Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Kernel-based Virtual Machine driver for Linux |
| 3 | * |
| 4 | * This module enables machines with Intel VT-x extensions to run virtual |
| 5 | * machines without emulation or binary translation. |
| 6 | * |
| 7 | * MMU support |
| 8 | * |
| 9 | * Copyright (C) 2006 Qumranet, Inc. |
| 10 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| 11 | * |
| 12 | * Authors: |
| 13 | * Yaniv Kamay <yaniv@qumranet.com> |
| 14 | * Avi Kivity <avi@qumranet.com> |
| 15 | * |
| 16 | * This work is licensed under the terms of the GNU GPL, version 2. See |
| 17 | * the COPYING file in the top-level directory. |
| 18 | * |
| 19 | */ |
| 20 | |
| 21 | /* |
| 22 | * We need the mmu code to access both 32-bit and 64-bit guest ptes, |
| 23 | * so the code in this file is compiled twice, once per pte size. |
| 24 | */ |
| 25 | |
| 26 | #if PTTYPE == 64 |
| 27 | #define pt_element_t u64 |
| 28 | #define guest_walker guest_walker64 |
| 29 | #define FNAME(name) paging##64_##name |
| 30 | #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK |
| 31 | #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) |
| 32 | #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) |
| 33 | #define PT_INDEX(addr, level) PT64_INDEX(addr, level) |
| 34 | #define PT_LEVEL_BITS PT64_LEVEL_BITS |
| 35 | #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT |
| 36 | #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT |
| 37 | #define PT_HAVE_ACCESSED_DIRTY(mmu) true |
| 38 | #ifdef CONFIG_X86_64 |
| 39 | #define PT_MAX_FULL_LEVELS 4 |
| 40 | #define CMPXCHG cmpxchg |
| 41 | #else |
| 42 | #define CMPXCHG cmpxchg64 |
| 43 | #define PT_MAX_FULL_LEVELS 2 |
| 44 | #endif |
| 45 | #elif PTTYPE == 32 |
| 46 | #define pt_element_t u32 |
| 47 | #define guest_walker guest_walker32 |
| 48 | #define FNAME(name) paging##32_##name |
| 49 | #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK |
| 50 | #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) |
| 51 | #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) |
| 52 | #define PT_INDEX(addr, level) PT32_INDEX(addr, level) |
| 53 | #define PT_LEVEL_BITS PT32_LEVEL_BITS |
| 54 | #define PT_MAX_FULL_LEVELS 2 |
| 55 | #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT |
| 56 | #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT |
| 57 | #define PT_HAVE_ACCESSED_DIRTY(mmu) true |
| 58 | #define CMPXCHG cmpxchg |
| 59 | #elif PTTYPE == PTTYPE_EPT |
| 60 | #define pt_element_t u64 |
| 61 | #define guest_walker guest_walkerEPT |
| 62 | #define FNAME(name) ept_##name |
| 63 | #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK |
| 64 | #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) |
| 65 | #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) |
| 66 | #define PT_INDEX(addr, level) PT64_INDEX(addr, level) |
| 67 | #define PT_LEVEL_BITS PT64_LEVEL_BITS |
| 68 | #define PT_GUEST_DIRTY_SHIFT 9 |
| 69 | #define PT_GUEST_ACCESSED_SHIFT 8 |
| 70 | #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad) |
| 71 | #define CMPXCHG cmpxchg64 |
| 72 | #define PT_MAX_FULL_LEVELS 4 |
| 73 | #else |
| 74 | #error Invalid PTTYPE value |
| 75 | #endif |
| 76 | |
| 77 | #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT) |
| 78 | #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT) |
| 79 | |
| 80 | #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) |
| 81 | #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL) |
| 82 | |
| 83 | /* |
| 84 | * The guest_walker structure emulates the behavior of the hardware page |
| 85 | * table walker. |
| 86 | */ |
| 87 | struct guest_walker { |
| 88 | int level; |
| 89 | unsigned max_level; |
| 90 | gfn_t table_gfn[PT_MAX_FULL_LEVELS]; |
| 91 | pt_element_t ptes[PT_MAX_FULL_LEVELS]; |
| 92 | pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; |
| 93 | gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; |
| 94 | pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; |
| 95 | bool pte_writable[PT_MAX_FULL_LEVELS]; |
| 96 | unsigned pt_access; |
| 97 | unsigned pte_access; |
| 98 | gfn_t gfn; |
| 99 | struct x86_exception fault; |
| 100 | }; |
| 101 | |
| 102 | static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) |
| 103 | { |
| 104 | return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; |
| 105 | } |
| 106 | |
| 107 | static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access, |
| 108 | unsigned gpte) |
| 109 | { |
| 110 | unsigned mask; |
| 111 | |
| 112 | /* dirty bit is not supported, so no need to track it */ |
| 113 | if (!PT_HAVE_ACCESSED_DIRTY(mmu)) |
| 114 | return; |
| 115 | |
| 116 | BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); |
| 117 | |
| 118 | mask = (unsigned)~ACC_WRITE_MASK; |
| 119 | /* Allow write access to dirty gptes */ |
| 120 | mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & |
| 121 | PT_WRITABLE_MASK; |
| 122 | *access &= mask; |
| 123 | } |
| 124 | |
| 125 | static inline int FNAME(is_present_gpte)(unsigned long pte) |
| 126 | { |
| 127 | #if PTTYPE != PTTYPE_EPT |
| 128 | return pte & PT_PRESENT_MASK; |
| 129 | #else |
| 130 | return pte & 7; |
| 131 | #endif |
| 132 | } |
| 133 | |
| 134 | static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
| 135 | pt_element_t __user *ptep_user, unsigned index, |
| 136 | pt_element_t orig_pte, pt_element_t new_pte) |
| 137 | { |
| 138 | int npages; |
| 139 | pt_element_t ret; |
| 140 | pt_element_t *table; |
| 141 | struct page *page; |
| 142 | |
| 143 | npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page); |
| 144 | /* Check if the user is doing something meaningless. */ |
| 145 | if (unlikely(npages != 1)) |
| 146 | return -EFAULT; |
| 147 | |
| 148 | table = kmap_atomic(page); |
| 149 | ret = CMPXCHG(&table[index], orig_pte, new_pte); |
| 150 | kunmap_atomic(table); |
| 151 | |
| 152 | kvm_release_page_dirty(page); |
| 153 | |
| 154 | return (ret != orig_pte); |
| 155 | } |
| 156 | |
| 157 | static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, |
| 158 | struct kvm_mmu_page *sp, u64 *spte, |
| 159 | u64 gpte) |
| 160 | { |
| 161 | if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL)) |
| 162 | goto no_present; |
| 163 | |
| 164 | if (!FNAME(is_present_gpte)(gpte)) |
| 165 | goto no_present; |
| 166 | |
| 167 | /* if accessed bit is not supported prefetch non accessed gpte */ |
| 168 | if (PT_HAVE_ACCESSED_DIRTY(&vcpu->arch.mmu) && !(gpte & PT_GUEST_ACCESSED_MASK)) |
| 169 | goto no_present; |
| 170 | |
| 171 | return false; |
| 172 | |
| 173 | no_present: |
| 174 | drop_spte(vcpu->kvm, spte); |
| 175 | return true; |
| 176 | } |
| 177 | |
| 178 | /* |
| 179 | * For PTTYPE_EPT, a page table can be executable but not readable |
| 180 | * on supported processors. Therefore, set_spte does not automatically |
| 181 | * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK |
| 182 | * to signify readability since it isn't used in the EPT case |
| 183 | */ |
| 184 | static inline unsigned FNAME(gpte_access)(u64 gpte) |
| 185 | { |
| 186 | unsigned access; |
| 187 | #if PTTYPE == PTTYPE_EPT |
| 188 | access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | |
| 189 | ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | |
| 190 | ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0); |
| 191 | #else |
| 192 | BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK); |
| 193 | BUILD_BUG_ON(ACC_EXEC_MASK != 1); |
| 194 | access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK); |
| 195 | /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */ |
| 196 | access ^= (gpte >> PT64_NX_SHIFT); |
| 197 | #endif |
| 198 | |
| 199 | return access; |
| 200 | } |
| 201 | |
| 202 | static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, |
| 203 | struct kvm_mmu *mmu, |
| 204 | struct guest_walker *walker, |
| 205 | int write_fault) |
| 206 | { |
| 207 | unsigned level, index; |
| 208 | pt_element_t pte, orig_pte; |
| 209 | pt_element_t __user *ptep_user; |
| 210 | gfn_t table_gfn; |
| 211 | int ret; |
| 212 | |
| 213 | /* dirty/accessed bits are not supported, so no need to update them */ |
| 214 | if (!PT_HAVE_ACCESSED_DIRTY(mmu)) |
| 215 | return 0; |
| 216 | |
| 217 | for (level = walker->max_level; level >= walker->level; --level) { |
| 218 | pte = orig_pte = walker->ptes[level - 1]; |
| 219 | table_gfn = walker->table_gfn[level - 1]; |
| 220 | ptep_user = walker->ptep_user[level - 1]; |
| 221 | index = offset_in_page(ptep_user) / sizeof(pt_element_t); |
| 222 | if (!(pte & PT_GUEST_ACCESSED_MASK)) { |
| 223 | trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); |
| 224 | pte |= PT_GUEST_ACCESSED_MASK; |
| 225 | } |
| 226 | if (level == walker->level && write_fault && |
| 227 | !(pte & PT_GUEST_DIRTY_MASK)) { |
| 228 | trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); |
| 229 | #if PTTYPE == PTTYPE_EPT |
| 230 | if (kvm_arch_write_log_dirty(vcpu)) |
| 231 | return -EINVAL; |
| 232 | #endif |
| 233 | pte |= PT_GUEST_DIRTY_MASK; |
| 234 | } |
| 235 | if (pte == orig_pte) |
| 236 | continue; |
| 237 | |
| 238 | /* |
| 239 | * If the slot is read-only, simply do not process the accessed |
| 240 | * and dirty bits. This is the correct thing to do if the slot |
| 241 | * is ROM, and page tables in read-as-ROM/write-as-MMIO slots |
| 242 | * are only supported if the accessed and dirty bits are already |
| 243 | * set in the ROM (so that MMIO writes are never needed). |
| 244 | * |
| 245 | * Note that NPT does not allow this at all and faults, since |
| 246 | * it always wants nested page table entries for the guest |
| 247 | * page tables to be writable. And EPT works but will simply |
| 248 | * overwrite the read-only memory to set the accessed and dirty |
| 249 | * bits. |
| 250 | */ |
| 251 | if (unlikely(!walker->pte_writable[level - 1])) |
| 252 | continue; |
| 253 | |
| 254 | ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte); |
| 255 | if (ret) |
| 256 | return ret; |
| 257 | |
| 258 | kvm_vcpu_mark_page_dirty(vcpu, table_gfn); |
| 259 | walker->ptes[level - 1] = pte; |
| 260 | } |
| 261 | return 0; |
| 262 | } |
| 263 | |
| 264 | static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte) |
| 265 | { |
| 266 | unsigned pkeys = 0; |
| 267 | #if PTTYPE == 64 |
| 268 | pte_t pte = {.pte = gpte}; |
| 269 | |
| 270 | pkeys = pte_flags_pkey(pte_flags(pte)); |
| 271 | #endif |
| 272 | return pkeys; |
| 273 | } |
| 274 | |
| 275 | /* |
| 276 | * Fetch a guest pte for a guest virtual address |
| 277 | */ |
| 278 | static int FNAME(walk_addr_generic)(struct guest_walker *walker, |
| 279 | struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
| 280 | gva_t addr, u32 access) |
| 281 | { |
| 282 | int ret; |
| 283 | pt_element_t pte; |
| 284 | pt_element_t __user *uninitialized_var(ptep_user); |
| 285 | gfn_t table_gfn; |
| 286 | u64 pt_access, pte_access; |
| 287 | unsigned index, accessed_dirty, pte_pkey; |
| 288 | unsigned nested_access; |
| 289 | gpa_t pte_gpa; |
| 290 | bool have_ad; |
| 291 | int offset; |
| 292 | u64 walk_nx_mask = 0; |
| 293 | const int write_fault = access & PFERR_WRITE_MASK; |
| 294 | const int user_fault = access & PFERR_USER_MASK; |
| 295 | const int fetch_fault = access & PFERR_FETCH_MASK; |
| 296 | u16 errcode = 0; |
| 297 | gpa_t real_gpa; |
| 298 | gfn_t gfn; |
| 299 | |
| 300 | trace_kvm_mmu_pagetable_walk(addr, access); |
| 301 | retry_walk: |
| 302 | walker->level = mmu->root_level; |
| 303 | pte = mmu->get_cr3(vcpu); |
| 304 | have_ad = PT_HAVE_ACCESSED_DIRTY(mmu); |
| 305 | |
| 306 | #if PTTYPE == 64 |
| 307 | walk_nx_mask = 1ULL << PT64_NX_SHIFT; |
| 308 | if (walker->level == PT32E_ROOT_LEVEL) { |
| 309 | pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); |
| 310 | trace_kvm_mmu_paging_element(pte, walker->level); |
| 311 | if (!FNAME(is_present_gpte)(pte)) |
| 312 | goto error; |
| 313 | --walker->level; |
| 314 | } |
| 315 | #endif |
| 316 | walker->max_level = walker->level; |
| 317 | ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu))); |
| 318 | |
| 319 | /* |
| 320 | * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging |
| 321 | * by the MOV to CR instruction are treated as reads and do not cause the |
| 322 | * processor to set the dirty flag in any EPT paging-structure entry. |
| 323 | */ |
| 324 | nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK; |
| 325 | |
| 326 | pte_access = ~0; |
| 327 | ++walker->level; |
| 328 | |
| 329 | do { |
| 330 | gfn_t real_gfn; |
| 331 | unsigned long host_addr; |
| 332 | |
| 333 | pt_access = pte_access; |
| 334 | --walker->level; |
| 335 | |
| 336 | index = PT_INDEX(addr, walker->level); |
| 337 | table_gfn = gpte_to_gfn(pte); |
| 338 | offset = index * sizeof(pt_element_t); |
| 339 | pte_gpa = gfn_to_gpa(table_gfn) + offset; |
| 340 | |
| 341 | BUG_ON(walker->level < 1); |
| 342 | walker->table_gfn[walker->level - 1] = table_gfn; |
| 343 | walker->pte_gpa[walker->level - 1] = pte_gpa; |
| 344 | |
| 345 | real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn), |
| 346 | nested_access, |
| 347 | &walker->fault); |
| 348 | |
| 349 | /* |
| 350 | * FIXME: This can happen if emulation (for of an INS/OUTS |
| 351 | * instruction) triggers a nested page fault. The exit |
| 352 | * qualification / exit info field will incorrectly have |
| 353 | * "guest page access" as the nested page fault's cause, |
| 354 | * instead of "guest page structure access". To fix this, |
| 355 | * the x86_exception struct should be augmented with enough |
| 356 | * information to fix the exit_qualification or exit_info_1 |
| 357 | * fields. |
| 358 | */ |
| 359 | if (unlikely(real_gfn == UNMAPPED_GVA)) |
| 360 | return 0; |
| 361 | |
| 362 | real_gfn = gpa_to_gfn(real_gfn); |
| 363 | |
| 364 | host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn, |
| 365 | &walker->pte_writable[walker->level - 1]); |
| 366 | if (unlikely(kvm_is_error_hva(host_addr))) |
| 367 | goto error; |
| 368 | |
| 369 | ptep_user = (pt_element_t __user *)((void *)host_addr + offset); |
| 370 | if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte)))) |
| 371 | goto error; |
| 372 | walker->ptep_user[walker->level - 1] = ptep_user; |
| 373 | |
| 374 | trace_kvm_mmu_paging_element(pte, walker->level); |
| 375 | |
| 376 | /* |
| 377 | * Inverting the NX it lets us AND it like other |
| 378 | * permission bits. |
| 379 | */ |
| 380 | pte_access = pt_access & (pte ^ walk_nx_mask); |
| 381 | |
| 382 | if (unlikely(!FNAME(is_present_gpte)(pte))) |
| 383 | goto error; |
| 384 | |
| 385 | if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) { |
| 386 | errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK; |
| 387 | goto error; |
| 388 | } |
| 389 | |
| 390 | walker->ptes[walker->level - 1] = pte; |
| 391 | } while (!is_last_gpte(mmu, walker->level, pte)); |
| 392 | |
| 393 | pte_pkey = FNAME(gpte_pkeys)(vcpu, pte); |
| 394 | accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0; |
| 395 | |
| 396 | /* Convert to ACC_*_MASK flags for struct guest_walker. */ |
| 397 | walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask); |
| 398 | walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask); |
| 399 | errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access); |
| 400 | if (unlikely(errcode)) |
| 401 | goto error; |
| 402 | |
| 403 | gfn = gpte_to_gfn_lvl(pte, walker->level); |
| 404 | gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; |
| 405 | |
| 406 | if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36()) |
| 407 | gfn += pse36_gfn_delta(pte); |
| 408 | |
| 409 | real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault); |
| 410 | if (real_gpa == UNMAPPED_GVA) |
| 411 | return 0; |
| 412 | |
| 413 | walker->gfn = real_gpa >> PAGE_SHIFT; |
| 414 | |
| 415 | if (!write_fault) |
| 416 | FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte); |
| 417 | else |
| 418 | /* |
| 419 | * On a write fault, fold the dirty bit into accessed_dirty. |
| 420 | * For modes without A/D bits support accessed_dirty will be |
| 421 | * always clear. |
| 422 | */ |
| 423 | accessed_dirty &= pte >> |
| 424 | (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); |
| 425 | |
| 426 | if (unlikely(!accessed_dirty)) { |
| 427 | ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault); |
| 428 | if (unlikely(ret < 0)) |
| 429 | goto error; |
| 430 | else if (ret) |
| 431 | goto retry_walk; |
| 432 | } |
| 433 | |
| 434 | pgprintk("%s: pte %llx pte_access %x pt_access %x\n", |
| 435 | __func__, (u64)pte, walker->pte_access, walker->pt_access); |
| 436 | return 1; |
| 437 | |
| 438 | error: |
| 439 | errcode |= write_fault | user_fault; |
| 440 | if (fetch_fault && (mmu->nx || |
| 441 | kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))) |
| 442 | errcode |= PFERR_FETCH_MASK; |
| 443 | |
| 444 | walker->fault.vector = PF_VECTOR; |
| 445 | walker->fault.error_code_valid = true; |
| 446 | walker->fault.error_code = errcode; |
| 447 | |
| 448 | #if PTTYPE == PTTYPE_EPT |
| 449 | /* |
| 450 | * Use PFERR_RSVD_MASK in error_code to to tell if EPT |
| 451 | * misconfiguration requires to be injected. The detection is |
| 452 | * done by is_rsvd_bits_set() above. |
| 453 | * |
| 454 | * We set up the value of exit_qualification to inject: |
| 455 | * [2:0] - Derive from the access bits. The exit_qualification might be |
| 456 | * out of date if it is serving an EPT misconfiguration. |
| 457 | * [5:3] - Calculated by the page walk of the guest EPT page tables |
| 458 | * [7:8] - Derived from [7:8] of real exit_qualification |
| 459 | * |
| 460 | * The other bits are set to 0. |
| 461 | */ |
| 462 | if (!(errcode & PFERR_RSVD_MASK)) { |
| 463 | vcpu->arch.exit_qualification &= 0x180; |
| 464 | if (write_fault) |
| 465 | vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE; |
| 466 | if (user_fault) |
| 467 | vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ; |
| 468 | if (fetch_fault) |
| 469 | vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR; |
| 470 | vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3; |
| 471 | } |
| 472 | #endif |
| 473 | walker->fault.address = addr; |
| 474 | walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; |
| 475 | |
| 476 | trace_kvm_mmu_walker_error(walker->fault.error_code); |
| 477 | return 0; |
| 478 | } |
| 479 | |
| 480 | static int FNAME(walk_addr)(struct guest_walker *walker, |
| 481 | struct kvm_vcpu *vcpu, gva_t addr, u32 access) |
| 482 | { |
| 483 | return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr, |
| 484 | access); |
| 485 | } |
| 486 | |
| 487 | #if PTTYPE != PTTYPE_EPT |
| 488 | static int FNAME(walk_addr_nested)(struct guest_walker *walker, |
| 489 | struct kvm_vcpu *vcpu, gva_t addr, |
| 490 | u32 access) |
| 491 | { |
| 492 | return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu, |
| 493 | addr, access); |
| 494 | } |
| 495 | #endif |
| 496 | |
| 497 | static bool |
| 498 | FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
| 499 | u64 *spte, pt_element_t gpte, bool no_dirty_log) |
| 500 | { |
| 501 | unsigned pte_access; |
| 502 | gfn_t gfn; |
| 503 | kvm_pfn_t pfn; |
| 504 | |
| 505 | if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) |
| 506 | return false; |
| 507 | |
| 508 | pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); |
| 509 | |
| 510 | gfn = gpte_to_gfn(gpte); |
| 511 | pte_access = sp->role.access & FNAME(gpte_access)(gpte); |
| 512 | FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte); |
| 513 | pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn, |
| 514 | no_dirty_log && (pte_access & ACC_WRITE_MASK)); |
| 515 | if (is_error_pfn(pfn)) |
| 516 | return false; |
| 517 | |
| 518 | /* |
| 519 | * we call mmu_set_spte() with host_writable = true because |
| 520 | * pte_prefetch_gfn_to_pfn always gets a writable pfn. |
| 521 | */ |
| 522 | mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn, |
| 523 | true, true); |
| 524 | |
| 525 | return true; |
| 526 | } |
| 527 | |
| 528 | static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
| 529 | u64 *spte, const void *pte) |
| 530 | { |
| 531 | pt_element_t gpte = *(const pt_element_t *)pte; |
| 532 | |
| 533 | FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false); |
| 534 | } |
| 535 | |
| 536 | static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, |
| 537 | struct guest_walker *gw, int level) |
| 538 | { |
| 539 | pt_element_t curr_pte; |
| 540 | gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; |
| 541 | u64 mask; |
| 542 | int r, index; |
| 543 | |
| 544 | if (level == PT_PAGE_TABLE_LEVEL) { |
| 545 | mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; |
| 546 | base_gpa = pte_gpa & ~mask; |
| 547 | index = (pte_gpa - base_gpa) / sizeof(pt_element_t); |
| 548 | |
| 549 | r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, |
| 550 | gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); |
| 551 | curr_pte = gw->prefetch_ptes[index]; |
| 552 | } else |
| 553 | r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, |
| 554 | &curr_pte, sizeof(curr_pte)); |
| 555 | |
| 556 | return r || curr_pte != gw->ptes[level - 1]; |
| 557 | } |
| 558 | |
| 559 | static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, |
| 560 | u64 *sptep) |
| 561 | { |
| 562 | struct kvm_mmu_page *sp; |
| 563 | pt_element_t *gptep = gw->prefetch_ptes; |
| 564 | u64 *spte; |
| 565 | int i; |
| 566 | |
| 567 | sp = page_header(__pa(sptep)); |
| 568 | |
| 569 | if (sp->role.level > PT_PAGE_TABLE_LEVEL) |
| 570 | return; |
| 571 | |
| 572 | if (sp->role.direct) |
| 573 | return __direct_pte_prefetch(vcpu, sp, sptep); |
| 574 | |
| 575 | i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); |
| 576 | spte = sp->spt + i; |
| 577 | |
| 578 | for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { |
| 579 | if (spte == sptep) |
| 580 | continue; |
| 581 | |
| 582 | if (is_shadow_present_pte(*spte)) |
| 583 | continue; |
| 584 | |
| 585 | if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true)) |
| 586 | break; |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | /* |
| 591 | * Fetch a shadow pte for a specific level in the paging hierarchy. |
| 592 | * If the guest tries to write a write-protected page, we need to |
| 593 | * emulate this operation, return 1 to indicate this case. |
| 594 | */ |
| 595 | static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, |
| 596 | struct guest_walker *gw, |
| 597 | int write_fault, int hlevel, |
| 598 | kvm_pfn_t pfn, bool map_writable, bool prefault) |
| 599 | { |
| 600 | struct kvm_mmu_page *sp = NULL; |
| 601 | struct kvm_shadow_walk_iterator it; |
| 602 | unsigned direct_access, access = gw->pt_access; |
| 603 | int top_level, ret; |
| 604 | |
| 605 | direct_access = gw->pte_access; |
| 606 | |
| 607 | top_level = vcpu->arch.mmu.root_level; |
| 608 | if (top_level == PT32E_ROOT_LEVEL) |
| 609 | top_level = PT32_ROOT_LEVEL; |
| 610 | /* |
| 611 | * Verify that the top-level gpte is still there. Since the page |
| 612 | * is a root page, it is either write protected (and cannot be |
| 613 | * changed from now on) or it is invalid (in which case, we don't |
| 614 | * really care if it changes underneath us after this point). |
| 615 | */ |
| 616 | if (FNAME(gpte_changed)(vcpu, gw, top_level)) |
| 617 | goto out_gpte_changed; |
| 618 | |
| 619 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
| 620 | goto out_gpte_changed; |
| 621 | |
| 622 | for (shadow_walk_init(&it, vcpu, addr); |
| 623 | shadow_walk_okay(&it) && it.level > gw->level; |
| 624 | shadow_walk_next(&it)) { |
| 625 | gfn_t table_gfn; |
| 626 | |
| 627 | clear_sp_write_flooding_count(it.sptep); |
| 628 | drop_large_spte(vcpu, it.sptep); |
| 629 | |
| 630 | sp = NULL; |
| 631 | if (!is_shadow_present_pte(*it.sptep)) { |
| 632 | table_gfn = gw->table_gfn[it.level - 2]; |
| 633 | sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1, |
| 634 | false, access); |
| 635 | } |
| 636 | |
| 637 | /* |
| 638 | * Verify that the gpte in the page we've just write |
| 639 | * protected is still there. |
| 640 | */ |
| 641 | if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) |
| 642 | goto out_gpte_changed; |
| 643 | |
| 644 | if (sp) |
| 645 | link_shadow_page(vcpu, it.sptep, sp); |
| 646 | } |
| 647 | |
| 648 | for (; |
| 649 | shadow_walk_okay(&it) && it.level > hlevel; |
| 650 | shadow_walk_next(&it)) { |
| 651 | gfn_t direct_gfn; |
| 652 | |
| 653 | clear_sp_write_flooding_count(it.sptep); |
| 654 | validate_direct_spte(vcpu, it.sptep, direct_access); |
| 655 | |
| 656 | drop_large_spte(vcpu, it.sptep); |
| 657 | |
| 658 | if (is_shadow_present_pte(*it.sptep)) |
| 659 | continue; |
| 660 | |
| 661 | direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); |
| 662 | |
| 663 | sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1, |
| 664 | true, direct_access); |
| 665 | link_shadow_page(vcpu, it.sptep, sp); |
| 666 | } |
| 667 | |
| 668 | clear_sp_write_flooding_count(it.sptep); |
| 669 | ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, |
| 670 | it.level, gw->gfn, pfn, prefault, map_writable); |
| 671 | FNAME(pte_prefetch)(vcpu, gw, it.sptep); |
| 672 | |
| 673 | return ret; |
| 674 | |
| 675 | out_gpte_changed: |
| 676 | kvm_release_pfn_clean(pfn); |
| 677 | return RET_PF_RETRY; |
| 678 | } |
| 679 | |
| 680 | /* |
| 681 | * To see whether the mapped gfn can write its page table in the current |
| 682 | * mapping. |
| 683 | * |
| 684 | * It is the helper function of FNAME(page_fault). When guest uses large page |
| 685 | * size to map the writable gfn which is used as current page table, we should |
| 686 | * force kvm to use small page size to map it because new shadow page will be |
| 687 | * created when kvm establishes shadow page table that stop kvm using large |
| 688 | * page size. Do it early can avoid unnecessary #PF and emulation. |
| 689 | * |
| 690 | * @write_fault_to_shadow_pgtable will return true if the fault gfn is |
| 691 | * currently used as its page table. |
| 692 | * |
| 693 | * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok |
| 694 | * since the PDPT is always shadowed, that means, we can not use large page |
| 695 | * size to map the gfn which is used as PDPT. |
| 696 | */ |
| 697 | static bool |
| 698 | FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu, |
| 699 | struct guest_walker *walker, int user_fault, |
| 700 | bool *write_fault_to_shadow_pgtable) |
| 701 | { |
| 702 | int level; |
| 703 | gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1); |
| 704 | bool self_changed = false; |
| 705 | |
| 706 | if (!(walker->pte_access & ACC_WRITE_MASK || |
| 707 | (!is_write_protection(vcpu) && !user_fault))) |
| 708 | return false; |
| 709 | |
| 710 | for (level = walker->level; level <= walker->max_level; level++) { |
| 711 | gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1]; |
| 712 | |
| 713 | self_changed |= !(gfn & mask); |
| 714 | *write_fault_to_shadow_pgtable |= !gfn; |
| 715 | } |
| 716 | |
| 717 | return self_changed; |
| 718 | } |
| 719 | |
| 720 | /* |
| 721 | * Page fault handler. There are several causes for a page fault: |
| 722 | * - there is no shadow pte for the guest pte |
| 723 | * - write access through a shadow pte marked read only so that we can set |
| 724 | * the dirty bit |
| 725 | * - write access to a shadow pte marked read only so we can update the page |
| 726 | * dirty bitmap, when userspace requests it |
| 727 | * - mmio access; in this case we will never install a present shadow pte |
| 728 | * - normal guest page fault due to the guest pte marked not present, not |
| 729 | * writable, or not executable |
| 730 | * |
| 731 | * Returns: 1 if we need to emulate the instruction, 0 otherwise, or |
| 732 | * a negative value on error. |
| 733 | */ |
| 734 | static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code, |
| 735 | bool prefault) |
| 736 | { |
| 737 | int write_fault = error_code & PFERR_WRITE_MASK; |
| 738 | int user_fault = error_code & PFERR_USER_MASK; |
| 739 | struct guest_walker walker; |
| 740 | int r; |
| 741 | kvm_pfn_t pfn; |
| 742 | int level = PT_PAGE_TABLE_LEVEL; |
| 743 | bool force_pt_level = false; |
| 744 | unsigned long mmu_seq; |
| 745 | bool map_writable, is_self_change_mapping; |
| 746 | |
| 747 | pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code); |
| 748 | |
| 749 | r = mmu_topup_memory_caches(vcpu); |
| 750 | if (r) |
| 751 | return r; |
| 752 | |
| 753 | /* |
| 754 | * If PFEC.RSVD is set, this is a shadow page fault. |
| 755 | * The bit needs to be cleared before walking guest page tables. |
| 756 | */ |
| 757 | error_code &= ~PFERR_RSVD_MASK; |
| 758 | |
| 759 | /* |
| 760 | * Look up the guest pte for the faulting address. |
| 761 | */ |
| 762 | r = FNAME(walk_addr)(&walker, vcpu, addr, error_code); |
| 763 | |
| 764 | /* |
| 765 | * The page is not mapped by the guest. Let the guest handle it. |
| 766 | */ |
| 767 | if (!r) { |
| 768 | pgprintk("%s: guest page fault\n", __func__); |
| 769 | if (!prefault) |
| 770 | inject_page_fault(vcpu, &walker.fault); |
| 771 | |
| 772 | return RET_PF_RETRY; |
| 773 | } |
| 774 | |
| 775 | if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) { |
| 776 | shadow_page_table_clear_flood(vcpu, addr); |
| 777 | return RET_PF_EMULATE; |
| 778 | } |
| 779 | |
| 780 | vcpu->arch.write_fault_to_shadow_pgtable = false; |
| 781 | |
| 782 | is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu, |
| 783 | &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable); |
| 784 | |
| 785 | if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) { |
| 786 | level = mapping_level(vcpu, walker.gfn, &force_pt_level); |
| 787 | if (likely(!force_pt_level)) { |
| 788 | level = min(walker.level, level); |
| 789 | walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1); |
| 790 | } |
| 791 | } else |
| 792 | force_pt_level = true; |
| 793 | |
| 794 | mmu_seq = vcpu->kvm->mmu_notifier_seq; |
| 795 | smp_rmb(); |
| 796 | |
| 797 | if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault, |
| 798 | &map_writable)) |
| 799 | return RET_PF_RETRY; |
| 800 | |
| 801 | if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r)) |
| 802 | return r; |
| 803 | |
| 804 | /* |
| 805 | * Do not change pte_access if the pfn is a mmio page, otherwise |
| 806 | * we will cache the incorrect access into mmio spte. |
| 807 | */ |
| 808 | if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) && |
| 809 | !is_write_protection(vcpu) && !user_fault && |
| 810 | !is_noslot_pfn(pfn)) { |
| 811 | walker.pte_access |= ACC_WRITE_MASK; |
| 812 | walker.pte_access &= ~ACC_USER_MASK; |
| 813 | |
| 814 | /* |
| 815 | * If we converted a user page to a kernel page, |
| 816 | * so that the kernel can write to it when cr0.wp=0, |
| 817 | * then we should prevent the kernel from executing it |
| 818 | * if SMEP is enabled. |
| 819 | */ |
| 820 | if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)) |
| 821 | walker.pte_access &= ~ACC_EXEC_MASK; |
| 822 | } |
| 823 | |
| 824 | spin_lock(&vcpu->kvm->mmu_lock); |
| 825 | if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) |
| 826 | goto out_unlock; |
| 827 | |
| 828 | kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); |
| 829 | if (make_mmu_pages_available(vcpu) < 0) |
| 830 | goto out_unlock; |
| 831 | if (!force_pt_level) |
| 832 | transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level); |
| 833 | r = FNAME(fetch)(vcpu, addr, &walker, write_fault, |
| 834 | level, pfn, map_writable, prefault); |
| 835 | ++vcpu->stat.pf_fixed; |
| 836 | kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); |
| 837 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 838 | |
| 839 | return r; |
| 840 | |
| 841 | out_unlock: |
| 842 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 843 | kvm_release_pfn_clean(pfn); |
| 844 | return RET_PF_RETRY; |
| 845 | } |
| 846 | |
| 847 | static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) |
| 848 | { |
| 849 | int offset = 0; |
| 850 | |
| 851 | WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); |
| 852 | |
| 853 | if (PTTYPE == 32) |
| 854 | offset = sp->role.quadrant << PT64_LEVEL_BITS; |
| 855 | |
| 856 | return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); |
| 857 | } |
| 858 | |
| 859 | static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa) |
| 860 | { |
| 861 | struct kvm_shadow_walk_iterator iterator; |
| 862 | struct kvm_mmu_page *sp; |
| 863 | int level; |
| 864 | u64 *sptep; |
| 865 | |
| 866 | vcpu_clear_mmio_info(vcpu, gva); |
| 867 | |
| 868 | /* |
| 869 | * No need to check return value here, rmap_can_add() can |
| 870 | * help us to skip pte prefetch later. |
| 871 | */ |
| 872 | mmu_topup_memory_caches(vcpu); |
| 873 | |
| 874 | if (!VALID_PAGE(root_hpa)) { |
| 875 | WARN_ON(1); |
| 876 | return; |
| 877 | } |
| 878 | |
| 879 | spin_lock(&vcpu->kvm->mmu_lock); |
| 880 | for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) { |
| 881 | level = iterator.level; |
| 882 | sptep = iterator.sptep; |
| 883 | |
| 884 | sp = page_header(__pa(sptep)); |
| 885 | if (is_last_spte(*sptep, level)) { |
| 886 | pt_element_t gpte; |
| 887 | gpa_t pte_gpa; |
| 888 | |
| 889 | if (!sp->unsync) |
| 890 | break; |
| 891 | |
| 892 | pte_gpa = FNAME(get_level1_sp_gpa)(sp); |
| 893 | pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); |
| 894 | |
| 895 | if (mmu_page_zap_pte(vcpu->kvm, sp, sptep)) |
| 896 | kvm_flush_remote_tlbs(vcpu->kvm); |
| 897 | |
| 898 | if (!rmap_can_add(vcpu)) |
| 899 | break; |
| 900 | |
| 901 | if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, |
| 902 | sizeof(pt_element_t))) |
| 903 | break; |
| 904 | |
| 905 | FNAME(update_pte)(vcpu, sp, sptep, &gpte); |
| 906 | } |
| 907 | |
| 908 | if (!is_shadow_present_pte(*sptep) || !sp->unsync_children) |
| 909 | break; |
| 910 | } |
| 911 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 912 | } |
| 913 | |
| 914 | static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access, |
| 915 | struct x86_exception *exception) |
| 916 | { |
| 917 | struct guest_walker walker; |
| 918 | gpa_t gpa = UNMAPPED_GVA; |
| 919 | int r; |
| 920 | |
| 921 | r = FNAME(walk_addr)(&walker, vcpu, vaddr, access); |
| 922 | |
| 923 | if (r) { |
| 924 | gpa = gfn_to_gpa(walker.gfn); |
| 925 | gpa |= vaddr & ~PAGE_MASK; |
| 926 | } else if (exception) |
| 927 | *exception = walker.fault; |
| 928 | |
| 929 | return gpa; |
| 930 | } |
| 931 | |
| 932 | #if PTTYPE != PTTYPE_EPT |
| 933 | static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr, |
| 934 | u32 access, |
| 935 | struct x86_exception *exception) |
| 936 | { |
| 937 | struct guest_walker walker; |
| 938 | gpa_t gpa = UNMAPPED_GVA; |
| 939 | int r; |
| 940 | |
| 941 | r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access); |
| 942 | |
| 943 | if (r) { |
| 944 | gpa = gfn_to_gpa(walker.gfn); |
| 945 | gpa |= vaddr & ~PAGE_MASK; |
| 946 | } else if (exception) |
| 947 | *exception = walker.fault; |
| 948 | |
| 949 | return gpa; |
| 950 | } |
| 951 | #endif |
| 952 | |
| 953 | /* |
| 954 | * Using the cached information from sp->gfns is safe because: |
| 955 | * - The spte has a reference to the struct page, so the pfn for a given gfn |
| 956 | * can't change unless all sptes pointing to it are nuked first. |
| 957 | * |
| 958 | * Note: |
| 959 | * We should flush all tlbs if spte is dropped even though guest is |
| 960 | * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page |
| 961 | * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't |
| 962 | * used by guest then tlbs are not flushed, so guest is allowed to access the |
| 963 | * freed pages. |
| 964 | * And we increase kvm->tlbs_dirty to delay tlbs flush in this case. |
| 965 | */ |
| 966 | static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) |
| 967 | { |
| 968 | int i, nr_present = 0; |
| 969 | bool host_writable; |
| 970 | gpa_t first_pte_gpa; |
| 971 | int set_spte_ret = 0; |
| 972 | |
| 973 | /* direct kvm_mmu_page can not be unsync. */ |
| 974 | BUG_ON(sp->role.direct); |
| 975 | |
| 976 | first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); |
| 977 | |
| 978 | for (i = 0; i < PT64_ENT_PER_PAGE; i++) { |
| 979 | unsigned pte_access; |
| 980 | pt_element_t gpte; |
| 981 | gpa_t pte_gpa; |
| 982 | gfn_t gfn; |
| 983 | |
| 984 | if (!sp->spt[i]) |
| 985 | continue; |
| 986 | |
| 987 | pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); |
| 988 | |
| 989 | if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, |
| 990 | sizeof(pt_element_t))) |
| 991 | return 0; |
| 992 | |
| 993 | if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) { |
| 994 | /* |
| 995 | * Update spte before increasing tlbs_dirty to make |
| 996 | * sure no tlb flush is lost after spte is zapped; see |
| 997 | * the comments in kvm_flush_remote_tlbs(). |
| 998 | */ |
| 999 | smp_wmb(); |
| 1000 | vcpu->kvm->tlbs_dirty++; |
| 1001 | continue; |
| 1002 | } |
| 1003 | |
| 1004 | gfn = gpte_to_gfn(gpte); |
| 1005 | pte_access = sp->role.access; |
| 1006 | pte_access &= FNAME(gpte_access)(gpte); |
| 1007 | FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte); |
| 1008 | |
| 1009 | if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access, |
| 1010 | &nr_present)) |
| 1011 | continue; |
| 1012 | |
| 1013 | if (gfn != sp->gfns[i]) { |
| 1014 | drop_spte(vcpu->kvm, &sp->spt[i]); |
| 1015 | /* |
| 1016 | * The same as above where we are doing |
| 1017 | * prefetch_invalid_gpte(). |
| 1018 | */ |
| 1019 | smp_wmb(); |
| 1020 | vcpu->kvm->tlbs_dirty++; |
| 1021 | continue; |
| 1022 | } |
| 1023 | |
| 1024 | nr_present++; |
| 1025 | |
| 1026 | host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE; |
| 1027 | |
| 1028 | set_spte_ret |= set_spte(vcpu, &sp->spt[i], |
| 1029 | pte_access, PT_PAGE_TABLE_LEVEL, |
| 1030 | gfn, spte_to_pfn(sp->spt[i]), |
| 1031 | true, false, host_writable); |
| 1032 | } |
| 1033 | |
| 1034 | if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH) |
| 1035 | kvm_flush_remote_tlbs(vcpu->kvm); |
| 1036 | |
| 1037 | return nr_present; |
| 1038 | } |
| 1039 | |
| 1040 | #undef pt_element_t |
| 1041 | #undef guest_walker |
| 1042 | #undef FNAME |
| 1043 | #undef PT_BASE_ADDR_MASK |
| 1044 | #undef PT_INDEX |
| 1045 | #undef PT_LVL_ADDR_MASK |
| 1046 | #undef PT_LVL_OFFSET_MASK |
| 1047 | #undef PT_LEVEL_BITS |
| 1048 | #undef PT_MAX_FULL_LEVELS |
| 1049 | #undef gpte_to_gfn |
| 1050 | #undef gpte_to_gfn_lvl |
| 1051 | #undef CMPXCHG |
| 1052 | #undef PT_GUEST_ACCESSED_MASK |
| 1053 | #undef PT_GUEST_DIRTY_MASK |
| 1054 | #undef PT_GUEST_DIRTY_SHIFT |
| 1055 | #undef PT_GUEST_ACCESSED_SHIFT |
| 1056 | #undef PT_HAVE_ACCESSED_DIRTY |