blob: 97f63a84aa51f01829ff1eb989ebbabd758e1752 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS MMU handling in the KVM module.
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/highmem.h>
13#include <linux/kvm_host.h>
14#include <linux/uaccess.h>
15#include <asm/mmu_context.h>
16#include <asm/pgalloc.h>
17
18/*
19 * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
20 * for which pages need to be cached.
21 */
22#if defined(__PAGETABLE_PMD_FOLDED)
23#define KVM_MMU_CACHE_MIN_PAGES 1
24#else
25#define KVM_MMU_CACHE_MIN_PAGES 2
26#endif
27
28static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
29 int min, int max)
30{
31 void *page;
32
33 BUG_ON(max > KVM_NR_MEM_OBJS);
34 if (cache->nobjs >= min)
35 return 0;
36 while (cache->nobjs < max) {
37 page = (void *)__get_free_page(GFP_KERNEL);
38 if (!page)
39 return -ENOMEM;
40 cache->objects[cache->nobjs++] = page;
41 }
42 return 0;
43}
44
45static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
46{
47 while (mc->nobjs)
48 free_page((unsigned long)mc->objects[--mc->nobjs]);
49}
50
51static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
52{
53 void *p;
54
55 BUG_ON(!mc || !mc->nobjs);
56 p = mc->objects[--mc->nobjs];
57 return p;
58}
59
60void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
61{
62 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
63}
64
65/**
66 * kvm_pgd_init() - Initialise KVM GPA page directory.
67 * @page: Pointer to page directory (PGD) for KVM GPA.
68 *
69 * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
70 * representing no mappings. This is similar to pgd_init(), however it
71 * initialises all the page directory pointers, not just the ones corresponding
72 * to the userland address space (since it is for the guest physical address
73 * space rather than a virtual address space).
74 */
75static void kvm_pgd_init(void *page)
76{
77 unsigned long *p, *end;
78 unsigned long entry;
79
80#ifdef __PAGETABLE_PMD_FOLDED
81 entry = (unsigned long)invalid_pte_table;
82#else
83 entry = (unsigned long)invalid_pmd_table;
84#endif
85
86 p = (unsigned long *)page;
87 end = p + PTRS_PER_PGD;
88
89 do {
90 p[0] = entry;
91 p[1] = entry;
92 p[2] = entry;
93 p[3] = entry;
94 p[4] = entry;
95 p += 8;
96 p[-3] = entry;
97 p[-2] = entry;
98 p[-1] = entry;
99 } while (p != end);
100}
101
102/**
103 * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
104 *
105 * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
106 * to host physical page mappings.
107 *
108 * Returns: Pointer to new KVM GPA page directory.
109 * NULL on allocation failure.
110 */
111pgd_t *kvm_pgd_alloc(void)
112{
113 pgd_t *ret;
114
115 ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
116 if (ret)
117 kvm_pgd_init(ret);
118
119 return ret;
120}
121
122/**
123 * kvm_mips_walk_pgd() - Walk page table with optional allocation.
124 * @pgd: Page directory pointer.
125 * @addr: Address to index page table using.
126 * @cache: MMU page cache to allocate new page tables from, or NULL.
127 *
128 * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
129 * address @addr. If page tables don't exist for @addr, they will be created
130 * from the MMU cache if @cache is not NULL.
131 *
132 * Returns: Pointer to pte_t corresponding to @addr.
133 * NULL if a page table doesn't exist for @addr and !@cache.
134 * NULL if a page table allocation failed.
135 */
136static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
137 unsigned long addr)
138{
139 pud_t *pud;
140 pmd_t *pmd;
141
142 pgd += pgd_index(addr);
143 if (pgd_none(*pgd)) {
144 /* Not used on MIPS yet */
145 BUG();
146 return NULL;
147 }
148 pud = pud_offset(pgd, addr);
149 if (pud_none(*pud)) {
150 pmd_t *new_pmd;
151
152 if (!cache)
153 return NULL;
154 new_pmd = mmu_memory_cache_alloc(cache);
155 pmd_init((unsigned long)new_pmd,
156 (unsigned long)invalid_pte_table);
157 pud_populate(NULL, pud, new_pmd);
158 }
159 pmd = pmd_offset(pud, addr);
160 if (pmd_none(*pmd)) {
161 pte_t *new_pte;
162
163 if (!cache)
164 return NULL;
165 new_pte = mmu_memory_cache_alloc(cache);
166 clear_page(new_pte);
167 pmd_populate_kernel(NULL, pmd, new_pte);
168 }
169 return pte_offset(pmd, addr);
170}
171
172/* Caller must hold kvm->mm_lock */
173static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
174 struct kvm_mmu_memory_cache *cache,
175 unsigned long addr)
176{
177 return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
178}
179
180/*
181 * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
182 * Flush a range of guest physical address space from the VM's GPA page tables.
183 */
184
185static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
186 unsigned long end_gpa)
187{
188 int i_min = __pte_offset(start_gpa);
189 int i_max = __pte_offset(end_gpa);
190 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
191 int i;
192
193 for (i = i_min; i <= i_max; ++i) {
194 if (!pte_present(pte[i]))
195 continue;
196
197 set_pte(pte + i, __pte(0));
198 }
199 return safe_to_remove;
200}
201
202static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
203 unsigned long end_gpa)
204{
205 pte_t *pte;
206 unsigned long end = ~0ul;
207 int i_min = __pmd_offset(start_gpa);
208 int i_max = __pmd_offset(end_gpa);
209 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
210 int i;
211
212 for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
213 if (!pmd_present(pmd[i]))
214 continue;
215
216 pte = pte_offset(pmd + i, 0);
217 if (i == i_max)
218 end = end_gpa;
219
220 if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
221 pmd_clear(pmd + i);
222 pte_free_kernel(NULL, pte);
223 } else {
224 safe_to_remove = false;
225 }
226 }
227 return safe_to_remove;
228}
229
230static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
231 unsigned long end_gpa)
232{
233 pmd_t *pmd;
234 unsigned long end = ~0ul;
235 int i_min = __pud_offset(start_gpa);
236 int i_max = __pud_offset(end_gpa);
237 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
238 int i;
239
240 for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
241 if (!pud_present(pud[i]))
242 continue;
243
244 pmd = pmd_offset(pud + i, 0);
245 if (i == i_max)
246 end = end_gpa;
247
248 if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
249 pud_clear(pud + i);
250 pmd_free(NULL, pmd);
251 } else {
252 safe_to_remove = false;
253 }
254 }
255 return safe_to_remove;
256}
257
258static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
259 unsigned long end_gpa)
260{
261 pud_t *pud;
262 unsigned long end = ~0ul;
263 int i_min = pgd_index(start_gpa);
264 int i_max = pgd_index(end_gpa);
265 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
266 int i;
267
268 for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
269 if (!pgd_present(pgd[i]))
270 continue;
271
272 pud = pud_offset(pgd + i, 0);
273 if (i == i_max)
274 end = end_gpa;
275
276 if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
277 pgd_clear(pgd + i);
278 pud_free(NULL, pud);
279 } else {
280 safe_to_remove = false;
281 }
282 }
283 return safe_to_remove;
284}
285
286/**
287 * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
288 * @kvm: KVM pointer.
289 * @start_gfn: Guest frame number of first page in GPA range to flush.
290 * @end_gfn: Guest frame number of last page in GPA range to flush.
291 *
292 * Flushes a range of GPA mappings from the GPA page tables.
293 *
294 * The caller must hold the @kvm->mmu_lock spinlock.
295 *
296 * Returns: Whether its safe to remove the top level page directory because
297 * all lower levels have been removed.
298 */
299bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
300{
301 return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
302 start_gfn << PAGE_SHIFT,
303 end_gfn << PAGE_SHIFT);
304}
305
306#define BUILD_PTE_RANGE_OP(name, op) \
307static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start, \
308 unsigned long end) \
309{ \
310 int ret = 0; \
311 int i_min = __pte_offset(start); \
312 int i_max = __pte_offset(end); \
313 int i; \
314 pte_t old, new; \
315 \
316 for (i = i_min; i <= i_max; ++i) { \
317 if (!pte_present(pte[i])) \
318 continue; \
319 \
320 old = pte[i]; \
321 new = op(old); \
322 if (pte_val(new) == pte_val(old)) \
323 continue; \
324 set_pte(pte + i, new); \
325 ret = 1; \
326 } \
327 return ret; \
328} \
329 \
330/* returns true if anything was done */ \
331static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start, \
332 unsigned long end) \
333{ \
334 int ret = 0; \
335 pte_t *pte; \
336 unsigned long cur_end = ~0ul; \
337 int i_min = __pmd_offset(start); \
338 int i_max = __pmd_offset(end); \
339 int i; \
340 \
341 for (i = i_min; i <= i_max; ++i, start = 0) { \
342 if (!pmd_present(pmd[i])) \
343 continue; \
344 \
345 pte = pte_offset(pmd + i, 0); \
346 if (i == i_max) \
347 cur_end = end; \
348 \
349 ret |= kvm_mips_##name##_pte(pte, start, cur_end); \
350 } \
351 return ret; \
352} \
353 \
354static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start, \
355 unsigned long end) \
356{ \
357 int ret = 0; \
358 pmd_t *pmd; \
359 unsigned long cur_end = ~0ul; \
360 int i_min = __pud_offset(start); \
361 int i_max = __pud_offset(end); \
362 int i; \
363 \
364 for (i = i_min; i <= i_max; ++i, start = 0) { \
365 if (!pud_present(pud[i])) \
366 continue; \
367 \
368 pmd = pmd_offset(pud + i, 0); \
369 if (i == i_max) \
370 cur_end = end; \
371 \
372 ret |= kvm_mips_##name##_pmd(pmd, start, cur_end); \
373 } \
374 return ret; \
375} \
376 \
377static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start, \
378 unsigned long end) \
379{ \
380 int ret = 0; \
381 pud_t *pud; \
382 unsigned long cur_end = ~0ul; \
383 int i_min = pgd_index(start); \
384 int i_max = pgd_index(end); \
385 int i; \
386 \
387 for (i = i_min; i <= i_max; ++i, start = 0) { \
388 if (!pgd_present(pgd[i])) \
389 continue; \
390 \
391 pud = pud_offset(pgd + i, 0); \
392 if (i == i_max) \
393 cur_end = end; \
394 \
395 ret |= kvm_mips_##name##_pud(pud, start, cur_end); \
396 } \
397 return ret; \
398}
399
400/*
401 * kvm_mips_mkclean_gpa_pt.
402 * Mark a range of guest physical address space clean (writes fault) in the VM's
403 * GPA page table to allow dirty page tracking.
404 */
405
406BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
407
408/**
409 * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
410 * @kvm: KVM pointer.
411 * @start_gfn: Guest frame number of first page in GPA range to flush.
412 * @end_gfn: Guest frame number of last page in GPA range to flush.
413 *
414 * Make a range of GPA mappings clean so that guest writes will fault and
415 * trigger dirty page logging.
416 *
417 * The caller must hold the @kvm->mmu_lock spinlock.
418 *
419 * Returns: Whether any GPA mappings were modified, which would require
420 * derived mappings (GVA page tables & TLB enties) to be
421 * invalidated.
422 */
423int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
424{
425 return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
426 start_gfn << PAGE_SHIFT,
427 end_gfn << PAGE_SHIFT);
428}
429
430/**
431 * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
432 * @kvm: The KVM pointer
433 * @slot: The memory slot associated with mask
434 * @gfn_offset: The gfn offset in memory slot
435 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
436 * slot to be write protected
437 *
438 * Walks bits set in mask write protects the associated pte's. Caller must
439 * acquire @kvm->mmu_lock.
440 */
441void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
442 struct kvm_memory_slot *slot,
443 gfn_t gfn_offset, unsigned long mask)
444{
445 gfn_t base_gfn = slot->base_gfn + gfn_offset;
446 gfn_t start = base_gfn + __ffs(mask);
447 gfn_t end = base_gfn + __fls(mask);
448
449 kvm_mips_mkclean_gpa_pt(kvm, start, end);
450}
451
452/*
453 * kvm_mips_mkold_gpa_pt.
454 * Mark a range of guest physical address space old (all accesses fault) in the
455 * VM's GPA page table to allow detection of commonly used pages.
456 */
457
458BUILD_PTE_RANGE_OP(mkold, pte_mkold)
459
460static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
461 gfn_t end_gfn)
462{
463 return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
464 start_gfn << PAGE_SHIFT,
465 end_gfn << PAGE_SHIFT);
466}
467
468static int handle_hva_to_gpa(struct kvm *kvm,
469 unsigned long start,
470 unsigned long end,
471 int (*handler)(struct kvm *kvm, gfn_t gfn,
472 gpa_t gfn_end,
473 struct kvm_memory_slot *memslot,
474 void *data),
475 void *data)
476{
477 struct kvm_memslots *slots;
478 struct kvm_memory_slot *memslot;
479 int ret = 0;
480
481 slots = kvm_memslots(kvm);
482
483 /* we only care about the pages that the guest sees */
484 kvm_for_each_memslot(memslot, slots) {
485 unsigned long hva_start, hva_end;
486 gfn_t gfn, gfn_end;
487
488 hva_start = max(start, memslot->userspace_addr);
489 hva_end = min(end, memslot->userspace_addr +
490 (memslot->npages << PAGE_SHIFT));
491 if (hva_start >= hva_end)
492 continue;
493
494 /*
495 * {gfn(page) | page intersects with [hva_start, hva_end)} =
496 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
497 */
498 gfn = hva_to_gfn_memslot(hva_start, memslot);
499 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
500
501 ret |= handler(kvm, gfn, gfn_end, memslot, data);
502 }
503
504 return ret;
505}
506
507
508static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
509 struct kvm_memory_slot *memslot, void *data)
510{
511 kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
512 return 1;
513}
514
Olivier Deprez0e641232021-09-23 10:07:05 +0200515int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
516 unsigned flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000517{
518 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
519
520 kvm_mips_callbacks->flush_shadow_all(kvm);
521 return 0;
522}
523
524static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
525 struct kvm_memory_slot *memslot, void *data)
526{
527 gpa_t gpa = gfn << PAGE_SHIFT;
528 pte_t hva_pte = *(pte_t *)data;
529 pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
530 pte_t old_pte;
531
532 if (!gpa_pte)
533 return 0;
534
535 /* Mapping may need adjusting depending on memslot flags */
536 old_pte = *gpa_pte;
537 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
538 hva_pte = pte_mkclean(hva_pte);
539 else if (memslot->flags & KVM_MEM_READONLY)
540 hva_pte = pte_wrprotect(hva_pte);
541
542 set_pte(gpa_pte, hva_pte);
543
544 /* Replacing an absent or old page doesn't need flushes */
545 if (!pte_present(old_pte) || !pte_young(old_pte))
546 return 0;
547
548 /* Pages swapped, aged, moved, or cleaned require flushes */
549 return !pte_present(hva_pte) ||
550 !pte_young(hva_pte) ||
551 pte_pfn(old_pte) != pte_pfn(hva_pte) ||
552 (pte_dirty(old_pte) && !pte_dirty(hva_pte));
553}
554
David Brazdil0f672f62019-12-10 10:32:29 +0000555int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000556{
557 unsigned long end = hva + PAGE_SIZE;
558 int ret;
559
560 ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
561 if (ret)
562 kvm_mips_callbacks->flush_shadow_all(kvm);
David Brazdil0f672f62019-12-10 10:32:29 +0000563 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000564}
565
566static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
567 struct kvm_memory_slot *memslot, void *data)
568{
569 return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
570}
571
572static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
573 struct kvm_memory_slot *memslot, void *data)
574{
575 gpa_t gpa = gfn << PAGE_SHIFT;
576 pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
577
578 if (!gpa_pte)
579 return 0;
580 return pte_young(*gpa_pte);
581}
582
583int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
584{
585 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
586}
587
588int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
589{
590 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
591}
592
593/**
594 * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
595 * @vcpu: VCPU pointer.
596 * @gpa: Guest physical address of fault.
597 * @write_fault: Whether the fault was due to a write.
598 * @out_entry: New PTE for @gpa (written on success unless NULL).
599 * @out_buddy: New PTE for @gpa's buddy (written on success unless
600 * NULL).
601 *
602 * Perform fast path GPA fault handling, doing all that can be done without
603 * calling into KVM. This handles marking old pages young (for idle page
604 * tracking), and dirtying of clean pages (for dirty page logging).
605 *
606 * Returns: 0 on success, in which case we can update derived mappings and
607 * resume guest execution.
608 * -EFAULT on failure due to absent GPA mapping or write to
609 * read-only page, in which case KVM must be consulted.
610 */
611static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
612 bool write_fault,
613 pte_t *out_entry, pte_t *out_buddy)
614{
615 struct kvm *kvm = vcpu->kvm;
616 gfn_t gfn = gpa >> PAGE_SHIFT;
617 pte_t *ptep;
618 kvm_pfn_t pfn = 0; /* silence bogus GCC warning */
619 bool pfn_valid = false;
620 int ret = 0;
621
622 spin_lock(&kvm->mmu_lock);
623
624 /* Fast path - just check GPA page table for an existing entry */
625 ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
626 if (!ptep || !pte_present(*ptep)) {
627 ret = -EFAULT;
628 goto out;
629 }
630
631 /* Track access to pages marked old */
632 if (!pte_young(*ptep)) {
633 set_pte(ptep, pte_mkyoung(*ptep));
634 pfn = pte_pfn(*ptep);
635 pfn_valid = true;
636 /* call kvm_set_pfn_accessed() after unlock */
637 }
638 if (write_fault && !pte_dirty(*ptep)) {
639 if (!pte_write(*ptep)) {
640 ret = -EFAULT;
641 goto out;
642 }
643
644 /* Track dirtying of writeable pages */
645 set_pte(ptep, pte_mkdirty(*ptep));
646 pfn = pte_pfn(*ptep);
647 mark_page_dirty(kvm, gfn);
648 kvm_set_pfn_dirty(pfn);
649 }
650
651 if (out_entry)
652 *out_entry = *ptep;
653 if (out_buddy)
654 *out_buddy = *ptep_buddy(ptep);
655
656out:
657 spin_unlock(&kvm->mmu_lock);
658 if (pfn_valid)
659 kvm_set_pfn_accessed(pfn);
660 return ret;
661}
662
663/**
664 * kvm_mips_map_page() - Map a guest physical page.
665 * @vcpu: VCPU pointer.
666 * @gpa: Guest physical address of fault.
667 * @write_fault: Whether the fault was due to a write.
668 * @out_entry: New PTE for @gpa (written on success unless NULL).
669 * @out_buddy: New PTE for @gpa's buddy (written on success unless
670 * NULL).
671 *
672 * Handle GPA faults by creating a new GPA mapping (or updating an existing
673 * one).
674 *
675 * This takes care of marking pages young or dirty (idle/dirty page tracking),
676 * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
677 * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
678 * caller.
679 *
680 * Returns: 0 on success, in which case the caller may use the @out_entry
681 * and @out_buddy PTEs to update derived mappings and resume guest
682 * execution.
683 * -EFAULT if there is no memory region at @gpa or a write was
684 * attempted to a read-only memory region. This is usually handled
685 * as an MMIO access.
686 */
687static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
688 bool write_fault,
689 pte_t *out_entry, pte_t *out_buddy)
690{
691 struct kvm *kvm = vcpu->kvm;
692 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
693 gfn_t gfn = gpa >> PAGE_SHIFT;
694 int srcu_idx, err;
695 kvm_pfn_t pfn;
696 pte_t *ptep, entry, old_pte;
697 bool writeable;
698 unsigned long prot_bits;
699 unsigned long mmu_seq;
700
701 /* Try the fast path to handle old / clean pages */
702 srcu_idx = srcu_read_lock(&kvm->srcu);
703 err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
704 out_buddy);
705 if (!err)
706 goto out;
707
708 /* We need a minimum of cached pages ready for page table creation */
709 err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
710 KVM_NR_MEM_OBJS);
711 if (err)
712 goto out;
713
714retry:
715 /*
716 * Used to check for invalidations in progress, of the pfn that is
717 * returned by pfn_to_pfn_prot below.
718 */
719 mmu_seq = kvm->mmu_notifier_seq;
720 /*
721 * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
722 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
723 * risk the page we get a reference to getting unmapped before we have a
724 * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
725 *
726 * This smp_rmb() pairs with the effective smp_wmb() of the combination
727 * of the pte_unmap_unlock() after the PTE is zapped, and the
728 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
729 * mmu_notifier_seq is incremented.
730 */
731 smp_rmb();
732
733 /* Slow path - ask KVM core whether we can access this GPA */
734 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
735 if (is_error_noslot_pfn(pfn)) {
736 err = -EFAULT;
737 goto out;
738 }
739
740 spin_lock(&kvm->mmu_lock);
741 /* Check if an invalidation has taken place since we got pfn */
742 if (mmu_notifier_retry(kvm, mmu_seq)) {
743 /*
744 * This can happen when mappings are changed asynchronously, but
745 * also synchronously if a COW is triggered by
746 * gfn_to_pfn_prot().
747 */
748 spin_unlock(&kvm->mmu_lock);
749 kvm_release_pfn_clean(pfn);
750 goto retry;
751 }
752
753 /* Ensure page tables are allocated */
754 ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
755
756 /* Set up the PTE */
757 prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
758 if (writeable) {
759 prot_bits |= _PAGE_WRITE;
760 if (write_fault) {
761 prot_bits |= __WRITEABLE;
762 mark_page_dirty(kvm, gfn);
763 kvm_set_pfn_dirty(pfn);
764 }
765 }
766 entry = pfn_pte(pfn, __pgprot(prot_bits));
767
768 /* Write the PTE */
769 old_pte = *ptep;
770 set_pte(ptep, entry);
771
772 err = 0;
773 if (out_entry)
774 *out_entry = *ptep;
775 if (out_buddy)
776 *out_buddy = *ptep_buddy(ptep);
777
778 spin_unlock(&kvm->mmu_lock);
779 kvm_release_pfn_clean(pfn);
780 kvm_set_pfn_accessed(pfn);
781out:
782 srcu_read_unlock(&kvm->srcu, srcu_idx);
783 return err;
784}
785
786static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
787 unsigned long addr)
788{
789 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
790 pgd_t *pgdp;
791 int ret;
792
793 /* We need a minimum of cached pages ready for page table creation */
794 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
795 KVM_NR_MEM_OBJS);
796 if (ret)
797 return NULL;
798
799 if (KVM_GUEST_KERNEL_MODE(vcpu))
800 pgdp = vcpu->arch.guest_kernel_mm.pgd;
801 else
802 pgdp = vcpu->arch.guest_user_mm.pgd;
803
804 return kvm_mips_walk_pgd(pgdp, memcache, addr);
805}
806
807void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
808 bool user)
809{
810 pgd_t *pgdp;
811 pte_t *ptep;
812
813 addr &= PAGE_MASK << 1;
814
815 pgdp = vcpu->arch.guest_kernel_mm.pgd;
816 ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
817 if (ptep) {
818 ptep[0] = pfn_pte(0, __pgprot(0));
819 ptep[1] = pfn_pte(0, __pgprot(0));
820 }
821
822 if (user) {
823 pgdp = vcpu->arch.guest_user_mm.pgd;
824 ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
825 if (ptep) {
826 ptep[0] = pfn_pte(0, __pgprot(0));
827 ptep[1] = pfn_pte(0, __pgprot(0));
828 }
829 }
830}
831
832/*
833 * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
834 * Flush a range of guest physical address space from the VM's GPA page tables.
835 */
836
837static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
838 unsigned long end_gva)
839{
840 int i_min = __pte_offset(start_gva);
841 int i_max = __pte_offset(end_gva);
842 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
843 int i;
844
845 /*
846 * There's no freeing to do, so there's no point clearing individual
847 * entries unless only part of the last level page table needs flushing.
848 */
849 if (safe_to_remove)
850 return true;
851
852 for (i = i_min; i <= i_max; ++i) {
853 if (!pte_present(pte[i]))
854 continue;
855
856 set_pte(pte + i, __pte(0));
857 }
858 return false;
859}
860
861static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
862 unsigned long end_gva)
863{
864 pte_t *pte;
865 unsigned long end = ~0ul;
866 int i_min = __pmd_offset(start_gva);
867 int i_max = __pmd_offset(end_gva);
868 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
869 int i;
870
871 for (i = i_min; i <= i_max; ++i, start_gva = 0) {
872 if (!pmd_present(pmd[i]))
873 continue;
874
875 pte = pte_offset(pmd + i, 0);
876 if (i == i_max)
877 end = end_gva;
878
879 if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
880 pmd_clear(pmd + i);
881 pte_free_kernel(NULL, pte);
882 } else {
883 safe_to_remove = false;
884 }
885 }
886 return safe_to_remove;
887}
888
889static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
890 unsigned long end_gva)
891{
892 pmd_t *pmd;
893 unsigned long end = ~0ul;
894 int i_min = __pud_offset(start_gva);
895 int i_max = __pud_offset(end_gva);
896 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
897 int i;
898
899 for (i = i_min; i <= i_max; ++i, start_gva = 0) {
900 if (!pud_present(pud[i]))
901 continue;
902
903 pmd = pmd_offset(pud + i, 0);
904 if (i == i_max)
905 end = end_gva;
906
907 if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
908 pud_clear(pud + i);
909 pmd_free(NULL, pmd);
910 } else {
911 safe_to_remove = false;
912 }
913 }
914 return safe_to_remove;
915}
916
917static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
918 unsigned long end_gva)
919{
920 pud_t *pud;
921 unsigned long end = ~0ul;
922 int i_min = pgd_index(start_gva);
923 int i_max = pgd_index(end_gva);
924 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
925 int i;
926
927 for (i = i_min; i <= i_max; ++i, start_gva = 0) {
928 if (!pgd_present(pgd[i]))
929 continue;
930
931 pud = pud_offset(pgd + i, 0);
932 if (i == i_max)
933 end = end_gva;
934
935 if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
936 pgd_clear(pgd + i);
937 pud_free(NULL, pud);
938 } else {
939 safe_to_remove = false;
940 }
941 }
942 return safe_to_remove;
943}
944
945void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
946{
947 if (flags & KMF_GPA) {
948 /* all of guest virtual address space could be affected */
949 if (flags & KMF_KERN)
950 /* useg, kseg0, seg2/3 */
951 kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
952 else
953 /* useg */
954 kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
955 } else {
956 /* useg */
957 kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
958
959 /* kseg2/3 */
960 if (flags & KMF_KERN)
961 kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
962 }
963}
964
965static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
966{
967 /*
968 * Don't leak writeable but clean entries from GPA page tables. We don't
969 * want the normal Linux tlbmod handler to handle dirtying when KVM
970 * accesses guest memory.
971 */
972 if (!pte_dirty(pte))
973 pte = pte_wrprotect(pte);
974
975 return pte;
976}
977
978static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
979{
980 /* Guest EntryLo overrides host EntryLo */
981 if (!(entrylo & ENTRYLO_D))
982 pte = pte_mkclean(pte);
983
984 return kvm_mips_gpa_pte_to_gva_unmapped(pte);
985}
986
987#ifdef CONFIG_KVM_MIPS_VZ
988int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
989 struct kvm_vcpu *vcpu,
990 bool write_fault)
991{
992 int ret;
993
994 ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
995 if (ret)
996 return ret;
997
998 /* Invalidate this entry in the TLB */
999 return kvm_vz_host_tlb_inv(vcpu, badvaddr);
1000}
1001#endif
1002
1003/* XXXKYMA: Must be called with interrupts disabled */
1004int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
1005 struct kvm_vcpu *vcpu,
1006 bool write_fault)
1007{
1008 unsigned long gpa;
1009 pte_t pte_gpa[2], *ptep_gva;
1010 int idx;
1011
1012 if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
1013 kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
1014 kvm_mips_dump_host_tlbs();
1015 return -1;
1016 }
1017
1018 /* Get the GPA page table entry */
1019 gpa = KVM_GUEST_CPHYSADDR(badvaddr);
1020 idx = (badvaddr >> PAGE_SHIFT) & 1;
1021 if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
1022 &pte_gpa[!idx]) < 0)
1023 return -1;
1024
1025 /* Get the GVA page table entry */
1026 ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
1027 if (!ptep_gva) {
1028 kvm_err("No ptep for gva %lx\n", badvaddr);
1029 return -1;
1030 }
1031
1032 /* Copy a pair of entries from GPA page table to GVA page table */
1033 ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
1034 ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
1035
1036 /* Invalidate this entry in the TLB, guest kernel ASID only */
1037 kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1038 return 0;
1039}
1040
1041int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
1042 struct kvm_mips_tlb *tlb,
1043 unsigned long gva,
1044 bool write_fault)
1045{
1046 struct kvm *kvm = vcpu->kvm;
1047 long tlb_lo[2];
1048 pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
1049 unsigned int idx = TLB_LO_IDX(*tlb, gva);
1050 bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
1051
1052 tlb_lo[0] = tlb->tlb_lo[0];
1053 tlb_lo[1] = tlb->tlb_lo[1];
1054
1055 /*
1056 * The commpage address must not be mapped to anything else if the guest
1057 * TLB contains entries nearby, or commpage accesses will break.
1058 */
1059 if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
1060 tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
1061
1062 /* Get the GPA page table entry */
1063 if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
1064 write_fault, &pte_gpa[idx], NULL) < 0)
1065 return -1;
1066
1067 /* And its GVA buddy's GPA page table entry if it also exists */
1068 pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
1069 if (tlb_lo[!idx] & ENTRYLO_V) {
1070 spin_lock(&kvm->mmu_lock);
1071 ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
1072 mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
1073 if (ptep_buddy)
1074 pte_gpa[!idx] = *ptep_buddy;
1075 spin_unlock(&kvm->mmu_lock);
1076 }
1077
1078 /* Get the GVA page table entry pair */
1079 ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
1080 if (!ptep_gva) {
1081 kvm_err("No ptep for gva %lx\n", gva);
1082 return -1;
1083 }
1084
1085 /* Copy a pair of entries from GPA page table to GVA page table */
1086 ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
1087 ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
1088
1089 /* Invalidate this entry in the TLB, current guest mode ASID only */
1090 kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
1091
1092 kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
1093 tlb->tlb_lo[0], tlb->tlb_lo[1]);
1094
1095 return 0;
1096}
1097
1098int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
1099 struct kvm_vcpu *vcpu)
1100{
1101 kvm_pfn_t pfn;
1102 pte_t *ptep;
1103
1104 ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
1105 if (!ptep) {
1106 kvm_err("No ptep for commpage %lx\n", badvaddr);
1107 return -1;
1108 }
1109
1110 pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
1111 /* Also set valid and dirty, so refill handler doesn't have to */
1112 *ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
1113
1114 /* Invalidate this entry in the TLB, guest kernel ASID only */
1115 kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1116 return 0;
1117}
1118
1119/**
1120 * kvm_mips_migrate_count() - Migrate timer.
1121 * @vcpu: Virtual CPU.
1122 *
1123 * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
1124 * if it was running prior to being cancelled.
1125 *
1126 * Must be called when the VCPU is migrated to a different CPU to ensure that
1127 * timer expiry during guest execution interrupts the guest and causes the
1128 * interrupt to be delivered in a timely manner.
1129 */
1130static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
1131{
1132 if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
1133 hrtimer_restart(&vcpu->arch.comparecount_timer);
1134}
1135
1136/* Restore ASID once we are scheduled back after preemption */
1137void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1138{
1139 unsigned long flags;
1140
1141 kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
1142
1143 local_irq_save(flags);
1144
1145 vcpu->cpu = cpu;
1146 if (vcpu->arch.last_sched_cpu != cpu) {
1147 kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
1148 vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
1149 /*
1150 * Migrate the timer interrupt to the current CPU so that it
1151 * always interrupts the guest and synchronously triggers a
1152 * guest timer interrupt.
1153 */
1154 kvm_mips_migrate_count(vcpu);
1155 }
1156
1157 /* restore guest state to registers */
1158 kvm_mips_callbacks->vcpu_load(vcpu, cpu);
1159
1160 local_irq_restore(flags);
1161}
1162
1163/* ASID can change if another task is scheduled during preemption */
1164void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1165{
1166 unsigned long flags;
1167 int cpu;
1168
1169 local_irq_save(flags);
1170
1171 cpu = smp_processor_id();
1172 vcpu->arch.last_sched_cpu = cpu;
1173 vcpu->cpu = -1;
1174
1175 /* save guest state in registers */
1176 kvm_mips_callbacks->vcpu_put(vcpu, cpu);
1177
1178 local_irq_restore(flags);
1179}
1180
1181/**
1182 * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
1183 * @vcpu: Virtual CPU.
1184 * @gva: Guest virtual address to be accessed.
1185 * @write: True if write attempted (must be dirtied and made writable).
1186 *
1187 * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
1188 * dirtying the page if @write so that guest instructions can be modified.
1189 *
1190 * Returns: KVM_MIPS_MAPPED on success.
1191 * KVM_MIPS_GVA if bad guest virtual address.
1192 * KVM_MIPS_GPA if bad guest physical address.
1193 * KVM_MIPS_TLB if guest TLB not present.
1194 * KVM_MIPS_TLBINV if guest TLB present but not valid.
1195 * KVM_MIPS_TLBMOD if guest TLB read only.
1196 */
1197enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
1198 unsigned long gva,
1199 bool write)
1200{
1201 struct mips_coproc *cop0 = vcpu->arch.cop0;
1202 struct kvm_mips_tlb *tlb;
1203 int index;
1204
1205 if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
1206 if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
1207 return KVM_MIPS_GPA;
1208 } else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
1209 KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
1210 /* Address should be in the guest TLB */
1211 index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
1212 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
1213 if (index < 0)
1214 return KVM_MIPS_TLB;
1215 tlb = &vcpu->arch.guest_tlb[index];
1216
1217 /* Entry should be valid, and dirty for writes */
1218 if (!TLB_IS_VALID(*tlb, gva))
1219 return KVM_MIPS_TLBINV;
1220 if (write && !TLB_IS_DIRTY(*tlb, gva))
1221 return KVM_MIPS_TLBMOD;
1222
1223 if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
1224 return KVM_MIPS_GPA;
1225 } else {
1226 return KVM_MIPS_GVA;
1227 }
1228
1229 return KVM_MIPS_MAPPED;
1230}
1231
1232int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
1233{
1234 int err;
1235
1236 if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
1237 "Expect BadInstr/BadInstrP registers to be used with VZ\n"))
1238 return -EINVAL;
1239
1240retry:
1241 kvm_trap_emul_gva_lockless_begin(vcpu);
1242 err = get_user(*out, opc);
1243 kvm_trap_emul_gva_lockless_end(vcpu);
1244
1245 if (unlikely(err)) {
1246 /*
1247 * Try to handle the fault, maybe we just raced with a GVA
1248 * invalidation.
1249 */
1250 err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
1251 false);
1252 if (unlikely(err)) {
1253 kvm_err("%s: illegal address: %p\n",
1254 __func__, opc);
1255 return -EFAULT;
1256 }
1257
1258 /* Hopefully it'll work now */
1259 goto retry;
1260 }
1261 return 0;
1262}