v4.19.13 snapshot.
diff --git a/arch/arm/kvm/coproc.c b/arch/arm/kvm/coproc.c
new file mode 100644
index 0000000..cb094e5
--- /dev/null
+++ b/arch/arm/kvm/coproc.c
@@ -0,0 +1,1455 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Authors: Rusty Russell <rusty@rustcorp.com.au>
+ *          Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
+ */
+
+#include <linux/bsearch.h>
+#include <linux/mm.h>
+#include <linux/kvm_host.h>
+#include <linux/uaccess.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_host.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_coproc.h>
+#include <asm/kvm_mmu.h>
+#include <asm/cacheflush.h>
+#include <asm/cputype.h>
+#include <trace/events/kvm.h>
+#include <asm/vfp.h>
+#include "../vfp/vfpinstr.h"
+
+#define CREATE_TRACE_POINTS
+#include "trace.h"
+#include "coproc.h"
+
+
+/******************************************************************************
+ * Co-processor emulation
+ *****************************************************************************/
+
+static bool write_to_read_only(struct kvm_vcpu *vcpu,
+			       const struct coproc_params *params)
+{
+	WARN_ONCE(1, "CP15 write to read-only register\n");
+	print_cp_instr(params);
+	kvm_inject_undefined(vcpu);
+	return false;
+}
+
+static bool read_from_write_only(struct kvm_vcpu *vcpu,
+				 const struct coproc_params *params)
+{
+	WARN_ONCE(1, "CP15 read to write-only register\n");
+	print_cp_instr(params);
+	kvm_inject_undefined(vcpu);
+	return false;
+}
+
+/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
+static u32 cache_levels;
+
+/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
+#define CSSELR_MAX 12
+
+/*
+ * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
+ * of cp15 registers can be viewed either as couple of two u32 registers
+ * or one u64 register. Current u64 register encoding is that least
+ * significant u32 word is followed by most significant u32 word.
+ */
+static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
+				       const struct coproc_reg *r,
+				       u64 val)
+{
+	vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
+	vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
+}
+
+static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
+				      const struct coproc_reg *r)
+{
+	u64 val;
+
+	val = vcpu_cp15(vcpu, r->reg + 1);
+	val = val << 32;
+	val = val | vcpu_cp15(vcpu, r->reg);
+	return val;
+}
+
+int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+	kvm_inject_undefined(vcpu);
+	return 1;
+}
+
+int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+	/*
+	 * We can get here, if the host has been built without VFPv3 support,
+	 * but the guest attempted a floating point operation.
+	 */
+	kvm_inject_undefined(vcpu);
+	return 1;
+}
+
+int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+	kvm_inject_undefined(vcpu);
+	return 1;
+}
+
+static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
+{
+	/*
+	 * Compute guest MPIDR. We build a virtual cluster out of the
+	 * vcpu_id, but we read the 'U' bit from the underlying
+	 * hardware directly.
+	 */
+	vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
+				     ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
+				     (vcpu->vcpu_id & 3));
+}
+
+/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
+static bool access_actlr(struct kvm_vcpu *vcpu,
+			 const struct coproc_params *p,
+			 const struct coproc_reg *r)
+{
+	if (p->is_write)
+		return ignore_write(vcpu, p);
+
+	*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
+	return true;
+}
+
+/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
+static bool access_cbar(struct kvm_vcpu *vcpu,
+			const struct coproc_params *p,
+			const struct coproc_reg *r)
+{
+	if (p->is_write)
+		return write_to_read_only(vcpu, p);
+	return read_zero(vcpu, p);
+}
+
+/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
+static bool access_l2ctlr(struct kvm_vcpu *vcpu,
+			  const struct coproc_params *p,
+			  const struct coproc_reg *r)
+{
+	if (p->is_write)
+		return ignore_write(vcpu, p);
+
+	*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
+	return true;
+}
+
+static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
+{
+	u32 l2ctlr, ncores;
+
+	asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
+	l2ctlr &= ~(3 << 24);
+	ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
+	/* How many cores in the current cluster and the next ones */
+	ncores -= (vcpu->vcpu_id & ~3);
+	/* Cap it to the maximum number of cores in a single cluster */
+	ncores = min(ncores, 3U);
+	l2ctlr |= (ncores & 3) << 24;
+
+	vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
+}
+
+static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
+{
+	u32 actlr;
+
+	/* ACTLR contains SMP bit: make sure you create all cpus first! */
+	asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
+	/* Make the SMP bit consistent with the guest configuration */
+	if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
+		actlr |= 1U << 6;
+	else
+		actlr &= ~(1U << 6);
+
+	vcpu_cp15(vcpu, c1_ACTLR) = actlr;
+}
+
+/*
+ * TRM entries: A7:4.3.50, A15:4.3.49
+ * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
+ */
+static bool access_l2ectlr(struct kvm_vcpu *vcpu,
+			   const struct coproc_params *p,
+			   const struct coproc_reg *r)
+{
+	if (p->is_write)
+		return ignore_write(vcpu, p);
+
+	*vcpu_reg(vcpu, p->Rt1) = 0;
+	return true;
+}
+
+/*
+ * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
+ */
+static bool access_dcsw(struct kvm_vcpu *vcpu,
+			const struct coproc_params *p,
+			const struct coproc_reg *r)
+{
+	if (!p->is_write)
+		return read_from_write_only(vcpu, p);
+
+	kvm_set_way_flush(vcpu);
+	return true;
+}
+
+/*
+ * Generic accessor for VM registers. Only called as long as HCR_TVM
+ * is set.  If the guest enables the MMU, we stop trapping the VM
+ * sys_regs and leave it in complete control of the caches.
+ *
+ * Used by the cpu-specific code.
+ */
+bool access_vm_reg(struct kvm_vcpu *vcpu,
+		   const struct coproc_params *p,
+		   const struct coproc_reg *r)
+{
+	bool was_enabled = vcpu_has_cache_enabled(vcpu);
+
+	BUG_ON(!p->is_write);
+
+	vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
+	if (p->is_64bit)
+		vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
+
+	kvm_toggle_cache(vcpu, was_enabled);
+	return true;
+}
+
+static bool access_gic_sgi(struct kvm_vcpu *vcpu,
+			   const struct coproc_params *p,
+			   const struct coproc_reg *r)
+{
+	u64 reg;
+	bool g1;
+
+	if (!p->is_write)
+		return read_from_write_only(vcpu, p);
+
+	reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
+	reg |= *vcpu_reg(vcpu, p->Rt1) ;
+
+	/*
+	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
+	 * Group0 SGIs only, while ICC_SGI1R can generate either group,
+	 * depending on the SGI configuration. ICC_ASGI1R is effectively
+	 * equivalent to ICC_SGI0R, as there is no "alternative" secure
+	 * group.
+	 */
+	switch (p->Op1) {
+	default:		/* Keep GCC quiet */
+	case 0:			/* ICC_SGI1R */
+		g1 = true;
+		break;
+	case 1:			/* ICC_ASGI1R */
+	case 2:			/* ICC_SGI0R */
+		g1 = false;
+		break;
+	}
+
+	vgic_v3_dispatch_sgi(vcpu, reg, g1);
+
+	return true;
+}
+
+static bool access_gic_sre(struct kvm_vcpu *vcpu,
+			   const struct coproc_params *p,
+			   const struct coproc_reg *r)
+{
+	if (p->is_write)
+		return ignore_write(vcpu, p);
+
+	*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
+
+	return true;
+}
+
+static bool access_cntp_tval(struct kvm_vcpu *vcpu,
+			     const struct coproc_params *p,
+			     const struct coproc_reg *r)
+{
+	u64 now = kvm_phys_timer_read();
+	u64 val;
+
+	if (p->is_write) {
+		val = *vcpu_reg(vcpu, p->Rt1);
+		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val + now);
+	} else {
+		val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
+		*vcpu_reg(vcpu, p->Rt1) = val - now;
+	}
+
+	return true;
+}
+
+static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
+			    const struct coproc_params *p,
+			    const struct coproc_reg *r)
+{
+	u32 val;
+
+	if (p->is_write) {
+		val = *vcpu_reg(vcpu, p->Rt1);
+		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, val);
+	} else {
+		val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
+		*vcpu_reg(vcpu, p->Rt1) = val;
+	}
+
+	return true;
+}
+
+static bool access_cntp_cval(struct kvm_vcpu *vcpu,
+			     const struct coproc_params *p,
+			     const struct coproc_reg *r)
+{
+	u64 val;
+
+	if (p->is_write) {
+		val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
+		val |= *vcpu_reg(vcpu, p->Rt1);
+		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val);
+	} else {
+		val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
+		*vcpu_reg(vcpu, p->Rt1) = val;
+		*vcpu_reg(vcpu, p->Rt2) = val >> 32;
+	}
+
+	return true;
+}
+
+/*
+ * We could trap ID_DFR0 and tell the guest we don't support performance
+ * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
+ * NAKed, so it will read the PMCR anyway.
+ *
+ * Therefore we tell the guest we have 0 counters.  Unfortunately, we
+ * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
+ * all PM registers, which doesn't crash the guest kernel at least.
+ */
+static bool trap_raz_wi(struct kvm_vcpu *vcpu,
+		    const struct coproc_params *p,
+		    const struct coproc_reg *r)
+{
+	if (p->is_write)
+		return ignore_write(vcpu, p);
+	else
+		return read_zero(vcpu, p);
+}
+
+#define access_pmcr trap_raz_wi
+#define access_pmcntenset trap_raz_wi
+#define access_pmcntenclr trap_raz_wi
+#define access_pmovsr trap_raz_wi
+#define access_pmselr trap_raz_wi
+#define access_pmceid0 trap_raz_wi
+#define access_pmceid1 trap_raz_wi
+#define access_pmccntr trap_raz_wi
+#define access_pmxevtyper trap_raz_wi
+#define access_pmxevcntr trap_raz_wi
+#define access_pmuserenr trap_raz_wi
+#define access_pmintenset trap_raz_wi
+#define access_pmintenclr trap_raz_wi
+
+/* Architected CP15 registers.
+ * CRn denotes the primary register number, but is copied to the CRm in the
+ * user space API for 64-bit register access in line with the terminology used
+ * in the ARM ARM.
+ * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
+ *            registers preceding 32-bit ones.
+ */
+static const struct coproc_reg cp15_regs[] = {
+	/* MPIDR: we use VMPIDR for guest access. */
+	{ CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
+			NULL, reset_mpidr, c0_MPIDR },
+
+	/* CSSELR: swapped by interrupt.S. */
+	{ CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
+			NULL, reset_unknown, c0_CSSELR },
+
+	/* ACTLR: trapped by HCR.TAC bit. */
+	{ CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
+			access_actlr, reset_actlr, c1_ACTLR },
+
+	/* CPACR: swapped by interrupt.S. */
+	{ CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
+			NULL, reset_val, c1_CPACR, 0x00000000 },
+
+	/* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
+	{ CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
+	{ CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
+			access_vm_reg, reset_unknown, c2_TTBR0 },
+	{ CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
+			access_vm_reg, reset_unknown, c2_TTBR1 },
+	{ CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
+			access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
+	{ CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
+
+
+	/* DACR: swapped by interrupt.S. */
+	{ CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
+			access_vm_reg, reset_unknown, c3_DACR },
+
+	/* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
+	{ CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
+			access_vm_reg, reset_unknown, c5_DFSR },
+	{ CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
+			access_vm_reg, reset_unknown, c5_IFSR },
+	{ CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
+			access_vm_reg, reset_unknown, c5_ADFSR },
+	{ CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
+			access_vm_reg, reset_unknown, c5_AIFSR },
+
+	/* DFAR/IFAR: swapped by interrupt.S. */
+	{ CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
+			access_vm_reg, reset_unknown, c6_DFAR },
+	{ CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
+			access_vm_reg, reset_unknown, c6_IFAR },
+
+	/* PAR swapped by interrupt.S */
+	{ CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
+
+	/*
+	 * DC{C,I,CI}SW operations:
+	 */
+	{ CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
+	{ CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
+	{ CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
+	/*
+	 * L2CTLR access (guest wants to know #CPUs).
+	 */
+	{ CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
+			access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
+	{ CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
+
+	/*
+	 * Dummy performance monitor implementation.
+	 */
+	{ CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
+	{ CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
+	{ CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
+	{ CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
+	{ CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
+	{ CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
+	{ CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
+	{ CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
+	{ CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
+	{ CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
+	{ CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
+	{ CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
+	{ CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
+
+	/* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
+	{ CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
+			access_vm_reg, reset_unknown, c10_PRRR},
+	{ CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
+			access_vm_reg, reset_unknown, c10_NMRR},
+
+	/* AMAIR0/AMAIR1: swapped by interrupt.S. */
+	{ CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
+			access_vm_reg, reset_unknown, c10_AMAIR0},
+	{ CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
+			access_vm_reg, reset_unknown, c10_AMAIR1},
+
+	/* ICC_SGI1R */
+	{ CRm64(12), Op1( 0), is64, access_gic_sgi},
+
+	/* VBAR: swapped by interrupt.S. */
+	{ CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
+			NULL, reset_val, c12_VBAR, 0x00000000 },
+
+	/* ICC_ASGI1R */
+	{ CRm64(12), Op1( 1), is64, access_gic_sgi},
+	/* ICC_SGI0R */
+	{ CRm64(12), Op1( 2), is64, access_gic_sgi},
+	/* ICC_SRE */
+	{ CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
+
+	/* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
+	{ CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
+			access_vm_reg, reset_val, c13_CID, 0x00000000 },
+	{ CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
+			NULL, reset_unknown, c13_TID_URW },
+	{ CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
+			NULL, reset_unknown, c13_TID_URO },
+	{ CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
+			NULL, reset_unknown, c13_TID_PRIV },
+
+	/* CNTP */
+	{ CRm64(14), Op1( 2), is64, access_cntp_cval},
+
+	/* CNTKCTL: swapped by interrupt.S. */
+	{ CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
+			NULL, reset_val, c14_CNTKCTL, 0x00000000 },
+
+	/* CNTP */
+	{ CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
+	{ CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
+
+	/* The Configuration Base Address Register. */
+	{ CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
+};
+
+static int check_reg_table(const struct coproc_reg *table, unsigned int n)
+{
+	unsigned int i;
+
+	for (i = 1; i < n; i++) {
+		if (cmp_reg(&table[i-1], &table[i]) >= 0) {
+			kvm_err("reg table %p out of order (%d)\n", table, i - 1);
+			return 1;
+		}
+	}
+
+	return 0;
+}
+
+/* Target specific emulation tables */
+static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
+
+void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
+{
+	BUG_ON(check_reg_table(table->table, table->num));
+	target_tables[table->target] = table;
+}
+
+/* Get specific register table for this target. */
+static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
+{
+	struct kvm_coproc_target_table *table;
+
+	table = target_tables[target];
+	*num = table->num;
+	return table->table;
+}
+
+#define reg_to_match_value(x)						\
+	({								\
+		unsigned long val;					\
+		val  = (x)->CRn << 11;					\
+		val |= (x)->CRm << 7;					\
+		val |= (x)->Op1 << 4;					\
+		val |= (x)->Op2 << 1;					\
+		val |= !(x)->is_64bit;					\
+		val;							\
+	 })
+
+static int match_reg(const void *key, const void *elt)
+{
+	const unsigned long pval = (unsigned long)key;
+	const struct coproc_reg *r = elt;
+
+	return pval - reg_to_match_value(r);
+}
+
+static const struct coproc_reg *find_reg(const struct coproc_params *params,
+					 const struct coproc_reg table[],
+					 unsigned int num)
+{
+	unsigned long pval = reg_to_match_value(params);
+
+	return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
+}
+
+static int emulate_cp15(struct kvm_vcpu *vcpu,
+			const struct coproc_params *params)
+{
+	size_t num;
+	const struct coproc_reg *table, *r;
+
+	trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
+				   params->CRm, params->Op2, params->is_write);
+
+	table = get_target_table(vcpu->arch.target, &num);
+
+	/* Search target-specific then generic table. */
+	r = find_reg(params, table, num);
+	if (!r)
+		r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
+
+	if (likely(r)) {
+		/* If we don't have an accessor, we should never get here! */
+		BUG_ON(!r->access);
+
+		if (likely(r->access(vcpu, params, r))) {
+			/* Skip instruction, since it was emulated */
+			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
+		}
+	} else {
+		/* If access function fails, it should complain. */
+		kvm_err("Unsupported guest CP15 access at: %08lx\n",
+			*vcpu_pc(vcpu));
+		print_cp_instr(params);
+		kvm_inject_undefined(vcpu);
+	}
+
+	return 1;
+}
+
+static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
+{
+	struct coproc_params params;
+
+	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
+	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
+	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
+	params.is_64bit = true;
+
+	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
+	params.Op2 = 0;
+	params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
+	params.CRm = 0;
+
+	return params;
+}
+
+/**
+ * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
+ * @vcpu: The VCPU pointer
+ * @run:  The kvm_run struct
+ */
+int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+	struct coproc_params params = decode_64bit_hsr(vcpu);
+
+	return emulate_cp15(vcpu, &params);
+}
+
+/**
+ * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
+ * @vcpu: The VCPU pointer
+ * @run:  The kvm_run struct
+ */
+int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+	struct coproc_params params = decode_64bit_hsr(vcpu);
+
+	/* raz_wi cp14 */
+	trap_raz_wi(vcpu, &params, NULL);
+
+	/* handled */
+	kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
+	return 1;
+}
+
+static void reset_coproc_regs(struct kvm_vcpu *vcpu,
+			      const struct coproc_reg *table, size_t num)
+{
+	unsigned long i;
+
+	for (i = 0; i < num; i++)
+		if (table[i].reset)
+			table[i].reset(vcpu, &table[i]);
+}
+
+static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
+{
+	struct coproc_params params;
+
+	params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
+	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
+	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
+	params.is_64bit = false;
+
+	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
+	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
+	params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
+	params.Rt2 = 0;
+
+	return params;
+}
+
+/**
+ * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
+ * @vcpu: The VCPU pointer
+ * @run:  The kvm_run struct
+ */
+int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+	struct coproc_params params = decode_32bit_hsr(vcpu);
+	return emulate_cp15(vcpu, &params);
+}
+
+/**
+ * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
+ * @vcpu: The VCPU pointer
+ * @run:  The kvm_run struct
+ */
+int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+	struct coproc_params params = decode_32bit_hsr(vcpu);
+
+	/* raz_wi cp14 */
+	trap_raz_wi(vcpu, &params, NULL);
+
+	/* handled */
+	kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
+	return 1;
+}
+
+/******************************************************************************
+ * Userspace API
+ *****************************************************************************/
+
+static bool index_to_params(u64 id, struct coproc_params *params)
+{
+	switch (id & KVM_REG_SIZE_MASK) {
+	case KVM_REG_SIZE_U32:
+		/* Any unused index bits means it's not valid. */
+		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
+			   | KVM_REG_ARM_COPROC_MASK
+			   | KVM_REG_ARM_32_CRN_MASK
+			   | KVM_REG_ARM_CRM_MASK
+			   | KVM_REG_ARM_OPC1_MASK
+			   | KVM_REG_ARM_32_OPC2_MASK))
+			return false;
+
+		params->is_64bit = false;
+		params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
+			       >> KVM_REG_ARM_32_CRN_SHIFT);
+		params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
+			       >> KVM_REG_ARM_CRM_SHIFT);
+		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
+			       >> KVM_REG_ARM_OPC1_SHIFT);
+		params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
+			       >> KVM_REG_ARM_32_OPC2_SHIFT);
+		return true;
+	case KVM_REG_SIZE_U64:
+		/* Any unused index bits means it's not valid. */
+		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
+			      | KVM_REG_ARM_COPROC_MASK
+			      | KVM_REG_ARM_CRM_MASK
+			      | KVM_REG_ARM_OPC1_MASK))
+			return false;
+		params->is_64bit = true;
+		/* CRm to CRn: see cp15_to_index for details */
+		params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
+			       >> KVM_REG_ARM_CRM_SHIFT);
+		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
+			       >> KVM_REG_ARM_OPC1_SHIFT);
+		params->Op2 = 0;
+		params->CRm = 0;
+		return true;
+	default:
+		return false;
+	}
+}
+
+/* Decode an index value, and find the cp15 coproc_reg entry. */
+static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
+						    u64 id)
+{
+	size_t num;
+	const struct coproc_reg *table, *r;
+	struct coproc_params params;
+
+	/* We only do cp15 for now. */
+	if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
+		return NULL;
+
+	if (!index_to_params(id, &params))
+		return NULL;
+
+	table = get_target_table(vcpu->arch.target, &num);
+	r = find_reg(&params, table, num);
+	if (!r)
+		r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
+
+	/* Not saved in the cp15 array? */
+	if (r && !r->reg)
+		r = NULL;
+
+	return r;
+}
+
+/*
+ * These are the invariant cp15 registers: we let the guest see the host
+ * versions of these, so they're part of the guest state.
+ *
+ * A future CPU may provide a mechanism to present different values to
+ * the guest, or a future kvm may trap them.
+ */
+/* Unfortunately, there's no register-argument for mrc, so generate. */
+#define FUNCTION_FOR32(crn, crm, op1, op2, name)			\
+	static void get_##name(struct kvm_vcpu *v,			\
+			       const struct coproc_reg *r)		\
+	{								\
+		u32 val;						\
+									\
+		asm volatile("mrc p15, " __stringify(op1)		\
+			     ", %0, c" __stringify(crn)			\
+			     ", c" __stringify(crm)			\
+			     ", " __stringify(op2) "\n" : "=r" (val));	\
+		((struct coproc_reg *)r)->val = val;			\
+	}
+
+FUNCTION_FOR32(0, 0, 0, 0, MIDR)
+FUNCTION_FOR32(0, 0, 0, 1, CTR)
+FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
+FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
+FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
+FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
+FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
+FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
+FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
+FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
+FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
+FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
+FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
+FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
+FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
+FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
+FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
+FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
+FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
+FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
+FUNCTION_FOR32(0, 0, 1, 7, AIDR)
+
+/* ->val is filled in by kvm_invariant_coproc_table_init() */
+static struct coproc_reg invariant_cp15[] = {
+	{ CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
+	{ CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
+	{ CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
+	{ CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
+	{ CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
+
+	{ CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
+	{ CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
+
+	{ CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
+	{ CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
+	{ CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
+	{ CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
+	{ CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
+	{ CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
+	{ CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
+	{ CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
+
+	{ CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
+	{ CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
+	{ CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
+	{ CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
+	{ CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
+	{ CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
+};
+
+/*
+ * Reads a register value from a userspace address to a kernel
+ * variable. Make sure that register size matches sizeof(*__val).
+ */
+static int reg_from_user(void *val, const void __user *uaddr, u64 id)
+{
+	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
+		return -EFAULT;
+	return 0;
+}
+
+/*
+ * Writes a register value to a userspace address from a kernel variable.
+ * Make sure that register size matches sizeof(*__val).
+ */
+static int reg_to_user(void __user *uaddr, const void *val, u64 id)
+{
+	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
+		return -EFAULT;
+	return 0;
+}
+
+static int get_invariant_cp15(u64 id, void __user *uaddr)
+{
+	struct coproc_params params;
+	const struct coproc_reg *r;
+	int ret;
+
+	if (!index_to_params(id, &params))
+		return -ENOENT;
+
+	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
+	if (!r)
+		return -ENOENT;
+
+	ret = -ENOENT;
+	if (KVM_REG_SIZE(id) == 4) {
+		u32 val = r->val;
+
+		ret = reg_to_user(uaddr, &val, id);
+	} else if (KVM_REG_SIZE(id) == 8) {
+		ret = reg_to_user(uaddr, &r->val, id);
+	}
+	return ret;
+}
+
+static int set_invariant_cp15(u64 id, void __user *uaddr)
+{
+	struct coproc_params params;
+	const struct coproc_reg *r;
+	int err;
+	u64 val;
+
+	if (!index_to_params(id, &params))
+		return -ENOENT;
+	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
+	if (!r)
+		return -ENOENT;
+
+	err = -ENOENT;
+	if (KVM_REG_SIZE(id) == 4) {
+		u32 val32;
+
+		err = reg_from_user(&val32, uaddr, id);
+		if (!err)
+			val = val32;
+	} else if (KVM_REG_SIZE(id) == 8) {
+		err = reg_from_user(&val, uaddr, id);
+	}
+	if (err)
+		return err;
+
+	/* This is what we mean by invariant: you can't change it. */
+	if (r->val != val)
+		return -EINVAL;
+
+	return 0;
+}
+
+static bool is_valid_cache(u32 val)
+{
+	u32 level, ctype;
+
+	if (val >= CSSELR_MAX)
+		return false;
+
+	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
+        level = (val >> 1);
+        ctype = (cache_levels >> (level * 3)) & 7;
+
+	switch (ctype) {
+	case 0: /* No cache */
+		return false;
+	case 1: /* Instruction cache only */
+		return (val & 1);
+	case 2: /* Data cache only */
+	case 4: /* Unified cache */
+		return !(val & 1);
+	case 3: /* Separate instruction and data caches */
+		return true;
+	default: /* Reserved: we can't know instruction or data. */
+		return false;
+	}
+}
+
+/* Which cache CCSIDR represents depends on CSSELR value. */
+static u32 get_ccsidr(u32 csselr)
+{
+	u32 ccsidr;
+
+	/* Make sure noone else changes CSSELR during this! */
+	local_irq_disable();
+	/* Put value into CSSELR */
+	asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
+	isb();
+	/* Read result out of CCSIDR */
+	asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
+	local_irq_enable();
+
+	return ccsidr;
+}
+
+static int demux_c15_get(u64 id, void __user *uaddr)
+{
+	u32 val;
+	u32 __user *uval = uaddr;
+
+	/* Fail if we have unknown bits set. */
+	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
+		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
+		return -ENOENT;
+
+	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
+	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
+		if (KVM_REG_SIZE(id) != 4)
+			return -ENOENT;
+		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
+			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
+		if (!is_valid_cache(val))
+			return -ENOENT;
+
+		return put_user(get_ccsidr(val), uval);
+	default:
+		return -ENOENT;
+	}
+}
+
+static int demux_c15_set(u64 id, void __user *uaddr)
+{
+	u32 val, newval;
+	u32 __user *uval = uaddr;
+
+	/* Fail if we have unknown bits set. */
+	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
+		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
+		return -ENOENT;
+
+	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
+	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
+		if (KVM_REG_SIZE(id) != 4)
+			return -ENOENT;
+		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
+			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
+		if (!is_valid_cache(val))
+			return -ENOENT;
+
+		if (get_user(newval, uval))
+			return -EFAULT;
+
+		/* This is also invariant: you can't change it. */
+		if (newval != get_ccsidr(val))
+			return -EINVAL;
+		return 0;
+	default:
+		return -ENOENT;
+	}
+}
+
+#ifdef CONFIG_VFPv3
+static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
+				   KVM_REG_ARM_VFP_FPSCR,
+				   KVM_REG_ARM_VFP_FPINST,
+				   KVM_REG_ARM_VFP_FPINST2,
+				   KVM_REG_ARM_VFP_MVFR0,
+				   KVM_REG_ARM_VFP_MVFR1,
+				   KVM_REG_ARM_VFP_FPSID };
+
+static unsigned int num_fp_regs(void)
+{
+	if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
+		return 32;
+	else
+		return 16;
+}
+
+static unsigned int num_vfp_regs(void)
+{
+	/* Normal FP regs + control regs. */
+	return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
+}
+
+static int copy_vfp_regids(u64 __user *uindices)
+{
+	unsigned int i;
+	const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
+	const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
+
+	for (i = 0; i < num_fp_regs(); i++) {
+		if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
+			     uindices))
+			return -EFAULT;
+		uindices++;
+	}
+
+	for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
+		if (put_user(u32reg | vfp_sysregs[i], uindices))
+			return -EFAULT;
+		uindices++;
+	}
+
+	return num_vfp_regs();
+}
+
+static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
+{
+	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
+	u32 val;
+
+	/* Fail if we have unknown bits set. */
+	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
+		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
+		return -ENOENT;
+
+	if (vfpid < num_fp_regs()) {
+		if (KVM_REG_SIZE(id) != 8)
+			return -ENOENT;
+		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
+				   id);
+	}
+
+	/* FP control registers are all 32 bit. */
+	if (KVM_REG_SIZE(id) != 4)
+		return -ENOENT;
+
+	switch (vfpid) {
+	case KVM_REG_ARM_VFP_FPEXC:
+		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
+	case KVM_REG_ARM_VFP_FPSCR:
+		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
+	case KVM_REG_ARM_VFP_FPINST:
+		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
+	case KVM_REG_ARM_VFP_FPINST2:
+		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
+	case KVM_REG_ARM_VFP_MVFR0:
+		val = fmrx(MVFR0);
+		return reg_to_user(uaddr, &val, id);
+	case KVM_REG_ARM_VFP_MVFR1:
+		val = fmrx(MVFR1);
+		return reg_to_user(uaddr, &val, id);
+	case KVM_REG_ARM_VFP_FPSID:
+		val = fmrx(FPSID);
+		return reg_to_user(uaddr, &val, id);
+	default:
+		return -ENOENT;
+	}
+}
+
+static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
+{
+	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
+	u32 val;
+
+	/* Fail if we have unknown bits set. */
+	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
+		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
+		return -ENOENT;
+
+	if (vfpid < num_fp_regs()) {
+		if (KVM_REG_SIZE(id) != 8)
+			return -ENOENT;
+		return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
+				     uaddr, id);
+	}
+
+	/* FP control registers are all 32 bit. */
+	if (KVM_REG_SIZE(id) != 4)
+		return -ENOENT;
+
+	switch (vfpid) {
+	case KVM_REG_ARM_VFP_FPEXC:
+		return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
+	case KVM_REG_ARM_VFP_FPSCR:
+		return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
+	case KVM_REG_ARM_VFP_FPINST:
+		return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
+	case KVM_REG_ARM_VFP_FPINST2:
+		return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
+	/* These are invariant. */
+	case KVM_REG_ARM_VFP_MVFR0:
+		if (reg_from_user(&val, uaddr, id))
+			return -EFAULT;
+		if (val != fmrx(MVFR0))
+			return -EINVAL;
+		return 0;
+	case KVM_REG_ARM_VFP_MVFR1:
+		if (reg_from_user(&val, uaddr, id))
+			return -EFAULT;
+		if (val != fmrx(MVFR1))
+			return -EINVAL;
+		return 0;
+	case KVM_REG_ARM_VFP_FPSID:
+		if (reg_from_user(&val, uaddr, id))
+			return -EFAULT;
+		if (val != fmrx(FPSID))
+			return -EINVAL;
+		return 0;
+	default:
+		return -ENOENT;
+	}
+}
+#else /* !CONFIG_VFPv3 */
+static unsigned int num_vfp_regs(void)
+{
+	return 0;
+}
+
+static int copy_vfp_regids(u64 __user *uindices)
+{
+	return 0;
+}
+
+static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
+{
+	return -ENOENT;
+}
+
+static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
+{
+	return -ENOENT;
+}
+#endif /* !CONFIG_VFPv3 */
+
+int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+	const struct coproc_reg *r;
+	void __user *uaddr = (void __user *)(long)reg->addr;
+	int ret;
+
+	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
+		return demux_c15_get(reg->id, uaddr);
+
+	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
+		return vfp_get_reg(vcpu, reg->id, uaddr);
+
+	r = index_to_coproc_reg(vcpu, reg->id);
+	if (!r)
+		return get_invariant_cp15(reg->id, uaddr);
+
+	ret = -ENOENT;
+	if (KVM_REG_SIZE(reg->id) == 8) {
+		u64 val;
+
+		val = vcpu_cp15_reg64_get(vcpu, r);
+		ret = reg_to_user(uaddr, &val, reg->id);
+	} else if (KVM_REG_SIZE(reg->id) == 4) {
+		ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
+	}
+
+	return ret;
+}
+
+int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+	const struct coproc_reg *r;
+	void __user *uaddr = (void __user *)(long)reg->addr;
+	int ret;
+
+	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
+		return demux_c15_set(reg->id, uaddr);
+
+	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
+		return vfp_set_reg(vcpu, reg->id, uaddr);
+
+	r = index_to_coproc_reg(vcpu, reg->id);
+	if (!r)
+		return set_invariant_cp15(reg->id, uaddr);
+
+	ret = -ENOENT;
+	if (KVM_REG_SIZE(reg->id) == 8) {
+		u64 val;
+
+		ret = reg_from_user(&val, uaddr, reg->id);
+		if (!ret)
+			vcpu_cp15_reg64_set(vcpu, r, val);
+	} else if (KVM_REG_SIZE(reg->id) == 4) {
+		ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
+	}
+
+	return ret;
+}
+
+static unsigned int num_demux_regs(void)
+{
+	unsigned int i, count = 0;
+
+	for (i = 0; i < CSSELR_MAX; i++)
+		if (is_valid_cache(i))
+			count++;
+
+	return count;
+}
+
+static int write_demux_regids(u64 __user *uindices)
+{
+	u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
+	unsigned int i;
+
+	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
+	for (i = 0; i < CSSELR_MAX; i++) {
+		if (!is_valid_cache(i))
+			continue;
+		if (put_user(val | i, uindices))
+			return -EFAULT;
+		uindices++;
+	}
+	return 0;
+}
+
+static u64 cp15_to_index(const struct coproc_reg *reg)
+{
+	u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
+	if (reg->is_64bit) {
+		val |= KVM_REG_SIZE_U64;
+		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
+		/*
+		 * CRn always denotes the primary coproc. reg. nr. for the
+		 * in-kernel representation, but the user space API uses the
+		 * CRm for the encoding, because it is modelled after the
+		 * MRRC/MCRR instructions: see the ARM ARM rev. c page
+		 * B3-1445
+		 */
+		val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
+	} else {
+		val |= KVM_REG_SIZE_U32;
+		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
+		val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
+		val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
+		val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
+	}
+	return val;
+}
+
+static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
+{
+	if (!*uind)
+		return true;
+
+	if (put_user(cp15_to_index(reg), *uind))
+		return false;
+
+	(*uind)++;
+	return true;
+}
+
+/* Assumed ordered tables, see kvm_coproc_table_init. */
+static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
+{
+	const struct coproc_reg *i1, *i2, *end1, *end2;
+	unsigned int total = 0;
+	size_t num;
+
+	/* We check for duplicates here, to allow arch-specific overrides. */
+	i1 = get_target_table(vcpu->arch.target, &num);
+	end1 = i1 + num;
+	i2 = cp15_regs;
+	end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
+
+	BUG_ON(i1 == end1 || i2 == end2);
+
+	/* Walk carefully, as both tables may refer to the same register. */
+	while (i1 || i2) {
+		int cmp = cmp_reg(i1, i2);
+		/* target-specific overrides generic entry. */
+		if (cmp <= 0) {
+			/* Ignore registers we trap but don't save. */
+			if (i1->reg) {
+				if (!copy_reg_to_user(i1, &uind))
+					return -EFAULT;
+				total++;
+			}
+		} else {
+			/* Ignore registers we trap but don't save. */
+			if (i2->reg) {
+				if (!copy_reg_to_user(i2, &uind))
+					return -EFAULT;
+				total++;
+			}
+		}
+
+		if (cmp <= 0 && ++i1 == end1)
+			i1 = NULL;
+		if (cmp >= 0 && ++i2 == end2)
+			i2 = NULL;
+	}
+	return total;
+}
+
+unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
+{
+	return ARRAY_SIZE(invariant_cp15)
+		+ num_demux_regs()
+		+ num_vfp_regs()
+		+ walk_cp15(vcpu, (u64 __user *)NULL);
+}
+
+int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
+{
+	unsigned int i;
+	int err;
+
+	/* Then give them all the invariant registers' indices. */
+	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
+		if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
+			return -EFAULT;
+		uindices++;
+	}
+
+	err = walk_cp15(vcpu, uindices);
+	if (err < 0)
+		return err;
+	uindices += err;
+
+	err = copy_vfp_regids(uindices);
+	if (err < 0)
+		return err;
+	uindices += err;
+
+	return write_demux_regids(uindices);
+}
+
+void kvm_coproc_table_init(void)
+{
+	unsigned int i;
+
+	/* Make sure tables are unique and in order. */
+	BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
+	BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
+
+	/* We abuse the reset function to overwrite the table itself. */
+	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
+		invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
+
+	/*
+	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
+	 *
+	 *   If software reads the Cache Type fields from Ctype1
+	 *   upwards, once it has seen a value of 0b000, no caches
+	 *   exist at further-out levels of the hierarchy. So, for
+	 *   example, if Ctype3 is the first Cache Type field with a
+	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
+	 *   ignored.
+	 */
+	asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
+	for (i = 0; i < 7; i++)
+		if (((cache_levels >> (i*3)) & 7) == 0)
+			break;
+	/* Clear all higher bits. */
+	cache_levels &= (1 << (i*3))-1;
+}
+
+/**
+ * kvm_reset_coprocs - sets cp15 registers to reset value
+ * @vcpu: The VCPU pointer
+ *
+ * This function finds the right table above and sets the registers on the
+ * virtual CPU struct to their architecturally defined reset values.
+ */
+void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
+{
+	size_t num;
+	const struct coproc_reg *table;
+
+	/* Catch someone adding a register without putting in reset entry. */
+	memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
+
+	/* Generic chip reset first (so target could override). */
+	reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
+
+	table = get_target_table(vcpu->arch.target, &num);
+	reset_coproc_regs(vcpu, table, num);
+
+	for (num = 1; num < NR_CP15_REGS; num++)
+		if (vcpu_cp15(vcpu, num) == 0x42424242)
+			panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
+}