Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * This file is subject to the terms and conditions of the GNU General Public |
| 3 | * License. See the file "COPYING" in the main directory of this archive |
| 4 | * for more details. |
| 5 | * |
| 6 | * KVM/MIPS MMU handling in the KVM module. |
| 7 | * |
| 8 | * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. |
| 9 | * Authors: Sanjay Lal <sanjayl@kymasys.com> |
| 10 | */ |
| 11 | |
| 12 | #include <linux/highmem.h> |
| 13 | #include <linux/kvm_host.h> |
| 14 | #include <linux/uaccess.h> |
| 15 | #include <asm/mmu_context.h> |
| 16 | #include <asm/pgalloc.h> |
| 17 | |
| 18 | /* |
| 19 | * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels |
| 20 | * for which pages need to be cached. |
| 21 | */ |
| 22 | #if defined(__PAGETABLE_PMD_FOLDED) |
| 23 | #define KVM_MMU_CACHE_MIN_PAGES 1 |
| 24 | #else |
| 25 | #define KVM_MMU_CACHE_MIN_PAGES 2 |
| 26 | #endif |
| 27 | |
| 28 | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, |
| 29 | int min, int max) |
| 30 | { |
| 31 | void *page; |
| 32 | |
| 33 | BUG_ON(max > KVM_NR_MEM_OBJS); |
| 34 | if (cache->nobjs >= min) |
| 35 | return 0; |
| 36 | while (cache->nobjs < max) { |
| 37 | page = (void *)__get_free_page(GFP_KERNEL); |
| 38 | if (!page) |
| 39 | return -ENOMEM; |
| 40 | cache->objects[cache->nobjs++] = page; |
| 41 | } |
| 42 | return 0; |
| 43 | } |
| 44 | |
| 45 | static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) |
| 46 | { |
| 47 | while (mc->nobjs) |
| 48 | free_page((unsigned long)mc->objects[--mc->nobjs]); |
| 49 | } |
| 50 | |
| 51 | static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) |
| 52 | { |
| 53 | void *p; |
| 54 | |
| 55 | BUG_ON(!mc || !mc->nobjs); |
| 56 | p = mc->objects[--mc->nobjs]; |
| 57 | return p; |
| 58 | } |
| 59 | |
| 60 | void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu) |
| 61 | { |
| 62 | mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); |
| 63 | } |
| 64 | |
| 65 | /** |
| 66 | * kvm_pgd_init() - Initialise KVM GPA page directory. |
| 67 | * @page: Pointer to page directory (PGD) for KVM GPA. |
| 68 | * |
| 69 | * Initialise a KVM GPA page directory with pointers to the invalid table, i.e. |
| 70 | * representing no mappings. This is similar to pgd_init(), however it |
| 71 | * initialises all the page directory pointers, not just the ones corresponding |
| 72 | * to the userland address space (since it is for the guest physical address |
| 73 | * space rather than a virtual address space). |
| 74 | */ |
| 75 | static void kvm_pgd_init(void *page) |
| 76 | { |
| 77 | unsigned long *p, *end; |
| 78 | unsigned long entry; |
| 79 | |
| 80 | #ifdef __PAGETABLE_PMD_FOLDED |
| 81 | entry = (unsigned long)invalid_pte_table; |
| 82 | #else |
| 83 | entry = (unsigned long)invalid_pmd_table; |
| 84 | #endif |
| 85 | |
| 86 | p = (unsigned long *)page; |
| 87 | end = p + PTRS_PER_PGD; |
| 88 | |
| 89 | do { |
| 90 | p[0] = entry; |
| 91 | p[1] = entry; |
| 92 | p[2] = entry; |
| 93 | p[3] = entry; |
| 94 | p[4] = entry; |
| 95 | p += 8; |
| 96 | p[-3] = entry; |
| 97 | p[-2] = entry; |
| 98 | p[-1] = entry; |
| 99 | } while (p != end); |
| 100 | } |
| 101 | |
| 102 | /** |
| 103 | * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. |
| 104 | * |
| 105 | * Allocate a blank KVM GPA page directory (PGD) for representing guest physical |
| 106 | * to host physical page mappings. |
| 107 | * |
| 108 | * Returns: Pointer to new KVM GPA page directory. |
| 109 | * NULL on allocation failure. |
| 110 | */ |
| 111 | pgd_t *kvm_pgd_alloc(void) |
| 112 | { |
| 113 | pgd_t *ret; |
| 114 | |
| 115 | ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER); |
| 116 | if (ret) |
| 117 | kvm_pgd_init(ret); |
| 118 | |
| 119 | return ret; |
| 120 | } |
| 121 | |
| 122 | /** |
| 123 | * kvm_mips_walk_pgd() - Walk page table with optional allocation. |
| 124 | * @pgd: Page directory pointer. |
| 125 | * @addr: Address to index page table using. |
| 126 | * @cache: MMU page cache to allocate new page tables from, or NULL. |
| 127 | * |
| 128 | * Walk the page tables pointed to by @pgd to find the PTE corresponding to the |
| 129 | * address @addr. If page tables don't exist for @addr, they will be created |
| 130 | * from the MMU cache if @cache is not NULL. |
| 131 | * |
| 132 | * Returns: Pointer to pte_t corresponding to @addr. |
| 133 | * NULL if a page table doesn't exist for @addr and !@cache. |
| 134 | * NULL if a page table allocation failed. |
| 135 | */ |
| 136 | static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache, |
| 137 | unsigned long addr) |
| 138 | { |
| 139 | pud_t *pud; |
| 140 | pmd_t *pmd; |
| 141 | |
| 142 | pgd += pgd_index(addr); |
| 143 | if (pgd_none(*pgd)) { |
| 144 | /* Not used on MIPS yet */ |
| 145 | BUG(); |
| 146 | return NULL; |
| 147 | } |
| 148 | pud = pud_offset(pgd, addr); |
| 149 | if (pud_none(*pud)) { |
| 150 | pmd_t *new_pmd; |
| 151 | |
| 152 | if (!cache) |
| 153 | return NULL; |
| 154 | new_pmd = mmu_memory_cache_alloc(cache); |
| 155 | pmd_init((unsigned long)new_pmd, |
| 156 | (unsigned long)invalid_pte_table); |
| 157 | pud_populate(NULL, pud, new_pmd); |
| 158 | } |
| 159 | pmd = pmd_offset(pud, addr); |
| 160 | if (pmd_none(*pmd)) { |
| 161 | pte_t *new_pte; |
| 162 | |
| 163 | if (!cache) |
| 164 | return NULL; |
| 165 | new_pte = mmu_memory_cache_alloc(cache); |
| 166 | clear_page(new_pte); |
| 167 | pmd_populate_kernel(NULL, pmd, new_pte); |
| 168 | } |
| 169 | return pte_offset(pmd, addr); |
| 170 | } |
| 171 | |
| 172 | /* Caller must hold kvm->mm_lock */ |
| 173 | static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm, |
| 174 | struct kvm_mmu_memory_cache *cache, |
| 175 | unsigned long addr) |
| 176 | { |
| 177 | return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr); |
| 178 | } |
| 179 | |
| 180 | /* |
| 181 | * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}. |
| 182 | * Flush a range of guest physical address space from the VM's GPA page tables. |
| 183 | */ |
| 184 | |
| 185 | static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa, |
| 186 | unsigned long end_gpa) |
| 187 | { |
| 188 | int i_min = __pte_offset(start_gpa); |
| 189 | int i_max = __pte_offset(end_gpa); |
| 190 | bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1); |
| 191 | int i; |
| 192 | |
| 193 | for (i = i_min; i <= i_max; ++i) { |
| 194 | if (!pte_present(pte[i])) |
| 195 | continue; |
| 196 | |
| 197 | set_pte(pte + i, __pte(0)); |
| 198 | } |
| 199 | return safe_to_remove; |
| 200 | } |
| 201 | |
| 202 | static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa, |
| 203 | unsigned long end_gpa) |
| 204 | { |
| 205 | pte_t *pte; |
| 206 | unsigned long end = ~0ul; |
| 207 | int i_min = __pmd_offset(start_gpa); |
| 208 | int i_max = __pmd_offset(end_gpa); |
| 209 | bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1); |
| 210 | int i; |
| 211 | |
| 212 | for (i = i_min; i <= i_max; ++i, start_gpa = 0) { |
| 213 | if (!pmd_present(pmd[i])) |
| 214 | continue; |
| 215 | |
| 216 | pte = pte_offset(pmd + i, 0); |
| 217 | if (i == i_max) |
| 218 | end = end_gpa; |
| 219 | |
| 220 | if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) { |
| 221 | pmd_clear(pmd + i); |
| 222 | pte_free_kernel(NULL, pte); |
| 223 | } else { |
| 224 | safe_to_remove = false; |
| 225 | } |
| 226 | } |
| 227 | return safe_to_remove; |
| 228 | } |
| 229 | |
| 230 | static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa, |
| 231 | unsigned long end_gpa) |
| 232 | { |
| 233 | pmd_t *pmd; |
| 234 | unsigned long end = ~0ul; |
| 235 | int i_min = __pud_offset(start_gpa); |
| 236 | int i_max = __pud_offset(end_gpa); |
| 237 | bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1); |
| 238 | int i; |
| 239 | |
| 240 | for (i = i_min; i <= i_max; ++i, start_gpa = 0) { |
| 241 | if (!pud_present(pud[i])) |
| 242 | continue; |
| 243 | |
| 244 | pmd = pmd_offset(pud + i, 0); |
| 245 | if (i == i_max) |
| 246 | end = end_gpa; |
| 247 | |
| 248 | if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) { |
| 249 | pud_clear(pud + i); |
| 250 | pmd_free(NULL, pmd); |
| 251 | } else { |
| 252 | safe_to_remove = false; |
| 253 | } |
| 254 | } |
| 255 | return safe_to_remove; |
| 256 | } |
| 257 | |
| 258 | static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa, |
| 259 | unsigned long end_gpa) |
| 260 | { |
| 261 | pud_t *pud; |
| 262 | unsigned long end = ~0ul; |
| 263 | int i_min = pgd_index(start_gpa); |
| 264 | int i_max = pgd_index(end_gpa); |
| 265 | bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1); |
| 266 | int i; |
| 267 | |
| 268 | for (i = i_min; i <= i_max; ++i, start_gpa = 0) { |
| 269 | if (!pgd_present(pgd[i])) |
| 270 | continue; |
| 271 | |
| 272 | pud = pud_offset(pgd + i, 0); |
| 273 | if (i == i_max) |
| 274 | end = end_gpa; |
| 275 | |
| 276 | if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) { |
| 277 | pgd_clear(pgd + i); |
| 278 | pud_free(NULL, pud); |
| 279 | } else { |
| 280 | safe_to_remove = false; |
| 281 | } |
| 282 | } |
| 283 | return safe_to_remove; |
| 284 | } |
| 285 | |
| 286 | /** |
| 287 | * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses. |
| 288 | * @kvm: KVM pointer. |
| 289 | * @start_gfn: Guest frame number of first page in GPA range to flush. |
| 290 | * @end_gfn: Guest frame number of last page in GPA range to flush. |
| 291 | * |
| 292 | * Flushes a range of GPA mappings from the GPA page tables. |
| 293 | * |
| 294 | * The caller must hold the @kvm->mmu_lock spinlock. |
| 295 | * |
| 296 | * Returns: Whether its safe to remove the top level page directory because |
| 297 | * all lower levels have been removed. |
| 298 | */ |
| 299 | bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) |
| 300 | { |
| 301 | return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd, |
| 302 | start_gfn << PAGE_SHIFT, |
| 303 | end_gfn << PAGE_SHIFT); |
| 304 | } |
| 305 | |
| 306 | #define BUILD_PTE_RANGE_OP(name, op) \ |
| 307 | static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start, \ |
| 308 | unsigned long end) \ |
| 309 | { \ |
| 310 | int ret = 0; \ |
| 311 | int i_min = __pte_offset(start); \ |
| 312 | int i_max = __pte_offset(end); \ |
| 313 | int i; \ |
| 314 | pte_t old, new; \ |
| 315 | \ |
| 316 | for (i = i_min; i <= i_max; ++i) { \ |
| 317 | if (!pte_present(pte[i])) \ |
| 318 | continue; \ |
| 319 | \ |
| 320 | old = pte[i]; \ |
| 321 | new = op(old); \ |
| 322 | if (pte_val(new) == pte_val(old)) \ |
| 323 | continue; \ |
| 324 | set_pte(pte + i, new); \ |
| 325 | ret = 1; \ |
| 326 | } \ |
| 327 | return ret; \ |
| 328 | } \ |
| 329 | \ |
| 330 | /* returns true if anything was done */ \ |
| 331 | static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start, \ |
| 332 | unsigned long end) \ |
| 333 | { \ |
| 334 | int ret = 0; \ |
| 335 | pte_t *pte; \ |
| 336 | unsigned long cur_end = ~0ul; \ |
| 337 | int i_min = __pmd_offset(start); \ |
| 338 | int i_max = __pmd_offset(end); \ |
| 339 | int i; \ |
| 340 | \ |
| 341 | for (i = i_min; i <= i_max; ++i, start = 0) { \ |
| 342 | if (!pmd_present(pmd[i])) \ |
| 343 | continue; \ |
| 344 | \ |
| 345 | pte = pte_offset(pmd + i, 0); \ |
| 346 | if (i == i_max) \ |
| 347 | cur_end = end; \ |
| 348 | \ |
| 349 | ret |= kvm_mips_##name##_pte(pte, start, cur_end); \ |
| 350 | } \ |
| 351 | return ret; \ |
| 352 | } \ |
| 353 | \ |
| 354 | static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start, \ |
| 355 | unsigned long end) \ |
| 356 | { \ |
| 357 | int ret = 0; \ |
| 358 | pmd_t *pmd; \ |
| 359 | unsigned long cur_end = ~0ul; \ |
| 360 | int i_min = __pud_offset(start); \ |
| 361 | int i_max = __pud_offset(end); \ |
| 362 | int i; \ |
| 363 | \ |
| 364 | for (i = i_min; i <= i_max; ++i, start = 0) { \ |
| 365 | if (!pud_present(pud[i])) \ |
| 366 | continue; \ |
| 367 | \ |
| 368 | pmd = pmd_offset(pud + i, 0); \ |
| 369 | if (i == i_max) \ |
| 370 | cur_end = end; \ |
| 371 | \ |
| 372 | ret |= kvm_mips_##name##_pmd(pmd, start, cur_end); \ |
| 373 | } \ |
| 374 | return ret; \ |
| 375 | } \ |
| 376 | \ |
| 377 | static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start, \ |
| 378 | unsigned long end) \ |
| 379 | { \ |
| 380 | int ret = 0; \ |
| 381 | pud_t *pud; \ |
| 382 | unsigned long cur_end = ~0ul; \ |
| 383 | int i_min = pgd_index(start); \ |
| 384 | int i_max = pgd_index(end); \ |
| 385 | int i; \ |
| 386 | \ |
| 387 | for (i = i_min; i <= i_max; ++i, start = 0) { \ |
| 388 | if (!pgd_present(pgd[i])) \ |
| 389 | continue; \ |
| 390 | \ |
| 391 | pud = pud_offset(pgd + i, 0); \ |
| 392 | if (i == i_max) \ |
| 393 | cur_end = end; \ |
| 394 | \ |
| 395 | ret |= kvm_mips_##name##_pud(pud, start, cur_end); \ |
| 396 | } \ |
| 397 | return ret; \ |
| 398 | } |
| 399 | |
| 400 | /* |
| 401 | * kvm_mips_mkclean_gpa_pt. |
| 402 | * Mark a range of guest physical address space clean (writes fault) in the VM's |
| 403 | * GPA page table to allow dirty page tracking. |
| 404 | */ |
| 405 | |
| 406 | BUILD_PTE_RANGE_OP(mkclean, pte_mkclean) |
| 407 | |
| 408 | /** |
| 409 | * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean. |
| 410 | * @kvm: KVM pointer. |
| 411 | * @start_gfn: Guest frame number of first page in GPA range to flush. |
| 412 | * @end_gfn: Guest frame number of last page in GPA range to flush. |
| 413 | * |
| 414 | * Make a range of GPA mappings clean so that guest writes will fault and |
| 415 | * trigger dirty page logging. |
| 416 | * |
| 417 | * The caller must hold the @kvm->mmu_lock spinlock. |
| 418 | * |
| 419 | * Returns: Whether any GPA mappings were modified, which would require |
| 420 | * derived mappings (GVA page tables & TLB enties) to be |
| 421 | * invalidated. |
| 422 | */ |
| 423 | int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) |
| 424 | { |
| 425 | return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd, |
| 426 | start_gfn << PAGE_SHIFT, |
| 427 | end_gfn << PAGE_SHIFT); |
| 428 | } |
| 429 | |
| 430 | /** |
| 431 | * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages |
| 432 | * @kvm: The KVM pointer |
| 433 | * @slot: The memory slot associated with mask |
| 434 | * @gfn_offset: The gfn offset in memory slot |
| 435 | * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory |
| 436 | * slot to be write protected |
| 437 | * |
| 438 | * Walks bits set in mask write protects the associated pte's. Caller must |
| 439 | * acquire @kvm->mmu_lock. |
| 440 | */ |
| 441 | void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, |
| 442 | struct kvm_memory_slot *slot, |
| 443 | gfn_t gfn_offset, unsigned long mask) |
| 444 | { |
| 445 | gfn_t base_gfn = slot->base_gfn + gfn_offset; |
| 446 | gfn_t start = base_gfn + __ffs(mask); |
| 447 | gfn_t end = base_gfn + __fls(mask); |
| 448 | |
| 449 | kvm_mips_mkclean_gpa_pt(kvm, start, end); |
| 450 | } |
| 451 | |
| 452 | /* |
| 453 | * kvm_mips_mkold_gpa_pt. |
| 454 | * Mark a range of guest physical address space old (all accesses fault) in the |
| 455 | * VM's GPA page table to allow detection of commonly used pages. |
| 456 | */ |
| 457 | |
| 458 | BUILD_PTE_RANGE_OP(mkold, pte_mkold) |
| 459 | |
| 460 | static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn, |
| 461 | gfn_t end_gfn) |
| 462 | { |
| 463 | return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd, |
| 464 | start_gfn << PAGE_SHIFT, |
| 465 | end_gfn << PAGE_SHIFT); |
| 466 | } |
| 467 | |
| 468 | static int handle_hva_to_gpa(struct kvm *kvm, |
| 469 | unsigned long start, |
| 470 | unsigned long end, |
| 471 | int (*handler)(struct kvm *kvm, gfn_t gfn, |
| 472 | gpa_t gfn_end, |
| 473 | struct kvm_memory_slot *memslot, |
| 474 | void *data), |
| 475 | void *data) |
| 476 | { |
| 477 | struct kvm_memslots *slots; |
| 478 | struct kvm_memory_slot *memslot; |
| 479 | int ret = 0; |
| 480 | |
| 481 | slots = kvm_memslots(kvm); |
| 482 | |
| 483 | /* we only care about the pages that the guest sees */ |
| 484 | kvm_for_each_memslot(memslot, slots) { |
| 485 | unsigned long hva_start, hva_end; |
| 486 | gfn_t gfn, gfn_end; |
| 487 | |
| 488 | hva_start = max(start, memslot->userspace_addr); |
| 489 | hva_end = min(end, memslot->userspace_addr + |
| 490 | (memslot->npages << PAGE_SHIFT)); |
| 491 | if (hva_start >= hva_end) |
| 492 | continue; |
| 493 | |
| 494 | /* |
| 495 | * {gfn(page) | page intersects with [hva_start, hva_end)} = |
| 496 | * {gfn_start, gfn_start+1, ..., gfn_end-1}. |
| 497 | */ |
| 498 | gfn = hva_to_gfn_memslot(hva_start, memslot); |
| 499 | gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); |
| 500 | |
| 501 | ret |= handler(kvm, gfn, gfn_end, memslot, data); |
| 502 | } |
| 503 | |
| 504 | return ret; |
| 505 | } |
| 506 | |
| 507 | |
| 508 | static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, |
| 509 | struct kvm_memory_slot *memslot, void *data) |
| 510 | { |
| 511 | kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end); |
| 512 | return 1; |
| 513 | } |
| 514 | |
| 515 | int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) |
| 516 | { |
| 517 | handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL); |
| 518 | |
| 519 | kvm_mips_callbacks->flush_shadow_all(kvm); |
| 520 | return 0; |
| 521 | } |
| 522 | |
| 523 | static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, |
| 524 | struct kvm_memory_slot *memslot, void *data) |
| 525 | { |
| 526 | gpa_t gpa = gfn << PAGE_SHIFT; |
| 527 | pte_t hva_pte = *(pte_t *)data; |
| 528 | pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa); |
| 529 | pte_t old_pte; |
| 530 | |
| 531 | if (!gpa_pte) |
| 532 | return 0; |
| 533 | |
| 534 | /* Mapping may need adjusting depending on memslot flags */ |
| 535 | old_pte = *gpa_pte; |
| 536 | if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte)) |
| 537 | hva_pte = pte_mkclean(hva_pte); |
| 538 | else if (memslot->flags & KVM_MEM_READONLY) |
| 539 | hva_pte = pte_wrprotect(hva_pte); |
| 540 | |
| 541 | set_pte(gpa_pte, hva_pte); |
| 542 | |
| 543 | /* Replacing an absent or old page doesn't need flushes */ |
| 544 | if (!pte_present(old_pte) || !pte_young(old_pte)) |
| 545 | return 0; |
| 546 | |
| 547 | /* Pages swapped, aged, moved, or cleaned require flushes */ |
| 548 | return !pte_present(hva_pte) || |
| 549 | !pte_young(hva_pte) || |
| 550 | pte_pfn(old_pte) != pte_pfn(hva_pte) || |
| 551 | (pte_dirty(old_pte) && !pte_dirty(hva_pte)); |
| 552 | } |
| 553 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 554 | int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 555 | { |
| 556 | unsigned long end = hva + PAGE_SIZE; |
| 557 | int ret; |
| 558 | |
| 559 | ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte); |
| 560 | if (ret) |
| 561 | kvm_mips_callbacks->flush_shadow_all(kvm); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 562 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 563 | } |
| 564 | |
| 565 | static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, |
| 566 | struct kvm_memory_slot *memslot, void *data) |
| 567 | { |
| 568 | return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end); |
| 569 | } |
| 570 | |
| 571 | static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, |
| 572 | struct kvm_memory_slot *memslot, void *data) |
| 573 | { |
| 574 | gpa_t gpa = gfn << PAGE_SHIFT; |
| 575 | pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa); |
| 576 | |
| 577 | if (!gpa_pte) |
| 578 | return 0; |
| 579 | return pte_young(*gpa_pte); |
| 580 | } |
| 581 | |
| 582 | int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) |
| 583 | { |
| 584 | return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL); |
| 585 | } |
| 586 | |
| 587 | int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) |
| 588 | { |
| 589 | return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL); |
| 590 | } |
| 591 | |
| 592 | /** |
| 593 | * _kvm_mips_map_page_fast() - Fast path GPA fault handler. |
| 594 | * @vcpu: VCPU pointer. |
| 595 | * @gpa: Guest physical address of fault. |
| 596 | * @write_fault: Whether the fault was due to a write. |
| 597 | * @out_entry: New PTE for @gpa (written on success unless NULL). |
| 598 | * @out_buddy: New PTE for @gpa's buddy (written on success unless |
| 599 | * NULL). |
| 600 | * |
| 601 | * Perform fast path GPA fault handling, doing all that can be done without |
| 602 | * calling into KVM. This handles marking old pages young (for idle page |
| 603 | * tracking), and dirtying of clean pages (for dirty page logging). |
| 604 | * |
| 605 | * Returns: 0 on success, in which case we can update derived mappings and |
| 606 | * resume guest execution. |
| 607 | * -EFAULT on failure due to absent GPA mapping or write to |
| 608 | * read-only page, in which case KVM must be consulted. |
| 609 | */ |
| 610 | static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, |
| 611 | bool write_fault, |
| 612 | pte_t *out_entry, pte_t *out_buddy) |
| 613 | { |
| 614 | struct kvm *kvm = vcpu->kvm; |
| 615 | gfn_t gfn = gpa >> PAGE_SHIFT; |
| 616 | pte_t *ptep; |
| 617 | kvm_pfn_t pfn = 0; /* silence bogus GCC warning */ |
| 618 | bool pfn_valid = false; |
| 619 | int ret = 0; |
| 620 | |
| 621 | spin_lock(&kvm->mmu_lock); |
| 622 | |
| 623 | /* Fast path - just check GPA page table for an existing entry */ |
| 624 | ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa); |
| 625 | if (!ptep || !pte_present(*ptep)) { |
| 626 | ret = -EFAULT; |
| 627 | goto out; |
| 628 | } |
| 629 | |
| 630 | /* Track access to pages marked old */ |
| 631 | if (!pte_young(*ptep)) { |
| 632 | set_pte(ptep, pte_mkyoung(*ptep)); |
| 633 | pfn = pte_pfn(*ptep); |
| 634 | pfn_valid = true; |
| 635 | /* call kvm_set_pfn_accessed() after unlock */ |
| 636 | } |
| 637 | if (write_fault && !pte_dirty(*ptep)) { |
| 638 | if (!pte_write(*ptep)) { |
| 639 | ret = -EFAULT; |
| 640 | goto out; |
| 641 | } |
| 642 | |
| 643 | /* Track dirtying of writeable pages */ |
| 644 | set_pte(ptep, pte_mkdirty(*ptep)); |
| 645 | pfn = pte_pfn(*ptep); |
| 646 | mark_page_dirty(kvm, gfn); |
| 647 | kvm_set_pfn_dirty(pfn); |
| 648 | } |
| 649 | |
| 650 | if (out_entry) |
| 651 | *out_entry = *ptep; |
| 652 | if (out_buddy) |
| 653 | *out_buddy = *ptep_buddy(ptep); |
| 654 | |
| 655 | out: |
| 656 | spin_unlock(&kvm->mmu_lock); |
| 657 | if (pfn_valid) |
| 658 | kvm_set_pfn_accessed(pfn); |
| 659 | return ret; |
| 660 | } |
| 661 | |
| 662 | /** |
| 663 | * kvm_mips_map_page() - Map a guest physical page. |
| 664 | * @vcpu: VCPU pointer. |
| 665 | * @gpa: Guest physical address of fault. |
| 666 | * @write_fault: Whether the fault was due to a write. |
| 667 | * @out_entry: New PTE for @gpa (written on success unless NULL). |
| 668 | * @out_buddy: New PTE for @gpa's buddy (written on success unless |
| 669 | * NULL). |
| 670 | * |
| 671 | * Handle GPA faults by creating a new GPA mapping (or updating an existing |
| 672 | * one). |
| 673 | * |
| 674 | * This takes care of marking pages young or dirty (idle/dirty page tracking), |
| 675 | * asking KVM for the corresponding PFN, and creating a mapping in the GPA page |
| 676 | * tables. Derived mappings (GVA page tables and TLBs) must be handled by the |
| 677 | * caller. |
| 678 | * |
| 679 | * Returns: 0 on success, in which case the caller may use the @out_entry |
| 680 | * and @out_buddy PTEs to update derived mappings and resume guest |
| 681 | * execution. |
| 682 | * -EFAULT if there is no memory region at @gpa or a write was |
| 683 | * attempted to a read-only memory region. This is usually handled |
| 684 | * as an MMIO access. |
| 685 | */ |
| 686 | static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, |
| 687 | bool write_fault, |
| 688 | pte_t *out_entry, pte_t *out_buddy) |
| 689 | { |
| 690 | struct kvm *kvm = vcpu->kvm; |
| 691 | struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; |
| 692 | gfn_t gfn = gpa >> PAGE_SHIFT; |
| 693 | int srcu_idx, err; |
| 694 | kvm_pfn_t pfn; |
| 695 | pte_t *ptep, entry, old_pte; |
| 696 | bool writeable; |
| 697 | unsigned long prot_bits; |
| 698 | unsigned long mmu_seq; |
| 699 | |
| 700 | /* Try the fast path to handle old / clean pages */ |
| 701 | srcu_idx = srcu_read_lock(&kvm->srcu); |
| 702 | err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry, |
| 703 | out_buddy); |
| 704 | if (!err) |
| 705 | goto out; |
| 706 | |
| 707 | /* We need a minimum of cached pages ready for page table creation */ |
| 708 | err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES, |
| 709 | KVM_NR_MEM_OBJS); |
| 710 | if (err) |
| 711 | goto out; |
| 712 | |
| 713 | retry: |
| 714 | /* |
| 715 | * Used to check for invalidations in progress, of the pfn that is |
| 716 | * returned by pfn_to_pfn_prot below. |
| 717 | */ |
| 718 | mmu_seq = kvm->mmu_notifier_seq; |
| 719 | /* |
| 720 | * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in |
| 721 | * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't |
| 722 | * risk the page we get a reference to getting unmapped before we have a |
| 723 | * chance to grab the mmu_lock without mmu_notifier_retry() noticing. |
| 724 | * |
| 725 | * This smp_rmb() pairs with the effective smp_wmb() of the combination |
| 726 | * of the pte_unmap_unlock() after the PTE is zapped, and the |
| 727 | * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before |
| 728 | * mmu_notifier_seq is incremented. |
| 729 | */ |
| 730 | smp_rmb(); |
| 731 | |
| 732 | /* Slow path - ask KVM core whether we can access this GPA */ |
| 733 | pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable); |
| 734 | if (is_error_noslot_pfn(pfn)) { |
| 735 | err = -EFAULT; |
| 736 | goto out; |
| 737 | } |
| 738 | |
| 739 | spin_lock(&kvm->mmu_lock); |
| 740 | /* Check if an invalidation has taken place since we got pfn */ |
| 741 | if (mmu_notifier_retry(kvm, mmu_seq)) { |
| 742 | /* |
| 743 | * This can happen when mappings are changed asynchronously, but |
| 744 | * also synchronously if a COW is triggered by |
| 745 | * gfn_to_pfn_prot(). |
| 746 | */ |
| 747 | spin_unlock(&kvm->mmu_lock); |
| 748 | kvm_release_pfn_clean(pfn); |
| 749 | goto retry; |
| 750 | } |
| 751 | |
| 752 | /* Ensure page tables are allocated */ |
| 753 | ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa); |
| 754 | |
| 755 | /* Set up the PTE */ |
| 756 | prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default; |
| 757 | if (writeable) { |
| 758 | prot_bits |= _PAGE_WRITE; |
| 759 | if (write_fault) { |
| 760 | prot_bits |= __WRITEABLE; |
| 761 | mark_page_dirty(kvm, gfn); |
| 762 | kvm_set_pfn_dirty(pfn); |
| 763 | } |
| 764 | } |
| 765 | entry = pfn_pte(pfn, __pgprot(prot_bits)); |
| 766 | |
| 767 | /* Write the PTE */ |
| 768 | old_pte = *ptep; |
| 769 | set_pte(ptep, entry); |
| 770 | |
| 771 | err = 0; |
| 772 | if (out_entry) |
| 773 | *out_entry = *ptep; |
| 774 | if (out_buddy) |
| 775 | *out_buddy = *ptep_buddy(ptep); |
| 776 | |
| 777 | spin_unlock(&kvm->mmu_lock); |
| 778 | kvm_release_pfn_clean(pfn); |
| 779 | kvm_set_pfn_accessed(pfn); |
| 780 | out: |
| 781 | srcu_read_unlock(&kvm->srcu, srcu_idx); |
| 782 | return err; |
| 783 | } |
| 784 | |
| 785 | static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu, |
| 786 | unsigned long addr) |
| 787 | { |
| 788 | struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; |
| 789 | pgd_t *pgdp; |
| 790 | int ret; |
| 791 | |
| 792 | /* We need a minimum of cached pages ready for page table creation */ |
| 793 | ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES, |
| 794 | KVM_NR_MEM_OBJS); |
| 795 | if (ret) |
| 796 | return NULL; |
| 797 | |
| 798 | if (KVM_GUEST_KERNEL_MODE(vcpu)) |
| 799 | pgdp = vcpu->arch.guest_kernel_mm.pgd; |
| 800 | else |
| 801 | pgdp = vcpu->arch.guest_user_mm.pgd; |
| 802 | |
| 803 | return kvm_mips_walk_pgd(pgdp, memcache, addr); |
| 804 | } |
| 805 | |
| 806 | void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr, |
| 807 | bool user) |
| 808 | { |
| 809 | pgd_t *pgdp; |
| 810 | pte_t *ptep; |
| 811 | |
| 812 | addr &= PAGE_MASK << 1; |
| 813 | |
| 814 | pgdp = vcpu->arch.guest_kernel_mm.pgd; |
| 815 | ptep = kvm_mips_walk_pgd(pgdp, NULL, addr); |
| 816 | if (ptep) { |
| 817 | ptep[0] = pfn_pte(0, __pgprot(0)); |
| 818 | ptep[1] = pfn_pte(0, __pgprot(0)); |
| 819 | } |
| 820 | |
| 821 | if (user) { |
| 822 | pgdp = vcpu->arch.guest_user_mm.pgd; |
| 823 | ptep = kvm_mips_walk_pgd(pgdp, NULL, addr); |
| 824 | if (ptep) { |
| 825 | ptep[0] = pfn_pte(0, __pgprot(0)); |
| 826 | ptep[1] = pfn_pte(0, __pgprot(0)); |
| 827 | } |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | /* |
| 832 | * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}. |
| 833 | * Flush a range of guest physical address space from the VM's GPA page tables. |
| 834 | */ |
| 835 | |
| 836 | static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva, |
| 837 | unsigned long end_gva) |
| 838 | { |
| 839 | int i_min = __pte_offset(start_gva); |
| 840 | int i_max = __pte_offset(end_gva); |
| 841 | bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1); |
| 842 | int i; |
| 843 | |
| 844 | /* |
| 845 | * There's no freeing to do, so there's no point clearing individual |
| 846 | * entries unless only part of the last level page table needs flushing. |
| 847 | */ |
| 848 | if (safe_to_remove) |
| 849 | return true; |
| 850 | |
| 851 | for (i = i_min; i <= i_max; ++i) { |
| 852 | if (!pte_present(pte[i])) |
| 853 | continue; |
| 854 | |
| 855 | set_pte(pte + i, __pte(0)); |
| 856 | } |
| 857 | return false; |
| 858 | } |
| 859 | |
| 860 | static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva, |
| 861 | unsigned long end_gva) |
| 862 | { |
| 863 | pte_t *pte; |
| 864 | unsigned long end = ~0ul; |
| 865 | int i_min = __pmd_offset(start_gva); |
| 866 | int i_max = __pmd_offset(end_gva); |
| 867 | bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1); |
| 868 | int i; |
| 869 | |
| 870 | for (i = i_min; i <= i_max; ++i, start_gva = 0) { |
| 871 | if (!pmd_present(pmd[i])) |
| 872 | continue; |
| 873 | |
| 874 | pte = pte_offset(pmd + i, 0); |
| 875 | if (i == i_max) |
| 876 | end = end_gva; |
| 877 | |
| 878 | if (kvm_mips_flush_gva_pte(pte, start_gva, end)) { |
| 879 | pmd_clear(pmd + i); |
| 880 | pte_free_kernel(NULL, pte); |
| 881 | } else { |
| 882 | safe_to_remove = false; |
| 883 | } |
| 884 | } |
| 885 | return safe_to_remove; |
| 886 | } |
| 887 | |
| 888 | static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva, |
| 889 | unsigned long end_gva) |
| 890 | { |
| 891 | pmd_t *pmd; |
| 892 | unsigned long end = ~0ul; |
| 893 | int i_min = __pud_offset(start_gva); |
| 894 | int i_max = __pud_offset(end_gva); |
| 895 | bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1); |
| 896 | int i; |
| 897 | |
| 898 | for (i = i_min; i <= i_max; ++i, start_gva = 0) { |
| 899 | if (!pud_present(pud[i])) |
| 900 | continue; |
| 901 | |
| 902 | pmd = pmd_offset(pud + i, 0); |
| 903 | if (i == i_max) |
| 904 | end = end_gva; |
| 905 | |
| 906 | if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) { |
| 907 | pud_clear(pud + i); |
| 908 | pmd_free(NULL, pmd); |
| 909 | } else { |
| 910 | safe_to_remove = false; |
| 911 | } |
| 912 | } |
| 913 | return safe_to_remove; |
| 914 | } |
| 915 | |
| 916 | static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva, |
| 917 | unsigned long end_gva) |
| 918 | { |
| 919 | pud_t *pud; |
| 920 | unsigned long end = ~0ul; |
| 921 | int i_min = pgd_index(start_gva); |
| 922 | int i_max = pgd_index(end_gva); |
| 923 | bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1); |
| 924 | int i; |
| 925 | |
| 926 | for (i = i_min; i <= i_max; ++i, start_gva = 0) { |
| 927 | if (!pgd_present(pgd[i])) |
| 928 | continue; |
| 929 | |
| 930 | pud = pud_offset(pgd + i, 0); |
| 931 | if (i == i_max) |
| 932 | end = end_gva; |
| 933 | |
| 934 | if (kvm_mips_flush_gva_pud(pud, start_gva, end)) { |
| 935 | pgd_clear(pgd + i); |
| 936 | pud_free(NULL, pud); |
| 937 | } else { |
| 938 | safe_to_remove = false; |
| 939 | } |
| 940 | } |
| 941 | return safe_to_remove; |
| 942 | } |
| 943 | |
| 944 | void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags) |
| 945 | { |
| 946 | if (flags & KMF_GPA) { |
| 947 | /* all of guest virtual address space could be affected */ |
| 948 | if (flags & KMF_KERN) |
| 949 | /* useg, kseg0, seg2/3 */ |
| 950 | kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff); |
| 951 | else |
| 952 | /* useg */ |
| 953 | kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff); |
| 954 | } else { |
| 955 | /* useg */ |
| 956 | kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff); |
| 957 | |
| 958 | /* kseg2/3 */ |
| 959 | if (flags & KMF_KERN) |
| 960 | kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff); |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte) |
| 965 | { |
| 966 | /* |
| 967 | * Don't leak writeable but clean entries from GPA page tables. We don't |
| 968 | * want the normal Linux tlbmod handler to handle dirtying when KVM |
| 969 | * accesses guest memory. |
| 970 | */ |
| 971 | if (!pte_dirty(pte)) |
| 972 | pte = pte_wrprotect(pte); |
| 973 | |
| 974 | return pte; |
| 975 | } |
| 976 | |
| 977 | static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo) |
| 978 | { |
| 979 | /* Guest EntryLo overrides host EntryLo */ |
| 980 | if (!(entrylo & ENTRYLO_D)) |
| 981 | pte = pte_mkclean(pte); |
| 982 | |
| 983 | return kvm_mips_gpa_pte_to_gva_unmapped(pte); |
| 984 | } |
| 985 | |
| 986 | #ifdef CONFIG_KVM_MIPS_VZ |
| 987 | int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr, |
| 988 | struct kvm_vcpu *vcpu, |
| 989 | bool write_fault) |
| 990 | { |
| 991 | int ret; |
| 992 | |
| 993 | ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL); |
| 994 | if (ret) |
| 995 | return ret; |
| 996 | |
| 997 | /* Invalidate this entry in the TLB */ |
| 998 | return kvm_vz_host_tlb_inv(vcpu, badvaddr); |
| 999 | } |
| 1000 | #endif |
| 1001 | |
| 1002 | /* XXXKYMA: Must be called with interrupts disabled */ |
| 1003 | int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr, |
| 1004 | struct kvm_vcpu *vcpu, |
| 1005 | bool write_fault) |
| 1006 | { |
| 1007 | unsigned long gpa; |
| 1008 | pte_t pte_gpa[2], *ptep_gva; |
| 1009 | int idx; |
| 1010 | |
| 1011 | if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) { |
| 1012 | kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr); |
| 1013 | kvm_mips_dump_host_tlbs(); |
| 1014 | return -1; |
| 1015 | } |
| 1016 | |
| 1017 | /* Get the GPA page table entry */ |
| 1018 | gpa = KVM_GUEST_CPHYSADDR(badvaddr); |
| 1019 | idx = (badvaddr >> PAGE_SHIFT) & 1; |
| 1020 | if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx], |
| 1021 | &pte_gpa[!idx]) < 0) |
| 1022 | return -1; |
| 1023 | |
| 1024 | /* Get the GVA page table entry */ |
| 1025 | ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE); |
| 1026 | if (!ptep_gva) { |
| 1027 | kvm_err("No ptep for gva %lx\n", badvaddr); |
| 1028 | return -1; |
| 1029 | } |
| 1030 | |
| 1031 | /* Copy a pair of entries from GPA page table to GVA page table */ |
| 1032 | ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]); |
| 1033 | ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]); |
| 1034 | |
| 1035 | /* Invalidate this entry in the TLB, guest kernel ASID only */ |
| 1036 | kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true); |
| 1037 | return 0; |
| 1038 | } |
| 1039 | |
| 1040 | int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu, |
| 1041 | struct kvm_mips_tlb *tlb, |
| 1042 | unsigned long gva, |
| 1043 | bool write_fault) |
| 1044 | { |
| 1045 | struct kvm *kvm = vcpu->kvm; |
| 1046 | long tlb_lo[2]; |
| 1047 | pte_t pte_gpa[2], *ptep_buddy, *ptep_gva; |
| 1048 | unsigned int idx = TLB_LO_IDX(*tlb, gva); |
| 1049 | bool kernel = KVM_GUEST_KERNEL_MODE(vcpu); |
| 1050 | |
| 1051 | tlb_lo[0] = tlb->tlb_lo[0]; |
| 1052 | tlb_lo[1] = tlb->tlb_lo[1]; |
| 1053 | |
| 1054 | /* |
| 1055 | * The commpage address must not be mapped to anything else if the guest |
| 1056 | * TLB contains entries nearby, or commpage accesses will break. |
| 1057 | */ |
| 1058 | if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1))) |
| 1059 | tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0; |
| 1060 | |
| 1061 | /* Get the GPA page table entry */ |
| 1062 | if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]), |
| 1063 | write_fault, &pte_gpa[idx], NULL) < 0) |
| 1064 | return -1; |
| 1065 | |
| 1066 | /* And its GVA buddy's GPA page table entry if it also exists */ |
| 1067 | pte_gpa[!idx] = pfn_pte(0, __pgprot(0)); |
| 1068 | if (tlb_lo[!idx] & ENTRYLO_V) { |
| 1069 | spin_lock(&kvm->mmu_lock); |
| 1070 | ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL, |
| 1071 | mips3_tlbpfn_to_paddr(tlb_lo[!idx])); |
| 1072 | if (ptep_buddy) |
| 1073 | pte_gpa[!idx] = *ptep_buddy; |
| 1074 | spin_unlock(&kvm->mmu_lock); |
| 1075 | } |
| 1076 | |
| 1077 | /* Get the GVA page table entry pair */ |
| 1078 | ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE); |
| 1079 | if (!ptep_gva) { |
| 1080 | kvm_err("No ptep for gva %lx\n", gva); |
| 1081 | return -1; |
| 1082 | } |
| 1083 | |
| 1084 | /* Copy a pair of entries from GPA page table to GVA page table */ |
| 1085 | ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]); |
| 1086 | ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]); |
| 1087 | |
| 1088 | /* Invalidate this entry in the TLB, current guest mode ASID only */ |
| 1089 | kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel); |
| 1090 | |
| 1091 | kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc, |
| 1092 | tlb->tlb_lo[0], tlb->tlb_lo[1]); |
| 1093 | |
| 1094 | return 0; |
| 1095 | } |
| 1096 | |
| 1097 | int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr, |
| 1098 | struct kvm_vcpu *vcpu) |
| 1099 | { |
| 1100 | kvm_pfn_t pfn; |
| 1101 | pte_t *ptep; |
| 1102 | |
| 1103 | ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr); |
| 1104 | if (!ptep) { |
| 1105 | kvm_err("No ptep for commpage %lx\n", badvaddr); |
| 1106 | return -1; |
| 1107 | } |
| 1108 | |
| 1109 | pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage)); |
| 1110 | /* Also set valid and dirty, so refill handler doesn't have to */ |
| 1111 | *ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED))); |
| 1112 | |
| 1113 | /* Invalidate this entry in the TLB, guest kernel ASID only */ |
| 1114 | kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true); |
| 1115 | return 0; |
| 1116 | } |
| 1117 | |
| 1118 | /** |
| 1119 | * kvm_mips_migrate_count() - Migrate timer. |
| 1120 | * @vcpu: Virtual CPU. |
| 1121 | * |
| 1122 | * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it |
| 1123 | * if it was running prior to being cancelled. |
| 1124 | * |
| 1125 | * Must be called when the VCPU is migrated to a different CPU to ensure that |
| 1126 | * timer expiry during guest execution interrupts the guest and causes the |
| 1127 | * interrupt to be delivered in a timely manner. |
| 1128 | */ |
| 1129 | static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu) |
| 1130 | { |
| 1131 | if (hrtimer_cancel(&vcpu->arch.comparecount_timer)) |
| 1132 | hrtimer_restart(&vcpu->arch.comparecount_timer); |
| 1133 | } |
| 1134 | |
| 1135 | /* Restore ASID once we are scheduled back after preemption */ |
| 1136 | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| 1137 | { |
| 1138 | unsigned long flags; |
| 1139 | |
| 1140 | kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu); |
| 1141 | |
| 1142 | local_irq_save(flags); |
| 1143 | |
| 1144 | vcpu->cpu = cpu; |
| 1145 | if (vcpu->arch.last_sched_cpu != cpu) { |
| 1146 | kvm_debug("[%d->%d]KVM VCPU[%d] switch\n", |
| 1147 | vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id); |
| 1148 | /* |
| 1149 | * Migrate the timer interrupt to the current CPU so that it |
| 1150 | * always interrupts the guest and synchronously triggers a |
| 1151 | * guest timer interrupt. |
| 1152 | */ |
| 1153 | kvm_mips_migrate_count(vcpu); |
| 1154 | } |
| 1155 | |
| 1156 | /* restore guest state to registers */ |
| 1157 | kvm_mips_callbacks->vcpu_load(vcpu, cpu); |
| 1158 | |
| 1159 | local_irq_restore(flags); |
| 1160 | } |
| 1161 | |
| 1162 | /* ASID can change if another task is scheduled during preemption */ |
| 1163 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
| 1164 | { |
| 1165 | unsigned long flags; |
| 1166 | int cpu; |
| 1167 | |
| 1168 | local_irq_save(flags); |
| 1169 | |
| 1170 | cpu = smp_processor_id(); |
| 1171 | vcpu->arch.last_sched_cpu = cpu; |
| 1172 | vcpu->cpu = -1; |
| 1173 | |
| 1174 | /* save guest state in registers */ |
| 1175 | kvm_mips_callbacks->vcpu_put(vcpu, cpu); |
| 1176 | |
| 1177 | local_irq_restore(flags); |
| 1178 | } |
| 1179 | |
| 1180 | /** |
| 1181 | * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault. |
| 1182 | * @vcpu: Virtual CPU. |
| 1183 | * @gva: Guest virtual address to be accessed. |
| 1184 | * @write: True if write attempted (must be dirtied and made writable). |
| 1185 | * |
| 1186 | * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and |
| 1187 | * dirtying the page if @write so that guest instructions can be modified. |
| 1188 | * |
| 1189 | * Returns: KVM_MIPS_MAPPED on success. |
| 1190 | * KVM_MIPS_GVA if bad guest virtual address. |
| 1191 | * KVM_MIPS_GPA if bad guest physical address. |
| 1192 | * KVM_MIPS_TLB if guest TLB not present. |
| 1193 | * KVM_MIPS_TLBINV if guest TLB present but not valid. |
| 1194 | * KVM_MIPS_TLBMOD if guest TLB read only. |
| 1195 | */ |
| 1196 | enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu, |
| 1197 | unsigned long gva, |
| 1198 | bool write) |
| 1199 | { |
| 1200 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 1201 | struct kvm_mips_tlb *tlb; |
| 1202 | int index; |
| 1203 | |
| 1204 | if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) { |
| 1205 | if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0) |
| 1206 | return KVM_MIPS_GPA; |
| 1207 | } else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) || |
| 1208 | KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) { |
| 1209 | /* Address should be in the guest TLB */ |
| 1210 | index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) | |
| 1211 | (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID)); |
| 1212 | if (index < 0) |
| 1213 | return KVM_MIPS_TLB; |
| 1214 | tlb = &vcpu->arch.guest_tlb[index]; |
| 1215 | |
| 1216 | /* Entry should be valid, and dirty for writes */ |
| 1217 | if (!TLB_IS_VALID(*tlb, gva)) |
| 1218 | return KVM_MIPS_TLBINV; |
| 1219 | if (write && !TLB_IS_DIRTY(*tlb, gva)) |
| 1220 | return KVM_MIPS_TLBMOD; |
| 1221 | |
| 1222 | if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write)) |
| 1223 | return KVM_MIPS_GPA; |
| 1224 | } else { |
| 1225 | return KVM_MIPS_GVA; |
| 1226 | } |
| 1227 | |
| 1228 | return KVM_MIPS_MAPPED; |
| 1229 | } |
| 1230 | |
| 1231 | int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) |
| 1232 | { |
| 1233 | int err; |
| 1234 | |
| 1235 | if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ), |
| 1236 | "Expect BadInstr/BadInstrP registers to be used with VZ\n")) |
| 1237 | return -EINVAL; |
| 1238 | |
| 1239 | retry: |
| 1240 | kvm_trap_emul_gva_lockless_begin(vcpu); |
| 1241 | err = get_user(*out, opc); |
| 1242 | kvm_trap_emul_gva_lockless_end(vcpu); |
| 1243 | |
| 1244 | if (unlikely(err)) { |
| 1245 | /* |
| 1246 | * Try to handle the fault, maybe we just raced with a GVA |
| 1247 | * invalidation. |
| 1248 | */ |
| 1249 | err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc, |
| 1250 | false); |
| 1251 | if (unlikely(err)) { |
| 1252 | kvm_err("%s: illegal address: %p\n", |
| 1253 | __func__, opc); |
| 1254 | return -EFAULT; |
| 1255 | } |
| 1256 | |
| 1257 | /* Hopefully it'll work now */ |
| 1258 | goto retry; |
| 1259 | } |
| 1260 | return 0; |
| 1261 | } |