if (kvm_arch_write_log_dirty(vcpu, addr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000249 return -EINVAL;
250#endif
251 pte |= PT_GUEST_DIRTY_MASK;
252 }
253 if (pte == orig_pte)
254 continue;
255
256 /*
257 * If the slot is read-only, simply do not process the accessed
258 * and dirty bits. This is the correct thing to do if the slot
259 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
260 * are only supported if the accessed and dirty bits are already
261 * set in the ROM (so that MMIO writes are never needed).
262 *
263 * Note that NPT does not allow this at all and faults, since
264 * it always wants nested page table entries for the guest
265 * page tables to be writable. And EPT works but will simply
266 * overwrite the read-only memory to set the accessed and dirty
267 * bits.
268 */
269 if (unlikely(!walker->pte_writable[level - 1]))
270 continue;
271
272 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
273 if (ret)
274 return ret;
275
276 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
277 walker->ptes[level - 1] = pte;
278 }
279 return 0;
280}
281
282static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
283{
284 unsigned pkeys = 0;
285#if PTTYPE == 64
286 pte_t pte = {.pte = gpte};
287
288 pkeys = pte_flags_pkey(pte_flags(pte));
289#endif
290 return pkeys;
291}
292
293/*
Olivier Deprez0e641232021-09-23 10:07:05 +0200294 * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000295 */
296static int FNAME(walk_addr_generic)(struct guest_walker *walker,
297 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
Olivier Deprez0e641232021-09-23 10:07:05 +0200298 gpa_t addr, u32 access)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000299{
300 int ret;
301 pt_element_t pte;
302 pt_element_t __user *uninitialized_var(ptep_user);
303 gfn_t table_gfn;
304 u64 pt_access, pte_access;
305 unsigned index, accessed_dirty, pte_pkey;
306 unsigned nested_access;
307 gpa_t pte_gpa;
308 bool have_ad;
309 int offset;
310 u64 walk_nx_mask = 0;
311 const int write_fault = access & PFERR_WRITE_MASK;
312 const int user_fault = access & PFERR_USER_MASK;
313 const int fetch_fault = access & PFERR_FETCH_MASK;
314 u16 errcode = 0;
315 gpa_t real_gpa;
316 gfn_t gfn;
317
318 trace_kvm_mmu_pagetable_walk(addr, access);
319retry_walk:
320 walker->level = mmu->root_level;
321 pte = mmu->get_cr3(vcpu);
322 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
323
324#if PTTYPE == 64
325 walk_nx_mask = 1ULL << PT64_NX_SHIFT;
326 if (walker->level == PT32E_ROOT_LEVEL) {
327 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
328 trace_kvm_mmu_paging_element(pte, walker->level);
329 if (!FNAME(is_present_gpte)(pte))
330 goto error;
331 --walker->level;
332 }
333#endif
334 walker->max_level = walker->level;
335 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
336
337 /*
338 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
339 * by the MOV to CR instruction are treated as reads and do not cause the
340 * processor to set the dirty flag in any EPT paging-structure entry.
341 */
342 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
343
344 pte_access = ~0;
345 ++walker->level;
346
347 do {
348 gfn_t real_gfn;
349 unsigned long host_addr;
350
351 pt_access = pte_access;
352 --walker->level;
353
354 index = PT_INDEX(addr, walker->level);
355 table_gfn = gpte_to_gfn(pte);
356 offset = index * sizeof(pt_element_t);
357 pte_gpa = gfn_to_gpa(table_gfn) + offset;
358
359 BUG_ON(walker->level < 1);
360 walker->table_gfn[walker->level - 1] = table_gfn;
361 walker->pte_gpa[walker->level - 1] = pte_gpa;
362
363 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
364 nested_access,
365 &walker->fault);
366
367 /*
368 * FIXME: This can happen if emulation (for of an INS/OUTS
369 * instruction) triggers a nested page fault. The exit
370 * qualification / exit info field will incorrectly have
371 * "guest page access" as the nested page fault's cause,
372 * instead of "guest page structure access". To fix this,
373 * the x86_exception struct should be augmented with enough
374 * information to fix the exit_qualification or exit_info_1
375 * fields.
376 */
377 if (unlikely(real_gfn == UNMAPPED_GVA))
378 return 0;
379
380 real_gfn = gpa_to_gfn(real_gfn);
381
382 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
383 &walker->pte_writable[walker->level - 1]);
384 if (unlikely(kvm_is_error_hva(host_addr)))
385 goto error;
386
387 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
388 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
389 goto error;
390 walker->ptep_user[walker->level - 1] = ptep_user;
391
392 trace_kvm_mmu_paging_element(pte, walker->level);
393
394 /*
395 * Inverting the NX it lets us AND it like other
396 * permission bits.
397 */
398 pte_access = pt_access & (pte ^ walk_nx_mask);
399
400 if (unlikely(!FNAME(is_present_gpte)(pte)))
401 goto error;
402
403 if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
404 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
405 goto error;
406 }
407
408 walker->ptes[walker->level - 1] = pte;
Olivier Deprez0e641232021-09-23 10:07:05 +0200409
410 /* Convert to ACC_*_MASK flags for struct guest_walker. */
411 walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000412 } while (!is_last_gpte(mmu, walker->level, pte));
413
414 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
415 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
416
417 /* Convert to ACC_*_MASK flags for struct guest_walker. */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000418 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
419 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
420 if (unlikely(errcode))
421 goto error;
422
423 gfn = gpte_to_gfn_lvl(pte, walker->level);
424 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
425
426 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
427 gfn += pse36_gfn_delta(pte);
428
429 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
430 if (real_gpa == UNMAPPED_GVA)
431 return 0;
432
433 walker->gfn = real_gpa >> PAGE_SHIFT;
434
435 if (!write_fault)
436 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
437 else
438 /*
439 * On a write fault, fold the dirty bit into accessed_dirty.
440 * For modes without A/D bits support accessed_dirty will be
441 * always clear.
442 */
443 accessed_dirty &= pte >>
444 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
445
446 if (unlikely(!accessed_dirty)) {
Olivier Deprez0e641232021-09-23 10:07:05 +0200447 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
448 addr, write_fault);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000449 if (unlikely(ret < 0))
450 goto error;
451 else if (ret)
452 goto retry_walk;
453 }
454
455 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
Olivier Deprez0e641232021-09-23 10:07:05 +0200456 __func__, (u64)pte, walker->pte_access,
457 walker->pt_access[walker->level - 1]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000458 return 1;
459
460error:
461 errcode |= write_fault | user_fault;
462 if (fetch_fault && (mmu->nx ||
463 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
464 errcode |= PFERR_FETCH_MASK;
465
466 walker->fault.vector = PF_VECTOR;
467 walker->fault.error_code_valid = true;
468 walker->fault.error_code = errcode;
469
470#if PTTYPE == PTTYPE_EPT
471 /*
472 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
473 * misconfiguration requires to be injected. The detection is
474 * done by is_rsvd_bits_set() above.
475 *
476 * We set up the value of exit_qualification to inject:
477 * [2:0] - Derive from the access bits. The exit_qualification might be
478 * out of date if it is serving an EPT misconfiguration.
479 * [5:3] - Calculated by the page walk of the guest EPT page tables
480 * [7:8] - Derived from [7:8] of real exit_qualification
481 *
482 * The other bits are set to 0.
483 */
484 if (!(errcode & PFERR_RSVD_MASK)) {
485 vcpu->arch.exit_qualification &= 0x180;
486 if (write_fault)
487 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
488 if (user_fault)
489 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
490 if (fetch_fault)
491 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
492 vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
493 }
494#endif
495 walker->fault.address = addr;
496 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
497
498 trace_kvm_mmu_walker_error(walker->fault.error_code);
499 return 0;
500}
501
502static int FNAME(walk_addr)(struct guest_walker *walker,
Olivier Deprez0e641232021-09-23 10:07:05 +0200503 struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000504{
David Brazdil0f672f62019-12-10 10:32:29 +0000505 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000506 access);
507}
508
509#if PTTYPE != PTTYPE_EPT
510static int FNAME(walk_addr_nested)(struct guest_walker *walker,
511 struct kvm_vcpu *vcpu, gva_t addr,
512 u32 access)
513{
514 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
515 addr, access);
516}
517#endif
518
519static bool
520FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
521 u64 *spte, pt_element_t gpte, bool no_dirty_log)
522{
523 unsigned pte_access;
524 gfn_t gfn;
525 kvm_pfn_t pfn;
526
527 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
528 return false;
529
530 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
531
532 gfn = gpte_to_gfn(gpte);
533 pte_access = sp->role.access & FNAME(gpte_access)(gpte);
David Brazdil0f672f62019-12-10 10:32:29 +0000534 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000535 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
536 no_dirty_log && (pte_access & ACC_WRITE_MASK));
537 if (is_error_pfn(pfn))
538 return false;
539
540 /*
541 * we call mmu_set_spte() with host_writable = true because
542 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
543 */
544 mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
545 true, true);
546
David Brazdil0f672f62019-12-10 10:32:29 +0000547 kvm_release_pfn_clean(pfn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000548 return true;
549}
550
551static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
552 u64 *spte, const void *pte)
553{
554 pt_element_t gpte = *(const pt_element_t *)pte;
555
556 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
557}
558
559static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
560 struct guest_walker *gw, int level)
561{
562 pt_element_t curr_pte;
563 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
564 u64 mask;
565 int r, index;
566
567 if (level == PT_PAGE_TABLE_LEVEL) {
568 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
569 base_gpa = pte_gpa & ~mask;
570 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
571
572 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
573 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
574 curr_pte = gw->prefetch_ptes[index];
575 } else
576 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
577 &curr_pte, sizeof(curr_pte));
578
579 return r || curr_pte != gw->ptes[level - 1];
580}
581
582static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
583 u64 *sptep)
584{
585 struct kvm_mmu_page *sp;
586 pt_element_t *gptep = gw->prefetch_ptes;
587 u64 *spte;
588 int i;
589
590 sp = page_header(__pa(sptep));
591
592 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
593 return;
594
595 if (sp->role.direct)
596 return __direct_pte_prefetch(vcpu, sp, sptep);
597
598 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
599 spte = sp->spt + i;
600
601 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
602 if (spte == sptep)
603 continue;
604
605 if (is_shadow_present_pte(*spte))
606 continue;
607
608 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
609 break;
610 }
611}
612
613/*
614 * Fetch a shadow pte for a specific level in the paging hierarchy.
615 * If the guest tries to write a write-protected page, we need to
616 * emulate this operation, return 1 to indicate this case.
617 */
Olivier Deprez0e641232021-09-23 10:07:05 +0200618static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000619 struct guest_walker *gw,
620 int write_fault, int hlevel,
David Brazdil0f672f62019-12-10 10:32:29 +0000621 kvm_pfn_t pfn, bool map_writable, bool prefault,
622 bool lpage_disallowed)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000623{
624 struct kvm_mmu_page *sp = NULL;
625 struct kvm_shadow_walk_iterator it;
Olivier Deprez0e641232021-09-23 10:07:05 +0200626 unsigned int direct_access, access;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000627 int top_level, ret;
David Brazdil0f672f62019-12-10 10:32:29 +0000628 gfn_t gfn, base_gfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000629
630 direct_access = gw->pte_access;
631
David Brazdil0f672f62019-12-10 10:32:29 +0000632 top_level = vcpu->arch.mmu->root_level;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000633 if (top_level == PT32E_ROOT_LEVEL)
634 top_level = PT32_ROOT_LEVEL;
635 /*
636 * Verify that the top-level gpte is still there. Since the page
637 * is a root page, it is either write protected (and cannot be
638 * changed from now on) or it is invalid (in which case, we don't
639 * really care if it changes underneath us after this point).
640 */
641 if (FNAME(gpte_changed)(vcpu, gw, top_level))
642 goto out_gpte_changed;
643
David Brazdil0f672f62019-12-10 10:32:29 +0000644 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000645 goto out_gpte_changed;
646
647 for (shadow_walk_init(&it, vcpu, addr);
648 shadow_walk_okay(&it) && it.level > gw->level;
649 shadow_walk_next(&it)) {
650 gfn_t table_gfn;
651
652 clear_sp_write_flooding_count(it.sptep);
653 drop_large_spte(vcpu, it.sptep);
654
655 sp = NULL;
656 if (!is_shadow_present_pte(*it.sptep)) {
657 table_gfn = gw->table_gfn[it.level - 2];
Olivier Deprez0e641232021-09-23 10:07:05 +0200658 access = gw->pt_access[it.level - 2];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000659 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
660 false, access);
661 }
662
663 /*
664 * Verify that the gpte in the page we've just write
665 * protected is still there.
666 */
667 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
668 goto out_gpte_changed;
669
670 if (sp)
671 link_shadow_page(vcpu, it.sptep, sp);
672 }
673
David Brazdil0f672f62019-12-10 10:32:29 +0000674 /*
675 * FNAME(page_fault) might have clobbered the bottom bits of
676 * gw->gfn, restore them from the virtual address.
677 */
678 gfn = gw->gfn | ((addr & PT_LVL_OFFSET_MASK(gw->level)) >> PAGE_SHIFT);
679 base_gfn = gfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000680
David Brazdil0f672f62019-12-10 10:32:29 +0000681 trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
682
683 for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000684 clear_sp_write_flooding_count(it.sptep);
David Brazdil0f672f62019-12-10 10:32:29 +0000685
686 /*
687 * We cannot overwrite existing page tables with an NX
688 * large page, as the leaf could be executable.
689 */
690 disallowed_hugepage_adjust(it, gfn, &pfn, &hlevel);
691
692 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
693 if (it.level == hlevel)
694 break;
695
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000696 validate_direct_spte(vcpu, it.sptep, direct_access);
697
698 drop_large_spte(vcpu, it.sptep);
699
David Brazdil0f672f62019-12-10 10:32:29 +0000700 if (!is_shadow_present_pte(*it.sptep)) {
701 sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
702 it.level - 1, true, direct_access);
703 link_shadow_page(vcpu, it.sptep, sp);
704 if (lpage_disallowed)
705 account_huge_nx_page(vcpu->kvm, sp);
706 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000707 }
708
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000709 ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
David Brazdil0f672f62019-12-10 10:32:29 +0000710 it.level, base_gfn, pfn, prefault, map_writable);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000711 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
David Brazdil0f672f62019-12-10 10:32:29 +0000712 ++vcpu->stat.pf_fixed;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000713 return ret;
714
715out_gpte_changed:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000716 return RET_PF_RETRY;
717}
718
719 /*
720 * To see whether the mapped gfn can write its page table in the current
721 * mapping.
722 *
723 * It is the helper function of FNAME(page_fault). When guest uses large page
724 * size to map the writable gfn which is used as current page table, we should
725 * force kvm to use small page size to map it because new shadow page will be
726 * created when kvm establishes shadow page table that stop kvm using large
727 * page size. Do it early can avoid unnecessary #PF and emulation.
728 *
729 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
730 * currently used as its page table.
731 *
732 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
733 * since the PDPT is always shadowed, that means, we can not use large page
734 * size to map the gfn which is used as PDPT.
735 */
736static bool
737FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
738 struct guest_walker *walker, int user_fault,
739 bool *write_fault_to_shadow_pgtable)
740{
741 int level;
742 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
743 bool self_changed = false;
744
745 if (!(walker->pte_access & ACC_WRITE_MASK ||
746 (!is_write_protection(vcpu) && !user_fault)))
747 return false;
748
749 for (level = walker->level; level <= walker->max_level; level++) {
750 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
751
752 self_changed |= !(gfn & mask);
753 *write_fault_to_shadow_pgtable |= !gfn;
754 }
755
756 return self_changed;
757}
758
759/*
760 * Page fault handler. There are several causes for a page fault:
761 * - there is no shadow pte for the guest pte
762 * - write access through a shadow pte marked read only so that we can set
763 * the dirty bit
764 * - write access to a shadow pte marked read only so we can update the page
765 * dirty bitmap, when userspace requests it
766 * - mmio access; in this case we will never install a present shadow pte
767 * - normal guest page fault due to the guest pte marked not present, not
768 * writable, or not executable
769 *
770 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
771 * a negative value on error.
772 */
Olivier Deprez0e641232021-09-23 10:07:05 +0200773static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000774 bool prefault)
775{
776 int write_fault = error_code & PFERR_WRITE_MASK;
777 int user_fault = error_code & PFERR_USER_MASK;
778 struct guest_walker walker;
779 int r;
780 kvm_pfn_t pfn;
781 int level = PT_PAGE_TABLE_LEVEL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000782 unsigned long mmu_seq;
783 bool map_writable, is_self_change_mapping;
David Brazdil0f672f62019-12-10 10:32:29 +0000784 bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
785 is_nx_huge_page_enabled();
786 bool force_pt_level = lpage_disallowed;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000787
788 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
789
790 r = mmu_topup_memory_caches(vcpu);
791 if (r)
792 return r;
793
794 /*
795 * If PFEC.RSVD is set, this is a shadow page fault.
796 * The bit needs to be cleared before walking guest page tables.
797 */
798 error_code &= ~PFERR_RSVD_MASK;
799
800 /*
801 * Look up the guest pte for the faulting address.
802 */
803 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
804
805 /*
806 * The page is not mapped by the guest. Let the guest handle it.
807 */
808 if (!r) {
809 pgprintk("%s: guest page fault\n", __func__);
810 if (!prefault)
811 inject_page_fault(vcpu, &walker.fault);
812
813 return RET_PF_RETRY;
814 }
815
816 if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
817 shadow_page_table_clear_flood(vcpu, addr);
818 return RET_PF_EMULATE;
819 }
820
821 vcpu->arch.write_fault_to_shadow_pgtable = false;
822
823 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
824 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
825
826 if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
827 level = mapping_level(vcpu, walker.gfn, &force_pt_level);
828 if (likely(!force_pt_level)) {
829 level = min(walker.level, level);
830 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
831 }
832 } else
833 force_pt_level = true;
834
835 mmu_seq = vcpu->kvm->mmu_notifier_seq;
836 smp_rmb();
837
838 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
839 &map_writable))
840 return RET_PF_RETRY;
841
842 if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
843 return r;
844
845 /*
846 * Do not change pte_access if the pfn is a mmio page, otherwise
847 * we will cache the incorrect access into mmio spte.
848 */
849 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
850 !is_write_protection(vcpu) && !user_fault &&
851 !is_noslot_pfn(pfn)) {
852 walker.pte_access |= ACC_WRITE_MASK;
853 walker.pte_access &= ~ACC_USER_MASK;
854
855 /*
856 * If we converted a user page to a kernel page,
857 * so that the kernel can write to it when cr0.wp=0,
858 * then we should prevent the kernel from executing it
859 * if SMEP is enabled.
860 */
861 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
862 walker.pte_access &= ~ACC_EXEC_MASK;
863 }
864
David Brazdil0f672f62019-12-10 10:32:29 +0000865 r = RET_PF_RETRY;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000866 spin_lock(&vcpu->kvm->mmu_lock);
867 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
868 goto out_unlock;
869
870 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
871 if (make_mmu_pages_available(vcpu) < 0)
872 goto out_unlock;
873 if (!force_pt_level)
David Brazdil0f672f62019-12-10 10:32:29 +0000874 transparent_hugepage_adjust(vcpu, walker.gfn, &pfn, &level);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000875 r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
David Brazdil0f672f62019-12-10 10:32:29 +0000876 level, pfn, map_writable, prefault, lpage_disallowed);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000877 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000878
879out_unlock:
880 spin_unlock(&vcpu->kvm->mmu_lock);
881 kvm_release_pfn_clean(pfn);
David Brazdil0f672f62019-12-10 10:32:29 +0000882 return r;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000883}
884
885static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
886{
887 int offset = 0;
888
889 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
890
891 if (PTTYPE == 32)
892 offset = sp->role.quadrant << PT64_LEVEL_BITS;
893
894 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
895}
896
897static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
898{
899 struct kvm_shadow_walk_iterator iterator;
900 struct kvm_mmu_page *sp;
901 int level;
902 u64 *sptep;
903
904 vcpu_clear_mmio_info(vcpu, gva);
905
906 /*
907 * No need to check return value here, rmap_can_add() can
908 * help us to skip pte prefetch later.
909 */
910 mmu_topup_memory_caches(vcpu);
911
912 if (!VALID_PAGE(root_hpa)) {
913 WARN_ON(1);
914 return;
915 }
916
917 spin_lock(&vcpu->kvm->mmu_lock);
918 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
919 level = iterator.level;
920 sptep = iterator.sptep;
921
922 sp = page_header(__pa(sptep));
923 if (is_last_spte(*sptep, level)) {
924 pt_element_t gpte;
925 gpa_t pte_gpa;
926
927 if (!sp->unsync)
928 break;
929
930 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
931 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
932
933 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
David Brazdil0f672f62019-12-10 10:32:29 +0000934 kvm_flush_remote_tlbs_with_address(vcpu->kvm,
935 sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000936
937 if (!rmap_can_add(vcpu))
938 break;
939
940 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
941 sizeof(pt_element_t)))
942 break;
943
944 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
945 }
946
947 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
948 break;
949 }
950 spin_unlock(&vcpu->kvm->mmu_lock);
951}
952
Olivier Deprez0e641232021-09-23 10:07:05 +0200953/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
954static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000955 struct x86_exception *exception)
956{
957 struct guest_walker walker;
958 gpa_t gpa = UNMAPPED_GVA;
959 int r;
960
Olivier Deprez0e641232021-09-23 10:07:05 +0200961 r = FNAME(walk_addr)(&walker, vcpu, addr, access);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000962
963 if (r) {
964 gpa = gfn_to_gpa(walker.gfn);
Olivier Deprez0e641232021-09-23 10:07:05 +0200965 gpa |= addr & ~PAGE_MASK;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000966 } else if (exception)
967 *exception = walker.fault;
968
969 return gpa;
970}
971
972#if PTTYPE != PTTYPE_EPT
Olivier Deprez0e641232021-09-23 10:07:05 +0200973/* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */
974static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000975 u32 access,
976 struct x86_exception *exception)
977{
978 struct guest_walker walker;
979 gpa_t gpa = UNMAPPED_GVA;
980 int r;
981
Olivier Deprez0e641232021-09-23 10:07:05 +0200982#ifndef CONFIG_X86_64
983 /* A 64-bit GVA should be impossible on 32-bit KVM. */
984 WARN_ON_ONCE(vaddr >> 32);
985#endif
986
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000987 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
988
989 if (r) {
990 gpa = gfn_to_gpa(walker.gfn);
991 gpa |= vaddr & ~PAGE_MASK;
992 } else if (exception)
993 *exception = walker.fault;
994
995 return gpa;
996}
997#endif
998
999/*
1000 * Using the cached information from sp->gfns is safe because:
1001 * - The spte has a reference to the struct page, so the pfn for a given gfn
1002 * can't change unless all sptes pointing to it are nuked first.
1003 *
1004 * Note:
1005 * We should flush all tlbs if spte is dropped even though guest is
1006 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
1007 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
1008 * used by guest then tlbs are not flushed, so guest is allowed to access the
1009 * freed pages.
1010 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
1011 */
1012static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1013{
1014 int i, nr_present = 0;
1015 bool host_writable;
1016 gpa_t first_pte_gpa;
1017 int set_spte_ret = 0;
1018
1019 /* direct kvm_mmu_page can not be unsync. */
1020 BUG_ON(sp->role.direct);
1021
1022 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1023
1024 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1025 unsigned pte_access;
1026 pt_element_t gpte;
1027 gpa_t pte_gpa;
1028 gfn_t gfn;
1029
1030 if (!sp->spt[i])
1031 continue;
1032
1033 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1034
1035 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1036 sizeof(pt_element_t)))
1037 return 0;
1038
1039 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1040 /*
1041 * Update spte before increasing tlbs_dirty to make
1042 * sure no tlb flush is lost after spte is zapped; see
1043 * the comments in kvm_flush_remote_tlbs().
1044 */
1045 smp_wmb();
1046 vcpu->kvm->tlbs_dirty++;
1047 continue;
1048 }
1049
1050 gfn = gpte_to_gfn(gpte);
1051 pte_access = sp->role.access;
1052 pte_access &= FNAME(gpte_access)(gpte);
David Brazdil0f672f62019-12-10 10:32:29 +00001053 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001054
1055 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
1056 &nr_present))
1057 continue;
1058
1059 if (gfn != sp->gfns[i]) {
1060 drop_spte(vcpu->kvm, &sp->spt[i]);
1061 /*
1062 * The same as above where we are doing
1063 * prefetch_invalid_gpte().
1064 */
1065 smp_wmb();
1066 vcpu->kvm->tlbs_dirty++;
1067 continue;
1068 }
1069
1070 nr_present++;
1071
1072 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1073
1074 set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1075 pte_access, PT_PAGE_TABLE_LEVEL,
1076 gfn, spte_to_pfn(sp->spt[i]),
1077 true, false, host_writable);
1078 }
1079
1080 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1081 kvm_flush_remote_tlbs(vcpu->kvm);
1082
1083 return nr_present;
1084}
1085
1086#undef pt_element_t
1087#undef guest_walker
1088#undef FNAME
1089#undef PT_BASE_ADDR_MASK
1090#undef PT_INDEX
1091#undef PT_LVL_ADDR_MASK
1092#undef PT_LVL_OFFSET_MASK
1093#undef PT_LEVEL_BITS
1094#undef PT_MAX_FULL_LEVELS
1095#undef gpte_to_gfn
1096#undef gpte_to_gfn_lvl
1097#undef CMPXCHG
1098#undef PT_GUEST_ACCESSED_MASK
1099#undef PT_GUEST_DIRTY_MASK
1100#undef PT_GUEST_DIRTY_SHIFT
1101#undef PT_GUEST_ACCESSED_SHIFT
1102#undef PT_HAVE_ACCESSED_DIRTY