David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| 4 | * Authors: Rusty Russell <rusty@rustcorp.com.au> |
| 5 | * Christoffer Dall <c.dall@virtualopensystems.com> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 6 | */ |
| 7 | |
| 8 | #include <linux/bsearch.h> |
| 9 | #include <linux/mm.h> |
| 10 | #include <linux/kvm_host.h> |
| 11 | #include <linux/uaccess.h> |
| 12 | #include <asm/kvm_arm.h> |
| 13 | #include <asm/kvm_host.h> |
| 14 | #include <asm/kvm_emulate.h> |
| 15 | #include <asm/kvm_coproc.h> |
| 16 | #include <asm/kvm_mmu.h> |
| 17 | #include <asm/cacheflush.h> |
| 18 | #include <asm/cputype.h> |
| 19 | #include <trace/events/kvm.h> |
| 20 | #include <asm/vfp.h> |
| 21 | #include "../vfp/vfpinstr.h" |
| 22 | |
| 23 | #define CREATE_TRACE_POINTS |
| 24 | #include "trace.h" |
| 25 | #include "coproc.h" |
| 26 | |
| 27 | |
| 28 | /****************************************************************************** |
| 29 | * Co-processor emulation |
| 30 | *****************************************************************************/ |
| 31 | |
| 32 | static bool write_to_read_only(struct kvm_vcpu *vcpu, |
| 33 | const struct coproc_params *params) |
| 34 | { |
| 35 | WARN_ONCE(1, "CP15 write to read-only register\n"); |
| 36 | print_cp_instr(params); |
| 37 | kvm_inject_undefined(vcpu); |
| 38 | return false; |
| 39 | } |
| 40 | |
| 41 | static bool read_from_write_only(struct kvm_vcpu *vcpu, |
| 42 | const struct coproc_params *params) |
| 43 | { |
| 44 | WARN_ONCE(1, "CP15 read to write-only register\n"); |
| 45 | print_cp_instr(params); |
| 46 | kvm_inject_undefined(vcpu); |
| 47 | return false; |
| 48 | } |
| 49 | |
| 50 | /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ |
| 51 | static u32 cache_levels; |
| 52 | |
| 53 | /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ |
| 54 | #define CSSELR_MAX 12 |
| 55 | |
| 56 | /* |
| 57 | * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some |
| 58 | * of cp15 registers can be viewed either as couple of two u32 registers |
| 59 | * or one u64 register. Current u64 register encoding is that least |
| 60 | * significant u32 word is followed by most significant u32 word. |
| 61 | */ |
| 62 | static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu, |
| 63 | const struct coproc_reg *r, |
| 64 | u64 val) |
| 65 | { |
| 66 | vcpu_cp15(vcpu, r->reg) = val & 0xffffffff; |
| 67 | vcpu_cp15(vcpu, r->reg + 1) = val >> 32; |
| 68 | } |
| 69 | |
| 70 | static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu, |
| 71 | const struct coproc_reg *r) |
| 72 | { |
| 73 | u64 val; |
| 74 | |
| 75 | val = vcpu_cp15(vcpu, r->reg + 1); |
| 76 | val = val << 32; |
| 77 | val = val | vcpu_cp15(vcpu, r->reg); |
| 78 | return val; |
| 79 | } |
| 80 | |
| 81 | int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 82 | { |
| 83 | kvm_inject_undefined(vcpu); |
| 84 | return 1; |
| 85 | } |
| 86 | |
| 87 | int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 88 | { |
| 89 | /* |
| 90 | * We can get here, if the host has been built without VFPv3 support, |
| 91 | * but the guest attempted a floating point operation. |
| 92 | */ |
| 93 | kvm_inject_undefined(vcpu); |
| 94 | return 1; |
| 95 | } |
| 96 | |
| 97 | int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 98 | { |
| 99 | kvm_inject_undefined(vcpu); |
| 100 | return 1; |
| 101 | } |
| 102 | |
| 103 | static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r) |
| 104 | { |
| 105 | /* |
| 106 | * Compute guest MPIDR. We build a virtual cluster out of the |
| 107 | * vcpu_id, but we read the 'U' bit from the underlying |
| 108 | * hardware directly. |
| 109 | */ |
| 110 | vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) | |
| 111 | ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) | |
| 112 | (vcpu->vcpu_id & 3)); |
| 113 | } |
| 114 | |
| 115 | /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */ |
| 116 | static bool access_actlr(struct kvm_vcpu *vcpu, |
| 117 | const struct coproc_params *p, |
| 118 | const struct coproc_reg *r) |
| 119 | { |
| 120 | if (p->is_write) |
| 121 | return ignore_write(vcpu, p); |
| 122 | |
| 123 | *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR); |
| 124 | return true; |
| 125 | } |
| 126 | |
| 127 | /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */ |
| 128 | static bool access_cbar(struct kvm_vcpu *vcpu, |
| 129 | const struct coproc_params *p, |
| 130 | const struct coproc_reg *r) |
| 131 | { |
| 132 | if (p->is_write) |
| 133 | return write_to_read_only(vcpu, p); |
| 134 | return read_zero(vcpu, p); |
| 135 | } |
| 136 | |
| 137 | /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */ |
| 138 | static bool access_l2ctlr(struct kvm_vcpu *vcpu, |
| 139 | const struct coproc_params *p, |
| 140 | const struct coproc_reg *r) |
| 141 | { |
| 142 | if (p->is_write) |
| 143 | return ignore_write(vcpu, p); |
| 144 | |
| 145 | *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR); |
| 146 | return true; |
| 147 | } |
| 148 | |
| 149 | static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r) |
| 150 | { |
| 151 | u32 l2ctlr, ncores; |
| 152 | |
| 153 | asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr)); |
| 154 | l2ctlr &= ~(3 << 24); |
| 155 | ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1; |
| 156 | /* How many cores in the current cluster and the next ones */ |
| 157 | ncores -= (vcpu->vcpu_id & ~3); |
| 158 | /* Cap it to the maximum number of cores in a single cluster */ |
| 159 | ncores = min(ncores, 3U); |
| 160 | l2ctlr |= (ncores & 3) << 24; |
| 161 | |
| 162 | vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr; |
| 163 | } |
| 164 | |
| 165 | static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r) |
| 166 | { |
| 167 | u32 actlr; |
| 168 | |
| 169 | /* ACTLR contains SMP bit: make sure you create all cpus first! */ |
| 170 | asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr)); |
| 171 | /* Make the SMP bit consistent with the guest configuration */ |
| 172 | if (atomic_read(&vcpu->kvm->online_vcpus) > 1) |
| 173 | actlr |= 1U << 6; |
| 174 | else |
| 175 | actlr &= ~(1U << 6); |
| 176 | |
| 177 | vcpu_cp15(vcpu, c1_ACTLR) = actlr; |
| 178 | } |
| 179 | |
| 180 | /* |
| 181 | * TRM entries: A7:4.3.50, A15:4.3.49 |
| 182 | * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored). |
| 183 | */ |
| 184 | static bool access_l2ectlr(struct kvm_vcpu *vcpu, |
| 185 | const struct coproc_params *p, |
| 186 | const struct coproc_reg *r) |
| 187 | { |
| 188 | if (p->is_write) |
| 189 | return ignore_write(vcpu, p); |
| 190 | |
| 191 | *vcpu_reg(vcpu, p->Rt1) = 0; |
| 192 | return true; |
| 193 | } |
| 194 | |
| 195 | /* |
| 196 | * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). |
| 197 | */ |
| 198 | static bool access_dcsw(struct kvm_vcpu *vcpu, |
| 199 | const struct coproc_params *p, |
| 200 | const struct coproc_reg *r) |
| 201 | { |
| 202 | if (!p->is_write) |
| 203 | return read_from_write_only(vcpu, p); |
| 204 | |
| 205 | kvm_set_way_flush(vcpu); |
| 206 | return true; |
| 207 | } |
| 208 | |
| 209 | /* |
| 210 | * Generic accessor for VM registers. Only called as long as HCR_TVM |
| 211 | * is set. If the guest enables the MMU, we stop trapping the VM |
| 212 | * sys_regs and leave it in complete control of the caches. |
| 213 | * |
| 214 | * Used by the cpu-specific code. |
| 215 | */ |
| 216 | bool access_vm_reg(struct kvm_vcpu *vcpu, |
| 217 | const struct coproc_params *p, |
| 218 | const struct coproc_reg *r) |
| 219 | { |
| 220 | bool was_enabled = vcpu_has_cache_enabled(vcpu); |
| 221 | |
| 222 | BUG_ON(!p->is_write); |
| 223 | |
| 224 | vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1); |
| 225 | if (p->is_64bit) |
| 226 | vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2); |
| 227 | |
| 228 | kvm_toggle_cache(vcpu, was_enabled); |
| 229 | return true; |
| 230 | } |
| 231 | |
| 232 | static bool access_gic_sgi(struct kvm_vcpu *vcpu, |
| 233 | const struct coproc_params *p, |
| 234 | const struct coproc_reg *r) |
| 235 | { |
| 236 | u64 reg; |
| 237 | bool g1; |
| 238 | |
| 239 | if (!p->is_write) |
| 240 | return read_from_write_only(vcpu, p); |
| 241 | |
| 242 | reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32; |
| 243 | reg |= *vcpu_reg(vcpu, p->Rt1) ; |
| 244 | |
| 245 | /* |
| 246 | * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates |
| 247 | * Group0 SGIs only, while ICC_SGI1R can generate either group, |
| 248 | * depending on the SGI configuration. ICC_ASGI1R is effectively |
| 249 | * equivalent to ICC_SGI0R, as there is no "alternative" secure |
| 250 | * group. |
| 251 | */ |
| 252 | switch (p->Op1) { |
| 253 | default: /* Keep GCC quiet */ |
| 254 | case 0: /* ICC_SGI1R */ |
| 255 | g1 = true; |
| 256 | break; |
| 257 | case 1: /* ICC_ASGI1R */ |
| 258 | case 2: /* ICC_SGI0R */ |
| 259 | g1 = false; |
| 260 | break; |
| 261 | } |
| 262 | |
| 263 | vgic_v3_dispatch_sgi(vcpu, reg, g1); |
| 264 | |
| 265 | return true; |
| 266 | } |
| 267 | |
| 268 | static bool access_gic_sre(struct kvm_vcpu *vcpu, |
| 269 | const struct coproc_params *p, |
| 270 | const struct coproc_reg *r) |
| 271 | { |
| 272 | if (p->is_write) |
| 273 | return ignore_write(vcpu, p); |
| 274 | |
| 275 | *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; |
| 276 | |
| 277 | return true; |
| 278 | } |
| 279 | |
| 280 | static bool access_cntp_tval(struct kvm_vcpu *vcpu, |
| 281 | const struct coproc_params *p, |
| 282 | const struct coproc_reg *r) |
| 283 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 284 | u32 val; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 285 | |
| 286 | if (p->is_write) { |
| 287 | val = *vcpu_reg(vcpu, p->Rt1); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 288 | kvm_arm_timer_write_sysreg(vcpu, |
| 289 | TIMER_PTIMER, TIMER_REG_TVAL, val); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 290 | } else { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 291 | val = kvm_arm_timer_read_sysreg(vcpu, |
| 292 | TIMER_PTIMER, TIMER_REG_TVAL); |
| 293 | *vcpu_reg(vcpu, p->Rt1) = val; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 294 | } |
| 295 | |
| 296 | return true; |
| 297 | } |
| 298 | |
| 299 | static bool access_cntp_ctl(struct kvm_vcpu *vcpu, |
| 300 | const struct coproc_params *p, |
| 301 | const struct coproc_reg *r) |
| 302 | { |
| 303 | u32 val; |
| 304 | |
| 305 | if (p->is_write) { |
| 306 | val = *vcpu_reg(vcpu, p->Rt1); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 307 | kvm_arm_timer_write_sysreg(vcpu, |
| 308 | TIMER_PTIMER, TIMER_REG_CTL, val); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 309 | } else { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 310 | val = kvm_arm_timer_read_sysreg(vcpu, |
| 311 | TIMER_PTIMER, TIMER_REG_CTL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 312 | *vcpu_reg(vcpu, p->Rt1) = val; |
| 313 | } |
| 314 | |
| 315 | return true; |
| 316 | } |
| 317 | |
| 318 | static bool access_cntp_cval(struct kvm_vcpu *vcpu, |
| 319 | const struct coproc_params *p, |
| 320 | const struct coproc_reg *r) |
| 321 | { |
| 322 | u64 val; |
| 323 | |
| 324 | if (p->is_write) { |
| 325 | val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32; |
| 326 | val |= *vcpu_reg(vcpu, p->Rt1); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 327 | kvm_arm_timer_write_sysreg(vcpu, |
| 328 | TIMER_PTIMER, TIMER_REG_CVAL, val); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 329 | } else { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 330 | val = kvm_arm_timer_read_sysreg(vcpu, |
| 331 | TIMER_PTIMER, TIMER_REG_CVAL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 332 | *vcpu_reg(vcpu, p->Rt1) = val; |
| 333 | *vcpu_reg(vcpu, p->Rt2) = val >> 32; |
| 334 | } |
| 335 | |
| 336 | return true; |
| 337 | } |
| 338 | |
| 339 | /* |
| 340 | * We could trap ID_DFR0 and tell the guest we don't support performance |
| 341 | * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was |
| 342 | * NAKed, so it will read the PMCR anyway. |
| 343 | * |
| 344 | * Therefore we tell the guest we have 0 counters. Unfortunately, we |
| 345 | * must always support PMCCNTR (the cycle counter): we just RAZ/WI for |
| 346 | * all PM registers, which doesn't crash the guest kernel at least. |
| 347 | */ |
| 348 | static bool trap_raz_wi(struct kvm_vcpu *vcpu, |
| 349 | const struct coproc_params *p, |
| 350 | const struct coproc_reg *r) |
| 351 | { |
| 352 | if (p->is_write) |
| 353 | return ignore_write(vcpu, p); |
| 354 | else |
| 355 | return read_zero(vcpu, p); |
| 356 | } |
| 357 | |
| 358 | #define access_pmcr trap_raz_wi |
| 359 | #define access_pmcntenset trap_raz_wi |
| 360 | #define access_pmcntenclr trap_raz_wi |
| 361 | #define access_pmovsr trap_raz_wi |
| 362 | #define access_pmselr trap_raz_wi |
| 363 | #define access_pmceid0 trap_raz_wi |
| 364 | #define access_pmceid1 trap_raz_wi |
| 365 | #define access_pmccntr trap_raz_wi |
| 366 | #define access_pmxevtyper trap_raz_wi |
| 367 | #define access_pmxevcntr trap_raz_wi |
| 368 | #define access_pmuserenr trap_raz_wi |
| 369 | #define access_pmintenset trap_raz_wi |
| 370 | #define access_pmintenclr trap_raz_wi |
| 371 | |
| 372 | /* Architected CP15 registers. |
| 373 | * CRn denotes the primary register number, but is copied to the CRm in the |
| 374 | * user space API for 64-bit register access in line with the terminology used |
| 375 | * in the ARM ARM. |
| 376 | * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit |
| 377 | * registers preceding 32-bit ones. |
| 378 | */ |
| 379 | static const struct coproc_reg cp15_regs[] = { |
| 380 | /* MPIDR: we use VMPIDR for guest access. */ |
| 381 | { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32, |
| 382 | NULL, reset_mpidr, c0_MPIDR }, |
| 383 | |
| 384 | /* CSSELR: swapped by interrupt.S. */ |
| 385 | { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32, |
| 386 | NULL, reset_unknown, c0_CSSELR }, |
| 387 | |
| 388 | /* ACTLR: trapped by HCR.TAC bit. */ |
| 389 | { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32, |
| 390 | access_actlr, reset_actlr, c1_ACTLR }, |
| 391 | |
| 392 | /* CPACR: swapped by interrupt.S. */ |
| 393 | { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32, |
| 394 | NULL, reset_val, c1_CPACR, 0x00000000 }, |
| 395 | |
| 396 | /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */ |
| 397 | { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 }, |
| 398 | { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32, |
| 399 | access_vm_reg, reset_unknown, c2_TTBR0 }, |
| 400 | { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32, |
| 401 | access_vm_reg, reset_unknown, c2_TTBR1 }, |
| 402 | { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32, |
| 403 | access_vm_reg, reset_val, c2_TTBCR, 0x00000000 }, |
| 404 | { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 }, |
| 405 | |
| 406 | |
| 407 | /* DACR: swapped by interrupt.S. */ |
| 408 | { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32, |
| 409 | access_vm_reg, reset_unknown, c3_DACR }, |
| 410 | |
| 411 | /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */ |
| 412 | { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32, |
| 413 | access_vm_reg, reset_unknown, c5_DFSR }, |
| 414 | { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32, |
| 415 | access_vm_reg, reset_unknown, c5_IFSR }, |
| 416 | { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32, |
| 417 | access_vm_reg, reset_unknown, c5_ADFSR }, |
| 418 | { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32, |
| 419 | access_vm_reg, reset_unknown, c5_AIFSR }, |
| 420 | |
| 421 | /* DFAR/IFAR: swapped by interrupt.S. */ |
| 422 | { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32, |
| 423 | access_vm_reg, reset_unknown, c6_DFAR }, |
| 424 | { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32, |
| 425 | access_vm_reg, reset_unknown, c6_IFAR }, |
| 426 | |
| 427 | /* PAR swapped by interrupt.S */ |
| 428 | { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR }, |
| 429 | |
| 430 | /* |
| 431 | * DC{C,I,CI}SW operations: |
| 432 | */ |
| 433 | { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw}, |
| 434 | { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw}, |
| 435 | { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw}, |
| 436 | /* |
| 437 | * L2CTLR access (guest wants to know #CPUs). |
| 438 | */ |
| 439 | { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32, |
| 440 | access_l2ctlr, reset_l2ctlr, c9_L2CTLR }, |
| 441 | { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr}, |
| 442 | |
| 443 | /* |
| 444 | * Dummy performance monitor implementation. |
| 445 | */ |
| 446 | { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr}, |
| 447 | { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset}, |
| 448 | { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr}, |
| 449 | { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr}, |
| 450 | { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr}, |
| 451 | { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0}, |
| 452 | { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1}, |
| 453 | { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr}, |
| 454 | { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper}, |
| 455 | { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr}, |
| 456 | { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr}, |
| 457 | { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset}, |
| 458 | { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr}, |
| 459 | |
| 460 | /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */ |
| 461 | { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32, |
| 462 | access_vm_reg, reset_unknown, c10_PRRR}, |
| 463 | { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32, |
| 464 | access_vm_reg, reset_unknown, c10_NMRR}, |
| 465 | |
| 466 | /* AMAIR0/AMAIR1: swapped by interrupt.S. */ |
| 467 | { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32, |
| 468 | access_vm_reg, reset_unknown, c10_AMAIR0}, |
| 469 | { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32, |
| 470 | access_vm_reg, reset_unknown, c10_AMAIR1}, |
| 471 | |
| 472 | /* ICC_SGI1R */ |
| 473 | { CRm64(12), Op1( 0), is64, access_gic_sgi}, |
| 474 | |
| 475 | /* VBAR: swapped by interrupt.S. */ |
| 476 | { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32, |
| 477 | NULL, reset_val, c12_VBAR, 0x00000000 }, |
| 478 | |
| 479 | /* ICC_ASGI1R */ |
| 480 | { CRm64(12), Op1( 1), is64, access_gic_sgi}, |
| 481 | /* ICC_SGI0R */ |
| 482 | { CRm64(12), Op1( 2), is64, access_gic_sgi}, |
| 483 | /* ICC_SRE */ |
| 484 | { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre }, |
| 485 | |
| 486 | /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */ |
| 487 | { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32, |
| 488 | access_vm_reg, reset_val, c13_CID, 0x00000000 }, |
| 489 | { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32, |
| 490 | NULL, reset_unknown, c13_TID_URW }, |
| 491 | { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32, |
| 492 | NULL, reset_unknown, c13_TID_URO }, |
| 493 | { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32, |
| 494 | NULL, reset_unknown, c13_TID_PRIV }, |
| 495 | |
| 496 | /* CNTP */ |
| 497 | { CRm64(14), Op1( 2), is64, access_cntp_cval}, |
| 498 | |
| 499 | /* CNTKCTL: swapped by interrupt.S. */ |
| 500 | { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32, |
| 501 | NULL, reset_val, c14_CNTKCTL, 0x00000000 }, |
| 502 | |
| 503 | /* CNTP */ |
| 504 | { CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval }, |
| 505 | { CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl }, |
| 506 | |
| 507 | /* The Configuration Base Address Register. */ |
| 508 | { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar}, |
| 509 | }; |
| 510 | |
| 511 | static int check_reg_table(const struct coproc_reg *table, unsigned int n) |
| 512 | { |
| 513 | unsigned int i; |
| 514 | |
| 515 | for (i = 1; i < n; i++) { |
| 516 | if (cmp_reg(&table[i-1], &table[i]) >= 0) { |
| 517 | kvm_err("reg table %p out of order (%d)\n", table, i - 1); |
| 518 | return 1; |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | return 0; |
| 523 | } |
| 524 | |
| 525 | /* Target specific emulation tables */ |
| 526 | static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS]; |
| 527 | |
| 528 | void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table) |
| 529 | { |
| 530 | BUG_ON(check_reg_table(table->table, table->num)); |
| 531 | target_tables[table->target] = table; |
| 532 | } |
| 533 | |
| 534 | /* Get specific register table for this target. */ |
| 535 | static const struct coproc_reg *get_target_table(unsigned target, size_t *num) |
| 536 | { |
| 537 | struct kvm_coproc_target_table *table; |
| 538 | |
| 539 | table = target_tables[target]; |
| 540 | *num = table->num; |
| 541 | return table->table; |
| 542 | } |
| 543 | |
| 544 | #define reg_to_match_value(x) \ |
| 545 | ({ \ |
| 546 | unsigned long val; \ |
| 547 | val = (x)->CRn << 11; \ |
| 548 | val |= (x)->CRm << 7; \ |
| 549 | val |= (x)->Op1 << 4; \ |
| 550 | val |= (x)->Op2 << 1; \ |
| 551 | val |= !(x)->is_64bit; \ |
| 552 | val; \ |
| 553 | }) |
| 554 | |
| 555 | static int match_reg(const void *key, const void *elt) |
| 556 | { |
| 557 | const unsigned long pval = (unsigned long)key; |
| 558 | const struct coproc_reg *r = elt; |
| 559 | |
| 560 | return pval - reg_to_match_value(r); |
| 561 | } |
| 562 | |
| 563 | static const struct coproc_reg *find_reg(const struct coproc_params *params, |
| 564 | const struct coproc_reg table[], |
| 565 | unsigned int num) |
| 566 | { |
| 567 | unsigned long pval = reg_to_match_value(params); |
| 568 | |
| 569 | return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg); |
| 570 | } |
| 571 | |
| 572 | static int emulate_cp15(struct kvm_vcpu *vcpu, |
| 573 | const struct coproc_params *params) |
| 574 | { |
| 575 | size_t num; |
| 576 | const struct coproc_reg *table, *r; |
| 577 | |
| 578 | trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn, |
| 579 | params->CRm, params->Op2, params->is_write); |
| 580 | |
| 581 | table = get_target_table(vcpu->arch.target, &num); |
| 582 | |
| 583 | /* Search target-specific then generic table. */ |
| 584 | r = find_reg(params, table, num); |
| 585 | if (!r) |
| 586 | r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs)); |
| 587 | |
| 588 | if (likely(r)) { |
| 589 | /* If we don't have an accessor, we should never get here! */ |
| 590 | BUG_ON(!r->access); |
| 591 | |
| 592 | if (likely(r->access(vcpu, params, r))) { |
| 593 | /* Skip instruction, since it was emulated */ |
| 594 | kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); |
| 595 | } |
| 596 | } else { |
| 597 | /* If access function fails, it should complain. */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 598 | kvm_err("Unsupported guest CP15 access at: %08lx [%08lx]\n", |
| 599 | *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 600 | print_cp_instr(params); |
| 601 | kvm_inject_undefined(vcpu); |
| 602 | } |
| 603 | |
| 604 | return 1; |
| 605 | } |
| 606 | |
| 607 | static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu) |
| 608 | { |
| 609 | struct coproc_params params; |
| 610 | |
| 611 | params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf; |
| 612 | params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf; |
| 613 | params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0); |
| 614 | params.is_64bit = true; |
| 615 | |
| 616 | params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf; |
| 617 | params.Op2 = 0; |
| 618 | params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf; |
| 619 | params.CRm = 0; |
| 620 | |
| 621 | return params; |
| 622 | } |
| 623 | |
| 624 | /** |
| 625 | * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access |
| 626 | * @vcpu: The VCPU pointer |
| 627 | * @run: The kvm_run struct |
| 628 | */ |
| 629 | int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 630 | { |
| 631 | struct coproc_params params = decode_64bit_hsr(vcpu); |
| 632 | |
| 633 | return emulate_cp15(vcpu, ¶ms); |
| 634 | } |
| 635 | |
| 636 | /** |
| 637 | * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access |
| 638 | * @vcpu: The VCPU pointer |
| 639 | * @run: The kvm_run struct |
| 640 | */ |
| 641 | int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 642 | { |
| 643 | struct coproc_params params = decode_64bit_hsr(vcpu); |
| 644 | |
| 645 | /* raz_wi cp14 */ |
| 646 | trap_raz_wi(vcpu, ¶ms, NULL); |
| 647 | |
| 648 | /* handled */ |
| 649 | kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); |
| 650 | return 1; |
| 651 | } |
| 652 | |
| 653 | static void reset_coproc_regs(struct kvm_vcpu *vcpu, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 654 | const struct coproc_reg *table, size_t num, |
| 655 | unsigned long *bmap) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 656 | { |
| 657 | unsigned long i; |
| 658 | |
| 659 | for (i = 0; i < num; i++) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 660 | if (table[i].reset) { |
| 661 | int reg = table[i].reg; |
| 662 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 663 | table[i].reset(vcpu, &table[i]); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 664 | if (reg > 0 && reg < NR_CP15_REGS) { |
| 665 | set_bit(reg, bmap); |
| 666 | if (table[i].is_64bit) |
| 667 | set_bit(reg + 1, bmap); |
| 668 | } |
| 669 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 670 | } |
| 671 | |
| 672 | static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu) |
| 673 | { |
| 674 | struct coproc_params params; |
| 675 | |
| 676 | params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf; |
| 677 | params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf; |
| 678 | params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0); |
| 679 | params.is_64bit = false; |
| 680 | |
| 681 | params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf; |
| 682 | params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7; |
| 683 | params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7; |
| 684 | params.Rt2 = 0; |
| 685 | |
| 686 | return params; |
| 687 | } |
| 688 | |
| 689 | /** |
| 690 | * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access |
| 691 | * @vcpu: The VCPU pointer |
| 692 | * @run: The kvm_run struct |
| 693 | */ |
| 694 | int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 695 | { |
| 696 | struct coproc_params params = decode_32bit_hsr(vcpu); |
| 697 | return emulate_cp15(vcpu, ¶ms); |
| 698 | } |
| 699 | |
| 700 | /** |
| 701 | * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access |
| 702 | * @vcpu: The VCPU pointer |
| 703 | * @run: The kvm_run struct |
| 704 | */ |
| 705 | int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 706 | { |
| 707 | struct coproc_params params = decode_32bit_hsr(vcpu); |
| 708 | |
| 709 | /* raz_wi cp14 */ |
| 710 | trap_raz_wi(vcpu, ¶ms, NULL); |
| 711 | |
| 712 | /* handled */ |
| 713 | kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); |
| 714 | return 1; |
| 715 | } |
| 716 | |
| 717 | /****************************************************************************** |
| 718 | * Userspace API |
| 719 | *****************************************************************************/ |
| 720 | |
| 721 | static bool index_to_params(u64 id, struct coproc_params *params) |
| 722 | { |
| 723 | switch (id & KVM_REG_SIZE_MASK) { |
| 724 | case KVM_REG_SIZE_U32: |
| 725 | /* Any unused index bits means it's not valid. */ |
| 726 | if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK |
| 727 | | KVM_REG_ARM_COPROC_MASK |
| 728 | | KVM_REG_ARM_32_CRN_MASK |
| 729 | | KVM_REG_ARM_CRM_MASK |
| 730 | | KVM_REG_ARM_OPC1_MASK |
| 731 | | KVM_REG_ARM_32_OPC2_MASK)) |
| 732 | return false; |
| 733 | |
| 734 | params->is_64bit = false; |
| 735 | params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK) |
| 736 | >> KVM_REG_ARM_32_CRN_SHIFT); |
| 737 | params->CRm = ((id & KVM_REG_ARM_CRM_MASK) |
| 738 | >> KVM_REG_ARM_CRM_SHIFT); |
| 739 | params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK) |
| 740 | >> KVM_REG_ARM_OPC1_SHIFT); |
| 741 | params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK) |
| 742 | >> KVM_REG_ARM_32_OPC2_SHIFT); |
| 743 | return true; |
| 744 | case KVM_REG_SIZE_U64: |
| 745 | /* Any unused index bits means it's not valid. */ |
| 746 | if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK |
| 747 | | KVM_REG_ARM_COPROC_MASK |
| 748 | | KVM_REG_ARM_CRM_MASK |
| 749 | | KVM_REG_ARM_OPC1_MASK)) |
| 750 | return false; |
| 751 | params->is_64bit = true; |
| 752 | /* CRm to CRn: see cp15_to_index for details */ |
| 753 | params->CRn = ((id & KVM_REG_ARM_CRM_MASK) |
| 754 | >> KVM_REG_ARM_CRM_SHIFT); |
| 755 | params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK) |
| 756 | >> KVM_REG_ARM_OPC1_SHIFT); |
| 757 | params->Op2 = 0; |
| 758 | params->CRm = 0; |
| 759 | return true; |
| 760 | default: |
| 761 | return false; |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | /* Decode an index value, and find the cp15 coproc_reg entry. */ |
| 766 | static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu, |
| 767 | u64 id) |
| 768 | { |
| 769 | size_t num; |
| 770 | const struct coproc_reg *table, *r; |
| 771 | struct coproc_params params; |
| 772 | |
| 773 | /* We only do cp15 for now. */ |
| 774 | if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15) |
| 775 | return NULL; |
| 776 | |
| 777 | if (!index_to_params(id, ¶ms)) |
| 778 | return NULL; |
| 779 | |
| 780 | table = get_target_table(vcpu->arch.target, &num); |
| 781 | r = find_reg(¶ms, table, num); |
| 782 | if (!r) |
| 783 | r = find_reg(¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); |
| 784 | |
| 785 | /* Not saved in the cp15 array? */ |
| 786 | if (r && !r->reg) |
| 787 | r = NULL; |
| 788 | |
| 789 | return r; |
| 790 | } |
| 791 | |
| 792 | /* |
| 793 | * These are the invariant cp15 registers: we let the guest see the host |
| 794 | * versions of these, so they're part of the guest state. |
| 795 | * |
| 796 | * A future CPU may provide a mechanism to present different values to |
| 797 | * the guest, or a future kvm may trap them. |
| 798 | */ |
| 799 | /* Unfortunately, there's no register-argument for mrc, so generate. */ |
| 800 | #define FUNCTION_FOR32(crn, crm, op1, op2, name) \ |
| 801 | static void get_##name(struct kvm_vcpu *v, \ |
| 802 | const struct coproc_reg *r) \ |
| 803 | { \ |
| 804 | u32 val; \ |
| 805 | \ |
| 806 | asm volatile("mrc p15, " __stringify(op1) \ |
| 807 | ", %0, c" __stringify(crn) \ |
| 808 | ", c" __stringify(crm) \ |
| 809 | ", " __stringify(op2) "\n" : "=r" (val)); \ |
| 810 | ((struct coproc_reg *)r)->val = val; \ |
| 811 | } |
| 812 | |
| 813 | FUNCTION_FOR32(0, 0, 0, 0, MIDR) |
| 814 | FUNCTION_FOR32(0, 0, 0, 1, CTR) |
| 815 | FUNCTION_FOR32(0, 0, 0, 2, TCMTR) |
| 816 | FUNCTION_FOR32(0, 0, 0, 3, TLBTR) |
| 817 | FUNCTION_FOR32(0, 0, 0, 6, REVIDR) |
| 818 | FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0) |
| 819 | FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1) |
| 820 | FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0) |
| 821 | FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0) |
| 822 | FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0) |
| 823 | FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1) |
| 824 | FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2) |
| 825 | FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3) |
| 826 | FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0) |
| 827 | FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1) |
| 828 | FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2) |
| 829 | FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3) |
| 830 | FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4) |
| 831 | FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5) |
| 832 | FUNCTION_FOR32(0, 0, 1, 1, CLIDR) |
| 833 | FUNCTION_FOR32(0, 0, 1, 7, AIDR) |
| 834 | |
| 835 | /* ->val is filled in by kvm_invariant_coproc_table_init() */ |
| 836 | static struct coproc_reg invariant_cp15[] = { |
| 837 | { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR }, |
| 838 | { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR }, |
| 839 | { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR }, |
| 840 | { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR }, |
| 841 | { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR }, |
| 842 | |
| 843 | { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR }, |
| 844 | { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR }, |
| 845 | |
| 846 | { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 }, |
| 847 | { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 }, |
| 848 | { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 }, |
| 849 | { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 }, |
| 850 | { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 }, |
| 851 | { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 }, |
| 852 | { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 }, |
| 853 | { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 }, |
| 854 | |
| 855 | { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 }, |
| 856 | { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 }, |
| 857 | { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 }, |
| 858 | { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 }, |
| 859 | { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 }, |
| 860 | { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 }, |
| 861 | }; |
| 862 | |
| 863 | /* |
| 864 | * Reads a register value from a userspace address to a kernel |
| 865 | * variable. Make sure that register size matches sizeof(*__val). |
| 866 | */ |
| 867 | static int reg_from_user(void *val, const void __user *uaddr, u64 id) |
| 868 | { |
| 869 | if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0) |
| 870 | return -EFAULT; |
| 871 | return 0; |
| 872 | } |
| 873 | |
| 874 | /* |
| 875 | * Writes a register value to a userspace address from a kernel variable. |
| 876 | * Make sure that register size matches sizeof(*__val). |
| 877 | */ |
| 878 | static int reg_to_user(void __user *uaddr, const void *val, u64 id) |
| 879 | { |
| 880 | if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0) |
| 881 | return -EFAULT; |
| 882 | return 0; |
| 883 | } |
| 884 | |
| 885 | static int get_invariant_cp15(u64 id, void __user *uaddr) |
| 886 | { |
| 887 | struct coproc_params params; |
| 888 | const struct coproc_reg *r; |
| 889 | int ret; |
| 890 | |
| 891 | if (!index_to_params(id, ¶ms)) |
| 892 | return -ENOENT; |
| 893 | |
| 894 | r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15)); |
| 895 | if (!r) |
| 896 | return -ENOENT; |
| 897 | |
| 898 | ret = -ENOENT; |
| 899 | if (KVM_REG_SIZE(id) == 4) { |
| 900 | u32 val = r->val; |
| 901 | |
| 902 | ret = reg_to_user(uaddr, &val, id); |
| 903 | } else if (KVM_REG_SIZE(id) == 8) { |
| 904 | ret = reg_to_user(uaddr, &r->val, id); |
| 905 | } |
| 906 | return ret; |
| 907 | } |
| 908 | |
| 909 | static int set_invariant_cp15(u64 id, void __user *uaddr) |
| 910 | { |
| 911 | struct coproc_params params; |
| 912 | const struct coproc_reg *r; |
| 913 | int err; |
| 914 | u64 val; |
| 915 | |
| 916 | if (!index_to_params(id, ¶ms)) |
| 917 | return -ENOENT; |
| 918 | r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15)); |
| 919 | if (!r) |
| 920 | return -ENOENT; |
| 921 | |
| 922 | err = -ENOENT; |
| 923 | if (KVM_REG_SIZE(id) == 4) { |
| 924 | u32 val32; |
| 925 | |
| 926 | err = reg_from_user(&val32, uaddr, id); |
| 927 | if (!err) |
| 928 | val = val32; |
| 929 | } else if (KVM_REG_SIZE(id) == 8) { |
| 930 | err = reg_from_user(&val, uaddr, id); |
| 931 | } |
| 932 | if (err) |
| 933 | return err; |
| 934 | |
| 935 | /* This is what we mean by invariant: you can't change it. */ |
| 936 | if (r->val != val) |
| 937 | return -EINVAL; |
| 938 | |
| 939 | return 0; |
| 940 | } |
| 941 | |
| 942 | static bool is_valid_cache(u32 val) |
| 943 | { |
| 944 | u32 level, ctype; |
| 945 | |
| 946 | if (val >= CSSELR_MAX) |
| 947 | return false; |
| 948 | |
| 949 | /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ |
| 950 | level = (val >> 1); |
| 951 | ctype = (cache_levels >> (level * 3)) & 7; |
| 952 | |
| 953 | switch (ctype) { |
| 954 | case 0: /* No cache */ |
| 955 | return false; |
| 956 | case 1: /* Instruction cache only */ |
| 957 | return (val & 1); |
| 958 | case 2: /* Data cache only */ |
| 959 | case 4: /* Unified cache */ |
| 960 | return !(val & 1); |
| 961 | case 3: /* Separate instruction and data caches */ |
| 962 | return true; |
| 963 | default: /* Reserved: we can't know instruction or data. */ |
| 964 | return false; |
| 965 | } |
| 966 | } |
| 967 | |
| 968 | /* Which cache CCSIDR represents depends on CSSELR value. */ |
| 969 | static u32 get_ccsidr(u32 csselr) |
| 970 | { |
| 971 | u32 ccsidr; |
| 972 | |
| 973 | /* Make sure noone else changes CSSELR during this! */ |
| 974 | local_irq_disable(); |
| 975 | /* Put value into CSSELR */ |
| 976 | asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr)); |
| 977 | isb(); |
| 978 | /* Read result out of CCSIDR */ |
| 979 | asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr)); |
| 980 | local_irq_enable(); |
| 981 | |
| 982 | return ccsidr; |
| 983 | } |
| 984 | |
| 985 | static int demux_c15_get(u64 id, void __user *uaddr) |
| 986 | { |
| 987 | u32 val; |
| 988 | u32 __user *uval = uaddr; |
| 989 | |
| 990 | /* Fail if we have unknown bits set. */ |
| 991 | if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| 992 | | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| 993 | return -ENOENT; |
| 994 | |
| 995 | switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| 996 | case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| 997 | if (KVM_REG_SIZE(id) != 4) |
| 998 | return -ENOENT; |
| 999 | val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) |
| 1000 | >> KVM_REG_ARM_DEMUX_VAL_SHIFT; |
| 1001 | if (!is_valid_cache(val)) |
| 1002 | return -ENOENT; |
| 1003 | |
| 1004 | return put_user(get_ccsidr(val), uval); |
| 1005 | default: |
| 1006 | return -ENOENT; |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | static int demux_c15_set(u64 id, void __user *uaddr) |
| 1011 | { |
| 1012 | u32 val, newval; |
| 1013 | u32 __user *uval = uaddr; |
| 1014 | |
| 1015 | /* Fail if we have unknown bits set. */ |
| 1016 | if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| 1017 | | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| 1018 | return -ENOENT; |
| 1019 | |
| 1020 | switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| 1021 | case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| 1022 | if (KVM_REG_SIZE(id) != 4) |
| 1023 | return -ENOENT; |
| 1024 | val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) |
| 1025 | >> KVM_REG_ARM_DEMUX_VAL_SHIFT; |
| 1026 | if (!is_valid_cache(val)) |
| 1027 | return -ENOENT; |
| 1028 | |
| 1029 | if (get_user(newval, uval)) |
| 1030 | return -EFAULT; |
| 1031 | |
| 1032 | /* This is also invariant: you can't change it. */ |
| 1033 | if (newval != get_ccsidr(val)) |
| 1034 | return -EINVAL; |
| 1035 | return 0; |
| 1036 | default: |
| 1037 | return -ENOENT; |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | #ifdef CONFIG_VFPv3 |
| 1042 | static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC, |
| 1043 | KVM_REG_ARM_VFP_FPSCR, |
| 1044 | KVM_REG_ARM_VFP_FPINST, |
| 1045 | KVM_REG_ARM_VFP_FPINST2, |
| 1046 | KVM_REG_ARM_VFP_MVFR0, |
| 1047 | KVM_REG_ARM_VFP_MVFR1, |
| 1048 | KVM_REG_ARM_VFP_FPSID }; |
| 1049 | |
| 1050 | static unsigned int num_fp_regs(void) |
| 1051 | { |
| 1052 | if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2) |
| 1053 | return 32; |
| 1054 | else |
| 1055 | return 16; |
| 1056 | } |
| 1057 | |
| 1058 | static unsigned int num_vfp_regs(void) |
| 1059 | { |
| 1060 | /* Normal FP regs + control regs. */ |
| 1061 | return num_fp_regs() + ARRAY_SIZE(vfp_sysregs); |
| 1062 | } |
| 1063 | |
| 1064 | static int copy_vfp_regids(u64 __user *uindices) |
| 1065 | { |
| 1066 | unsigned int i; |
| 1067 | const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP; |
| 1068 | const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; |
| 1069 | |
| 1070 | for (i = 0; i < num_fp_regs(); i++) { |
| 1071 | if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i, |
| 1072 | uindices)) |
| 1073 | return -EFAULT; |
| 1074 | uindices++; |
| 1075 | } |
| 1076 | |
| 1077 | for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) { |
| 1078 | if (put_user(u32reg | vfp_sysregs[i], uindices)) |
| 1079 | return -EFAULT; |
| 1080 | uindices++; |
| 1081 | } |
| 1082 | |
| 1083 | return num_vfp_regs(); |
| 1084 | } |
| 1085 | |
| 1086 | static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) |
| 1087 | { |
| 1088 | u32 vfpid = (id & KVM_REG_ARM_VFP_MASK); |
| 1089 | u32 val; |
| 1090 | |
| 1091 | /* Fail if we have unknown bits set. */ |
| 1092 | if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| 1093 | | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| 1094 | return -ENOENT; |
| 1095 | |
| 1096 | if (vfpid < num_fp_regs()) { |
| 1097 | if (KVM_REG_SIZE(id) != 8) |
| 1098 | return -ENOENT; |
| 1099 | return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid], |
| 1100 | id); |
| 1101 | } |
| 1102 | |
| 1103 | /* FP control registers are all 32 bit. */ |
| 1104 | if (KVM_REG_SIZE(id) != 4) |
| 1105 | return -ENOENT; |
| 1106 | |
| 1107 | switch (vfpid) { |
| 1108 | case KVM_REG_ARM_VFP_FPEXC: |
| 1109 | return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id); |
| 1110 | case KVM_REG_ARM_VFP_FPSCR: |
| 1111 | return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id); |
| 1112 | case KVM_REG_ARM_VFP_FPINST: |
| 1113 | return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id); |
| 1114 | case KVM_REG_ARM_VFP_FPINST2: |
| 1115 | return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id); |
| 1116 | case KVM_REG_ARM_VFP_MVFR0: |
| 1117 | val = fmrx(MVFR0); |
| 1118 | return reg_to_user(uaddr, &val, id); |
| 1119 | case KVM_REG_ARM_VFP_MVFR1: |
| 1120 | val = fmrx(MVFR1); |
| 1121 | return reg_to_user(uaddr, &val, id); |
| 1122 | case KVM_REG_ARM_VFP_FPSID: |
| 1123 | val = fmrx(FPSID); |
| 1124 | return reg_to_user(uaddr, &val, id); |
| 1125 | default: |
| 1126 | return -ENOENT; |
| 1127 | } |
| 1128 | } |
| 1129 | |
| 1130 | static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr) |
| 1131 | { |
| 1132 | u32 vfpid = (id & KVM_REG_ARM_VFP_MASK); |
| 1133 | u32 val; |
| 1134 | |
| 1135 | /* Fail if we have unknown bits set. */ |
| 1136 | if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| 1137 | | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| 1138 | return -ENOENT; |
| 1139 | |
| 1140 | if (vfpid < num_fp_regs()) { |
| 1141 | if (KVM_REG_SIZE(id) != 8) |
| 1142 | return -ENOENT; |
| 1143 | return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid], |
| 1144 | uaddr, id); |
| 1145 | } |
| 1146 | |
| 1147 | /* FP control registers are all 32 bit. */ |
| 1148 | if (KVM_REG_SIZE(id) != 4) |
| 1149 | return -ENOENT; |
| 1150 | |
| 1151 | switch (vfpid) { |
| 1152 | case KVM_REG_ARM_VFP_FPEXC: |
| 1153 | return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id); |
| 1154 | case KVM_REG_ARM_VFP_FPSCR: |
| 1155 | return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id); |
| 1156 | case KVM_REG_ARM_VFP_FPINST: |
| 1157 | return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id); |
| 1158 | case KVM_REG_ARM_VFP_FPINST2: |
| 1159 | return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id); |
| 1160 | /* These are invariant. */ |
| 1161 | case KVM_REG_ARM_VFP_MVFR0: |
| 1162 | if (reg_from_user(&val, uaddr, id)) |
| 1163 | return -EFAULT; |
| 1164 | if (val != fmrx(MVFR0)) |
| 1165 | return -EINVAL; |
| 1166 | return 0; |
| 1167 | case KVM_REG_ARM_VFP_MVFR1: |
| 1168 | if (reg_from_user(&val, uaddr, id)) |
| 1169 | return -EFAULT; |
| 1170 | if (val != fmrx(MVFR1)) |
| 1171 | return -EINVAL; |
| 1172 | return 0; |
| 1173 | case KVM_REG_ARM_VFP_FPSID: |
| 1174 | if (reg_from_user(&val, uaddr, id)) |
| 1175 | return -EFAULT; |
| 1176 | if (val != fmrx(FPSID)) |
| 1177 | return -EINVAL; |
| 1178 | return 0; |
| 1179 | default: |
| 1180 | return -ENOENT; |
| 1181 | } |
| 1182 | } |
| 1183 | #else /* !CONFIG_VFPv3 */ |
| 1184 | static unsigned int num_vfp_regs(void) |
| 1185 | { |
| 1186 | return 0; |
| 1187 | } |
| 1188 | |
| 1189 | static int copy_vfp_regids(u64 __user *uindices) |
| 1190 | { |
| 1191 | return 0; |
| 1192 | } |
| 1193 | |
| 1194 | static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) |
| 1195 | { |
| 1196 | return -ENOENT; |
| 1197 | } |
| 1198 | |
| 1199 | static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr) |
| 1200 | { |
| 1201 | return -ENOENT; |
| 1202 | } |
| 1203 | #endif /* !CONFIG_VFPv3 */ |
| 1204 | |
| 1205 | int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| 1206 | { |
| 1207 | const struct coproc_reg *r; |
| 1208 | void __user *uaddr = (void __user *)(long)reg->addr; |
| 1209 | int ret; |
| 1210 | |
| 1211 | if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) |
| 1212 | return demux_c15_get(reg->id, uaddr); |
| 1213 | |
| 1214 | if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP) |
| 1215 | return vfp_get_reg(vcpu, reg->id, uaddr); |
| 1216 | |
| 1217 | r = index_to_coproc_reg(vcpu, reg->id); |
| 1218 | if (!r) |
| 1219 | return get_invariant_cp15(reg->id, uaddr); |
| 1220 | |
| 1221 | ret = -ENOENT; |
| 1222 | if (KVM_REG_SIZE(reg->id) == 8) { |
| 1223 | u64 val; |
| 1224 | |
| 1225 | val = vcpu_cp15_reg64_get(vcpu, r); |
| 1226 | ret = reg_to_user(uaddr, &val, reg->id); |
| 1227 | } else if (KVM_REG_SIZE(reg->id) == 4) { |
| 1228 | ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id); |
| 1229 | } |
| 1230 | |
| 1231 | return ret; |
| 1232 | } |
| 1233 | |
| 1234 | int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| 1235 | { |
| 1236 | const struct coproc_reg *r; |
| 1237 | void __user *uaddr = (void __user *)(long)reg->addr; |
| 1238 | int ret; |
| 1239 | |
| 1240 | if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) |
| 1241 | return demux_c15_set(reg->id, uaddr); |
| 1242 | |
| 1243 | if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP) |
| 1244 | return vfp_set_reg(vcpu, reg->id, uaddr); |
| 1245 | |
| 1246 | r = index_to_coproc_reg(vcpu, reg->id); |
| 1247 | if (!r) |
| 1248 | return set_invariant_cp15(reg->id, uaddr); |
| 1249 | |
| 1250 | ret = -ENOENT; |
| 1251 | if (KVM_REG_SIZE(reg->id) == 8) { |
| 1252 | u64 val; |
| 1253 | |
| 1254 | ret = reg_from_user(&val, uaddr, reg->id); |
| 1255 | if (!ret) |
| 1256 | vcpu_cp15_reg64_set(vcpu, r, val); |
| 1257 | } else if (KVM_REG_SIZE(reg->id) == 4) { |
| 1258 | ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id); |
| 1259 | } |
| 1260 | |
| 1261 | return ret; |
| 1262 | } |
| 1263 | |
| 1264 | static unsigned int num_demux_regs(void) |
| 1265 | { |
| 1266 | unsigned int i, count = 0; |
| 1267 | |
| 1268 | for (i = 0; i < CSSELR_MAX; i++) |
| 1269 | if (is_valid_cache(i)) |
| 1270 | count++; |
| 1271 | |
| 1272 | return count; |
| 1273 | } |
| 1274 | |
| 1275 | static int write_demux_regids(u64 __user *uindices) |
| 1276 | { |
| 1277 | u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; |
| 1278 | unsigned int i; |
| 1279 | |
| 1280 | val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; |
| 1281 | for (i = 0; i < CSSELR_MAX; i++) { |
| 1282 | if (!is_valid_cache(i)) |
| 1283 | continue; |
| 1284 | if (put_user(val | i, uindices)) |
| 1285 | return -EFAULT; |
| 1286 | uindices++; |
| 1287 | } |
| 1288 | return 0; |
| 1289 | } |
| 1290 | |
| 1291 | static u64 cp15_to_index(const struct coproc_reg *reg) |
| 1292 | { |
| 1293 | u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT); |
| 1294 | if (reg->is_64bit) { |
| 1295 | val |= KVM_REG_SIZE_U64; |
| 1296 | val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT); |
| 1297 | /* |
| 1298 | * CRn always denotes the primary coproc. reg. nr. for the |
| 1299 | * in-kernel representation, but the user space API uses the |
| 1300 | * CRm for the encoding, because it is modelled after the |
| 1301 | * MRRC/MCRR instructions: see the ARM ARM rev. c page |
| 1302 | * B3-1445 |
| 1303 | */ |
| 1304 | val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT); |
| 1305 | } else { |
| 1306 | val |= KVM_REG_SIZE_U32; |
| 1307 | val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT); |
| 1308 | val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT); |
| 1309 | val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT); |
| 1310 | val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT); |
| 1311 | } |
| 1312 | return val; |
| 1313 | } |
| 1314 | |
| 1315 | static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind) |
| 1316 | { |
| 1317 | if (!*uind) |
| 1318 | return true; |
| 1319 | |
| 1320 | if (put_user(cp15_to_index(reg), *uind)) |
| 1321 | return false; |
| 1322 | |
| 1323 | (*uind)++; |
| 1324 | return true; |
| 1325 | } |
| 1326 | |
| 1327 | /* Assumed ordered tables, see kvm_coproc_table_init. */ |
| 1328 | static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind) |
| 1329 | { |
| 1330 | const struct coproc_reg *i1, *i2, *end1, *end2; |
| 1331 | unsigned int total = 0; |
| 1332 | size_t num; |
| 1333 | |
| 1334 | /* We check for duplicates here, to allow arch-specific overrides. */ |
| 1335 | i1 = get_target_table(vcpu->arch.target, &num); |
| 1336 | end1 = i1 + num; |
| 1337 | i2 = cp15_regs; |
| 1338 | end2 = cp15_regs + ARRAY_SIZE(cp15_regs); |
| 1339 | |
| 1340 | BUG_ON(i1 == end1 || i2 == end2); |
| 1341 | |
| 1342 | /* Walk carefully, as both tables may refer to the same register. */ |
| 1343 | while (i1 || i2) { |
| 1344 | int cmp = cmp_reg(i1, i2); |
| 1345 | /* target-specific overrides generic entry. */ |
| 1346 | if (cmp <= 0) { |
| 1347 | /* Ignore registers we trap but don't save. */ |
| 1348 | if (i1->reg) { |
| 1349 | if (!copy_reg_to_user(i1, &uind)) |
| 1350 | return -EFAULT; |
| 1351 | total++; |
| 1352 | } |
| 1353 | } else { |
| 1354 | /* Ignore registers we trap but don't save. */ |
| 1355 | if (i2->reg) { |
| 1356 | if (!copy_reg_to_user(i2, &uind)) |
| 1357 | return -EFAULT; |
| 1358 | total++; |
| 1359 | } |
| 1360 | } |
| 1361 | |
| 1362 | if (cmp <= 0 && ++i1 == end1) |
| 1363 | i1 = NULL; |
| 1364 | if (cmp >= 0 && ++i2 == end2) |
| 1365 | i2 = NULL; |
| 1366 | } |
| 1367 | return total; |
| 1368 | } |
| 1369 | |
| 1370 | unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu) |
| 1371 | { |
| 1372 | return ARRAY_SIZE(invariant_cp15) |
| 1373 | + num_demux_regs() |
| 1374 | + num_vfp_regs() |
| 1375 | + walk_cp15(vcpu, (u64 __user *)NULL); |
| 1376 | } |
| 1377 | |
| 1378 | int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) |
| 1379 | { |
| 1380 | unsigned int i; |
| 1381 | int err; |
| 1382 | |
| 1383 | /* Then give them all the invariant registers' indices. */ |
| 1384 | for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) { |
| 1385 | if (put_user(cp15_to_index(&invariant_cp15[i]), uindices)) |
| 1386 | return -EFAULT; |
| 1387 | uindices++; |
| 1388 | } |
| 1389 | |
| 1390 | err = walk_cp15(vcpu, uindices); |
| 1391 | if (err < 0) |
| 1392 | return err; |
| 1393 | uindices += err; |
| 1394 | |
| 1395 | err = copy_vfp_regids(uindices); |
| 1396 | if (err < 0) |
| 1397 | return err; |
| 1398 | uindices += err; |
| 1399 | |
| 1400 | return write_demux_regids(uindices); |
| 1401 | } |
| 1402 | |
| 1403 | void kvm_coproc_table_init(void) |
| 1404 | { |
| 1405 | unsigned int i; |
| 1406 | |
| 1407 | /* Make sure tables are unique and in order. */ |
| 1408 | BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs))); |
| 1409 | BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15))); |
| 1410 | |
| 1411 | /* We abuse the reset function to overwrite the table itself. */ |
| 1412 | for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) |
| 1413 | invariant_cp15[i].reset(NULL, &invariant_cp15[i]); |
| 1414 | |
| 1415 | /* |
| 1416 | * CLIDR format is awkward, so clean it up. See ARM B4.1.20: |
| 1417 | * |
| 1418 | * If software reads the Cache Type fields from Ctype1 |
| 1419 | * upwards, once it has seen a value of 0b000, no caches |
| 1420 | * exist at further-out levels of the hierarchy. So, for |
| 1421 | * example, if Ctype3 is the first Cache Type field with a |
| 1422 | * value of 0b000, the values of Ctype4 to Ctype7 must be |
| 1423 | * ignored. |
| 1424 | */ |
| 1425 | asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels)); |
| 1426 | for (i = 0; i < 7; i++) |
| 1427 | if (((cache_levels >> (i*3)) & 7) == 0) |
| 1428 | break; |
| 1429 | /* Clear all higher bits. */ |
| 1430 | cache_levels &= (1 << (i*3))-1; |
| 1431 | } |
| 1432 | |
| 1433 | /** |
| 1434 | * kvm_reset_coprocs - sets cp15 registers to reset value |
| 1435 | * @vcpu: The VCPU pointer |
| 1436 | * |
| 1437 | * This function finds the right table above and sets the registers on the |
| 1438 | * virtual CPU struct to their architecturally defined reset values. |
| 1439 | */ |
| 1440 | void kvm_reset_coprocs(struct kvm_vcpu *vcpu) |
| 1441 | { |
| 1442 | size_t num; |
| 1443 | const struct coproc_reg *table; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1444 | DECLARE_BITMAP(bmap, NR_CP15_REGS) = { 0, }; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1445 | |
| 1446 | /* Generic chip reset first (so target could override). */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1447 | reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs), bmap); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1448 | |
| 1449 | table = get_target_table(vcpu->arch.target, &num); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1450 | reset_coproc_regs(vcpu, table, num, bmap); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1451 | |
| 1452 | for (num = 1; num < NR_CP15_REGS; num++) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1453 | WARN(!test_bit(num, bmap), |
| 1454 | "Didn't reset vcpu_cp15(vcpu, %zi)", num); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1455 | } |