blob: 643c2a0761d163d76ab8a942887d755e3fa72430 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the Instruction class, which is the
11// base class for all of the LLVM instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTION_H
16#define LLVM_IR_INSTRUCTION_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/ilist_node.h"
22#include "llvm/IR/DebugLoc.h"
23#include "llvm/IR/SymbolTableListTraits.h"
24#include "llvm/IR/User.h"
25#include "llvm/IR/Value.h"
26#include "llvm/Support/Casting.h"
27#include <algorithm>
28#include <cassert>
29#include <cstdint>
30#include <utility>
31
32namespace llvm {
33
34class BasicBlock;
35class FastMathFlags;
36class MDNode;
37class Module;
38struct AAMDNodes;
39
40template <> struct ilist_alloc_traits<Instruction> {
41 static inline void deleteNode(Instruction *V);
42};
43
44class Instruction : public User,
45 public ilist_node_with_parent<Instruction, BasicBlock> {
46 BasicBlock *Parent;
47 DebugLoc DbgLoc; // 'dbg' Metadata cache.
48
49 enum {
50 /// This is a bit stored in the SubClassData field which indicates whether
51 /// this instruction has metadata attached to it or not.
52 HasMetadataBit = 1 << 15
53 };
54
55protected:
56 ~Instruction(); // Use deleteValue() to delete a generic Instruction.
57
58public:
59 Instruction(const Instruction &) = delete;
60 Instruction &operator=(const Instruction &) = delete;
61
62 /// Specialize the methods defined in Value, as we know that an instruction
63 /// can only be used by other instructions.
64 Instruction *user_back() { return cast<Instruction>(*user_begin());}
65 const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
66
67 inline const BasicBlock *getParent() const { return Parent; }
68 inline BasicBlock *getParent() { return Parent; }
69
70 /// Return the module owning the function this instruction belongs to
71 /// or nullptr it the function does not have a module.
72 ///
73 /// Note: this is undefined behavior if the instruction does not have a
74 /// parent, or the parent basic block does not have a parent function.
75 const Module *getModule() const;
76 Module *getModule() {
77 return const_cast<Module *>(
78 static_cast<const Instruction *>(this)->getModule());
79 }
80
81 /// Return the function this instruction belongs to.
82 ///
83 /// Note: it is undefined behavior to call this on an instruction not
84 /// currently inserted into a function.
85 const Function *getFunction() const;
86 Function *getFunction() {
87 return const_cast<Function *>(
88 static_cast<const Instruction *>(this)->getFunction());
89 }
90
91 /// This method unlinks 'this' from the containing basic block, but does not
92 /// delete it.
93 void removeFromParent();
94
95 /// This method unlinks 'this' from the containing basic block and deletes it.
96 ///
97 /// \returns an iterator pointing to the element after the erased one
98 SymbolTableList<Instruction>::iterator eraseFromParent();
99
100 /// Insert an unlinked instruction into a basic block immediately before
101 /// the specified instruction.
102 void insertBefore(Instruction *InsertPos);
103
104 /// Insert an unlinked instruction into a basic block immediately after the
105 /// specified instruction.
106 void insertAfter(Instruction *InsertPos);
107
108 /// Unlink this instruction from its current basic block and insert it into
109 /// the basic block that MovePos lives in, right before MovePos.
110 void moveBefore(Instruction *MovePos);
111
112 /// Unlink this instruction and insert into BB before I.
113 ///
114 /// \pre I is a valid iterator into BB.
115 void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I);
116
117 /// Unlink this instruction from its current basic block and insert it into
118 /// the basic block that MovePos lives in, right after MovePos.
119 void moveAfter(Instruction *MovePos);
120
121 //===--------------------------------------------------------------------===//
122 // Subclass classification.
123 //===--------------------------------------------------------------------===//
124
125 /// Returns a member of one of the enums like Instruction::Add.
126 unsigned getOpcode() const { return getValueID() - InstructionVal; }
127
128 const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
129 bool isTerminator() const { return isTerminator(getOpcode()); }
130 bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100131 bool isIntDivRem() const { return isIntDivRem(getOpcode()); }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100132 bool isShift() { return isShift(getOpcode()); }
133 bool isCast() const { return isCast(getOpcode()); }
134 bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
135
136 static const char* getOpcodeName(unsigned OpCode);
137
138 static inline bool isTerminator(unsigned OpCode) {
139 return OpCode >= TermOpsBegin && OpCode < TermOpsEnd;
140 }
141
142 static inline bool isBinaryOp(unsigned Opcode) {
143 return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd;
144 }
145
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100146 static inline bool isIntDivRem(unsigned Opcode) {
147 return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem;
148 }
149
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100150 /// Determine if the Opcode is one of the shift instructions.
151 static inline bool isShift(unsigned Opcode) {
152 return Opcode >= Shl && Opcode <= AShr;
153 }
154
155 /// Return true if this is a logical shift left or a logical shift right.
156 inline bool isLogicalShift() const {
157 return getOpcode() == Shl || getOpcode() == LShr;
158 }
159
160 /// Return true if this is an arithmetic shift right.
161 inline bool isArithmeticShift() const {
162 return getOpcode() == AShr;
163 }
164
165 /// Determine if the Opcode is and/or/xor.
166 static inline bool isBitwiseLogicOp(unsigned Opcode) {
167 return Opcode == And || Opcode == Or || Opcode == Xor;
168 }
169
170 /// Return true if this is and/or/xor.
171 inline bool isBitwiseLogicOp() const {
172 return isBitwiseLogicOp(getOpcode());
173 }
174
175 /// Determine if the OpCode is one of the CastInst instructions.
176 static inline bool isCast(unsigned OpCode) {
177 return OpCode >= CastOpsBegin && OpCode < CastOpsEnd;
178 }
179
180 /// Determine if the OpCode is one of the FuncletPadInst instructions.
181 static inline bool isFuncletPad(unsigned OpCode) {
182 return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd;
183 }
184
185 //===--------------------------------------------------------------------===//
186 // Metadata manipulation.
187 //===--------------------------------------------------------------------===//
188
189 /// Return true if this instruction has any metadata attached to it.
190 bool hasMetadata() const { return DbgLoc || hasMetadataHashEntry(); }
191
192 /// Return true if this instruction has metadata attached to it other than a
193 /// debug location.
194 bool hasMetadataOtherThanDebugLoc() const {
195 return hasMetadataHashEntry();
196 }
197
198 /// Get the metadata of given kind attached to this Instruction.
199 /// If the metadata is not found then return null.
200 MDNode *getMetadata(unsigned KindID) const {
201 if (!hasMetadata()) return nullptr;
202 return getMetadataImpl(KindID);
203 }
204
205 /// Get the metadata of given kind attached to this Instruction.
206 /// If the metadata is not found then return null.
207 MDNode *getMetadata(StringRef Kind) const {
208 if (!hasMetadata()) return nullptr;
209 return getMetadataImpl(Kind);
210 }
211
212 /// Get all metadata attached to this Instruction. The first element of each
213 /// pair returned is the KindID, the second element is the metadata value.
214 /// This list is returned sorted by the KindID.
215 void
216 getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
217 if (hasMetadata())
218 getAllMetadataImpl(MDs);
219 }
220
221 /// This does the same thing as getAllMetadata, except that it filters out the
222 /// debug location.
223 void getAllMetadataOtherThanDebugLoc(
224 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
225 if (hasMetadataOtherThanDebugLoc())
226 getAllMetadataOtherThanDebugLocImpl(MDs);
227 }
228
229 /// Fills the AAMDNodes structure with AA metadata from this instruction.
230 /// When Merge is true, the existing AA metadata is merged with that from this
231 /// instruction providing the most-general result.
232 void getAAMetadata(AAMDNodes &N, bool Merge = false) const;
233
234 /// Set the metadata of the specified kind to the specified node. This updates
235 /// or replaces metadata if already present, or removes it if Node is null.
236 void setMetadata(unsigned KindID, MDNode *Node);
237 void setMetadata(StringRef Kind, MDNode *Node);
238
239 /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
240 /// specifies the list of meta data that needs to be copied. If \p WL is
241 /// empty, all meta data will be copied.
242 void copyMetadata(const Instruction &SrcInst,
243 ArrayRef<unsigned> WL = ArrayRef<unsigned>());
244
245 /// If the instruction has "branch_weights" MD_prof metadata and the MDNode
246 /// has three operands (including name string), swap the order of the
247 /// metadata.
248 void swapProfMetadata();
249
250 /// Drop all unknown metadata except for debug locations.
251 /// @{
252 /// Passes are required to drop metadata they don't understand. This is a
253 /// convenience method for passes to do so.
254 void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
255 void dropUnknownNonDebugMetadata() {
256 return dropUnknownNonDebugMetadata(None);
257 }
258 void dropUnknownNonDebugMetadata(unsigned ID1) {
259 return dropUnknownNonDebugMetadata(makeArrayRef(ID1));
260 }
261 void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
262 unsigned IDs[] = {ID1, ID2};
263 return dropUnknownNonDebugMetadata(IDs);
264 }
265 /// @}
266
267 /// Sets the metadata on this instruction from the AAMDNodes structure.
268 void setAAMetadata(const AAMDNodes &N);
269
270 /// Retrieve the raw weight values of a conditional branch or select.
271 /// Returns true on success with profile weights filled in.
272 /// Returns false if no metadata or invalid metadata was found.
273 bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const;
274
275 /// Retrieve total raw weight values of a branch.
276 /// Returns true on success with profile total weights filled in.
277 /// Returns false if no metadata was found.
278 bool extractProfTotalWeight(uint64_t &TotalVal) const;
279
280 /// Updates branch_weights metadata by scaling it by \p S / \p T.
281 void updateProfWeight(uint64_t S, uint64_t T);
282
283 /// Sets the branch_weights metadata to \p W for CallInst.
284 void setProfWeight(uint64_t W);
285
286 /// Set the debug location information for this instruction.
287 void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
288
289 /// Return the debug location for this node as a DebugLoc.
290 const DebugLoc &getDebugLoc() const { return DbgLoc; }
291
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100292 /// Set or clear the nuw flag on this instruction, which must be an operator
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100293 /// which supports this flag. See LangRef.html for the meaning of this flag.
294 void setHasNoUnsignedWrap(bool b = true);
295
296 /// Set or clear the nsw flag on this instruction, which must be an operator
297 /// which supports this flag. See LangRef.html for the meaning of this flag.
298 void setHasNoSignedWrap(bool b = true);
299
300 /// Set or clear the exact flag on this instruction, which must be an operator
301 /// which supports this flag. See LangRef.html for the meaning of this flag.
302 void setIsExact(bool b = true);
303
304 /// Determine whether the no unsigned wrap flag is set.
305 bool hasNoUnsignedWrap() const;
306
307 /// Determine whether the no signed wrap flag is set.
308 bool hasNoSignedWrap() const;
309
310 /// Drops flags that may cause this instruction to evaluate to poison despite
311 /// having non-poison inputs.
312 void dropPoisonGeneratingFlags();
313
314 /// Determine whether the exact flag is set.
315 bool isExact() const;
316
317 /// Set or clear all fast-math-flags on this instruction, which must be an
318 /// operator which supports this flag. See LangRef.html for the meaning of
319 /// this flag.
320 void setFast(bool B);
321
322 /// Set or clear the reassociation flag on this instruction, which must be
323 /// an operator which supports this flag. See LangRef.html for the meaning of
324 /// this flag.
325 void setHasAllowReassoc(bool B);
326
327 /// Set or clear the no-nans flag on this instruction, which must be an
328 /// operator which supports this flag. See LangRef.html for the meaning of
329 /// this flag.
330 void setHasNoNaNs(bool B);
331
332 /// Set or clear the no-infs flag on this instruction, which must be an
333 /// operator which supports this flag. See LangRef.html for the meaning of
334 /// this flag.
335 void setHasNoInfs(bool B);
336
337 /// Set or clear the no-signed-zeros flag on this instruction, which must be
338 /// an operator which supports this flag. See LangRef.html for the meaning of
339 /// this flag.
340 void setHasNoSignedZeros(bool B);
341
342 /// Set or clear the allow-reciprocal flag on this instruction, which must be
343 /// an operator which supports this flag. See LangRef.html for the meaning of
344 /// this flag.
345 void setHasAllowReciprocal(bool B);
346
347 /// Set or clear the approximate-math-functions flag on this instruction,
348 /// which must be an operator which supports this flag. See LangRef.html for
349 /// the meaning of this flag.
350 void setHasApproxFunc(bool B);
351
352 /// Convenience function for setting multiple fast-math flags on this
353 /// instruction, which must be an operator which supports these flags. See
354 /// LangRef.html for the meaning of these flags.
355 void setFastMathFlags(FastMathFlags FMF);
356
357 /// Convenience function for transferring all fast-math flag values to this
358 /// instruction, which must be an operator which supports these flags. See
359 /// LangRef.html for the meaning of these flags.
360 void copyFastMathFlags(FastMathFlags FMF);
361
362 /// Determine whether all fast-math-flags are set.
363 bool isFast() const;
364
365 /// Determine whether the allow-reassociation flag is set.
366 bool hasAllowReassoc() const;
367
368 /// Determine whether the no-NaNs flag is set.
369 bool hasNoNaNs() const;
370
371 /// Determine whether the no-infs flag is set.
372 bool hasNoInfs() const;
373
374 /// Determine whether the no-signed-zeros flag is set.
375 bool hasNoSignedZeros() const;
376
377 /// Determine whether the allow-reciprocal flag is set.
378 bool hasAllowReciprocal() const;
379
380 /// Determine whether the allow-contract flag is set.
381 bool hasAllowContract() const;
382
383 /// Determine whether the approximate-math-functions flag is set.
384 bool hasApproxFunc() const;
385
386 /// Convenience function for getting all the fast-math flags, which must be an
387 /// operator which supports these flags. See LangRef.html for the meaning of
388 /// these flags.
389 FastMathFlags getFastMathFlags() const;
390
391 /// Copy I's fast-math flags
392 void copyFastMathFlags(const Instruction *I);
393
394 /// Convenience method to copy supported exact, fast-math, and (optionally)
395 /// wrapping flags from V to this instruction.
396 void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
397
398 /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
399 /// V and this instruction.
400 void andIRFlags(const Value *V);
401
402 /// Merge 2 debug locations and apply it to the Instruction. If the
403 /// instruction is a CallIns, we need to traverse the inline chain to find
404 /// the common scope. This is not efficient for N-way merging as each time
405 /// you merge 2 iterations, you need to rebuild the hashmap to find the
406 /// common scope. However, we still choose this API because:
407 /// 1) Simplicity: it takes 2 locations instead of a list of locations.
408 /// 2) In worst case, it increases the complexity from O(N*I) to
409 /// O(2*N*I), where N is # of Instructions to merge, and I is the
410 /// maximum level of inline stack. So it is still linear.
411 /// 3) Merging of call instructions should be extremely rare in real
412 /// applications, thus the N-way merging should be in code path.
413 /// The DebugLoc attached to this instruction will be overwritten by the
414 /// merged DebugLoc.
415 void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
416
417private:
418 /// Return true if we have an entry in the on-the-side metadata hash.
419 bool hasMetadataHashEntry() const {
420 return (getSubclassDataFromValue() & HasMetadataBit) != 0;
421 }
422
423 // These are all implemented in Metadata.cpp.
424 MDNode *getMetadataImpl(unsigned KindID) const;
425 MDNode *getMetadataImpl(StringRef Kind) const;
426 void
427 getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
428 void getAllMetadataOtherThanDebugLocImpl(
429 SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
430 /// Clear all hashtable-based metadata from this instruction.
431 void clearMetadataHashEntries();
432
433public:
434 //===--------------------------------------------------------------------===//
435 // Predicates and helper methods.
436 //===--------------------------------------------------------------------===//
437
438 /// Return true if the instruction is associative:
439 ///
440 /// Associative operators satisfy: x op (y op z) === (x op y) op z
441 ///
442 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
443 ///
444 bool isAssociative() const LLVM_READONLY;
445 static bool isAssociative(unsigned Opcode) {
446 return Opcode == And || Opcode == Or || Opcode == Xor ||
447 Opcode == Add || Opcode == Mul;
448 }
449
450 /// Return true if the instruction is commutative:
451 ///
452 /// Commutative operators satisfy: (x op y) === (y op x)
453 ///
454 /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
455 /// applied to any type.
456 ///
457 bool isCommutative() const { return isCommutative(getOpcode()); }
458 static bool isCommutative(unsigned Opcode) {
459 switch (Opcode) {
460 case Add: case FAdd:
461 case Mul: case FMul:
462 case And: case Or: case Xor:
463 return true;
464 default:
465 return false;
466 }
467 }
468
469 /// Return true if the instruction is idempotent:
470 ///
471 /// Idempotent operators satisfy: x op x === x
472 ///
473 /// In LLVM, the And and Or operators are idempotent.
474 ///
475 bool isIdempotent() const { return isIdempotent(getOpcode()); }
476 static bool isIdempotent(unsigned Opcode) {
477 return Opcode == And || Opcode == Or;
478 }
479
480 /// Return true if the instruction is nilpotent:
481 ///
482 /// Nilpotent operators satisfy: x op x === Id,
483 ///
484 /// where Id is the identity for the operator, i.e. a constant such that
485 /// x op Id === x and Id op x === x for all x.
486 ///
487 /// In LLVM, the Xor operator is nilpotent.
488 ///
489 bool isNilpotent() const { return isNilpotent(getOpcode()); }
490 static bool isNilpotent(unsigned Opcode) {
491 return Opcode == Xor;
492 }
493
494 /// Return true if this instruction may modify memory.
495 bool mayWriteToMemory() const;
496
497 /// Return true if this instruction may read memory.
498 bool mayReadFromMemory() const;
499
500 /// Return true if this instruction may read or write memory.
501 bool mayReadOrWriteMemory() const {
502 return mayReadFromMemory() || mayWriteToMemory();
503 }
504
505 /// Return true if this instruction has an AtomicOrdering of unordered or
506 /// higher.
507 bool isAtomic() const;
508
509 /// Return true if this atomic instruction loads from memory.
510 bool hasAtomicLoad() const;
511
512 /// Return true if this atomic instruction stores to memory.
513 bool hasAtomicStore() const;
514
515 /// Return true if this instruction may throw an exception.
516 bool mayThrow() const;
517
518 /// Return true if this instruction behaves like a memory fence: it can load
519 /// or store to memory location without being given a memory location.
520 bool isFenceLike() const {
521 switch (getOpcode()) {
522 default:
523 return false;
524 // This list should be kept in sync with the list in mayWriteToMemory for
525 // all opcodes which don't have a memory location.
526 case Instruction::Fence:
527 case Instruction::CatchPad:
528 case Instruction::CatchRet:
529 case Instruction::Call:
530 case Instruction::Invoke:
531 return true;
532 }
533 }
534
535 /// Return true if the instruction may have side effects.
536 ///
537 /// Note that this does not consider malloc and alloca to have side
538 /// effects because the newly allocated memory is completely invisible to
539 /// instructions which don't use the returned value. For cases where this
540 /// matters, isSafeToSpeculativelyExecute may be more appropriate.
541 bool mayHaveSideEffects() const { return mayWriteToMemory() || mayThrow(); }
542
543 /// Return true if the instruction can be removed if the result is unused.
544 ///
545 /// When constant folding some instructions cannot be removed even if their
546 /// results are unused. Specifically terminator instructions and calls that
547 /// may have side effects cannot be removed without semantically changing the
548 /// generated program.
549 bool isSafeToRemove() const;
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100550
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100551 /// Return true if the instruction is a variety of EH-block.
552 bool isEHPad() const {
553 switch (getOpcode()) {
554 case Instruction::CatchSwitch:
555 case Instruction::CatchPad:
556 case Instruction::CleanupPad:
557 case Instruction::LandingPad:
558 return true;
559 default:
560 return false;
561 }
562 }
563
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100564 /// Return a pointer to the next non-debug instruction in the same basic
565 /// block as 'this', or nullptr if no such instruction exists.
566 const Instruction *getNextNonDebugInstruction() const;
567 Instruction *getNextNonDebugInstruction() {
568 return const_cast<Instruction *>(
569 static_cast<const Instruction *>(this)->getNextNonDebugInstruction());
570 }
571
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100572 /// Create a copy of 'this' instruction that is identical in all ways except
573 /// the following:
574 /// * The instruction has no parent
575 /// * The instruction has no name
576 ///
577 Instruction *clone() const;
578
579 /// Return true if the specified instruction is exactly identical to the
580 /// current one. This means that all operands match and any extra information
581 /// (e.g. load is volatile) agree.
582 bool isIdenticalTo(const Instruction *I) const;
583
584 /// This is like isIdenticalTo, except that it ignores the
585 /// SubclassOptionalData flags, which may specify conditions under which the
586 /// instruction's result is undefined.
587 bool isIdenticalToWhenDefined(const Instruction *I) const;
588
589 /// When checking for operation equivalence (using isSameOperationAs) it is
590 /// sometimes useful to ignore certain attributes.
591 enum OperationEquivalenceFlags {
592 /// Check for equivalence ignoring load/store alignment.
593 CompareIgnoringAlignment = 1<<0,
594 /// Check for equivalence treating a type and a vector of that type
595 /// as equivalent.
596 CompareUsingScalarTypes = 1<<1
597 };
598
599 /// This function determines if the specified instruction executes the same
600 /// operation as the current one. This means that the opcodes, type, operand
601 /// types and any other factors affecting the operation must be the same. This
602 /// is similar to isIdenticalTo except the operands themselves don't have to
603 /// be identical.
604 /// @returns true if the specified instruction is the same operation as
605 /// the current one.
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100606 /// Determine if one instruction is the same operation as another.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100607 bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const;
608
609 /// Return true if there are any uses of this instruction in blocks other than
610 /// the specified block. Note that PHI nodes are considered to evaluate their
611 /// operands in the corresponding predecessor block.
612 bool isUsedOutsideOfBlock(const BasicBlock *BB) const;
613
614
615 /// Methods for support type inquiry through isa, cast, and dyn_cast:
616 static bool classof(const Value *V) {
617 return V->getValueID() >= Value::InstructionVal;
618 }
619
620 //----------------------------------------------------------------------
621 // Exported enumerations.
622 //
623 enum TermOps { // These terminate basic blocks
624#define FIRST_TERM_INST(N) TermOpsBegin = N,
625#define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
626#define LAST_TERM_INST(N) TermOpsEnd = N+1
627#include "llvm/IR/Instruction.def"
628 };
629
630 enum BinaryOps {
631#define FIRST_BINARY_INST(N) BinaryOpsBegin = N,
632#define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
633#define LAST_BINARY_INST(N) BinaryOpsEnd = N+1
634#include "llvm/IR/Instruction.def"
635 };
636
637 enum MemoryOps {
638#define FIRST_MEMORY_INST(N) MemoryOpsBegin = N,
639#define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
640#define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1
641#include "llvm/IR/Instruction.def"
642 };
643
644 enum CastOps {
645#define FIRST_CAST_INST(N) CastOpsBegin = N,
646#define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
647#define LAST_CAST_INST(N) CastOpsEnd = N+1
648#include "llvm/IR/Instruction.def"
649 };
650
651 enum FuncletPadOps {
652#define FIRST_FUNCLETPAD_INST(N) FuncletPadOpsBegin = N,
653#define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
654#define LAST_FUNCLETPAD_INST(N) FuncletPadOpsEnd = N+1
655#include "llvm/IR/Instruction.def"
656 };
657
658 enum OtherOps {
659#define FIRST_OTHER_INST(N) OtherOpsBegin = N,
660#define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
661#define LAST_OTHER_INST(N) OtherOpsEnd = N+1
662#include "llvm/IR/Instruction.def"
663 };
664
665private:
666 friend class SymbolTableListTraits<Instruction>;
667
668 // Shadow Value::setValueSubclassData with a private forwarding method so that
669 // subclasses cannot accidentally use it.
670 void setValueSubclassData(unsigned short D) {
671 Value::setValueSubclassData(D);
672 }
673
674 unsigned short getSubclassDataFromValue() const {
675 return Value::getSubclassDataFromValue();
676 }
677
678 void setHasMetadataHashEntry(bool V) {
679 setValueSubclassData((getSubclassDataFromValue() & ~HasMetadataBit) |
680 (V ? HasMetadataBit : 0));
681 }
682
683 void setParent(BasicBlock *P);
684
685protected:
686 // Instruction subclasses can stick up to 15 bits of stuff into the
687 // SubclassData field of instruction with these members.
688
689 // Verify that only the low 15 bits are used.
690 void setInstructionSubclassData(unsigned short D) {
691 assert((D & HasMetadataBit) == 0 && "Out of range value put into field");
692 setValueSubclassData((getSubclassDataFromValue() & HasMetadataBit) | D);
693 }
694
695 unsigned getSubclassDataFromInstruction() const {
696 return getSubclassDataFromValue() & ~HasMetadataBit;
697 }
698
699 Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
700 Instruction *InsertBefore = nullptr);
701 Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
702 BasicBlock *InsertAtEnd);
703
704private:
705 /// Create a copy of this instruction.
706 Instruction *cloneImpl() const;
707};
708
709inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) {
710 V->deleteValue();
711}
712
713} // end namespace llvm
714
715#endif // LLVM_IR_INSTRUCTION_H