blob: 76bc4010d8c8b9d4f66e76b17719157af5ff383f [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the Instruction class, which is the
11// base class for all of the LLVM instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTION_H
16#define LLVM_IR_INSTRUCTION_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/ilist_node.h"
22#include "llvm/IR/DebugLoc.h"
23#include "llvm/IR/SymbolTableListTraits.h"
24#include "llvm/IR/User.h"
25#include "llvm/IR/Value.h"
26#include "llvm/Support/Casting.h"
27#include <algorithm>
28#include <cassert>
29#include <cstdint>
30#include <utility>
31
32namespace llvm {
33
34class BasicBlock;
35class FastMathFlags;
36class MDNode;
37class Module;
38struct AAMDNodes;
39
40template <> struct ilist_alloc_traits<Instruction> {
41 static inline void deleteNode(Instruction *V);
42};
43
44class Instruction : public User,
45 public ilist_node_with_parent<Instruction, BasicBlock> {
46 BasicBlock *Parent;
47 DebugLoc DbgLoc; // 'dbg' Metadata cache.
48
49 enum {
50 /// This is a bit stored in the SubClassData field which indicates whether
51 /// this instruction has metadata attached to it or not.
52 HasMetadataBit = 1 << 15
53 };
54
55protected:
56 ~Instruction(); // Use deleteValue() to delete a generic Instruction.
57
58public:
59 Instruction(const Instruction &) = delete;
60 Instruction &operator=(const Instruction &) = delete;
61
62 /// Specialize the methods defined in Value, as we know that an instruction
63 /// can only be used by other instructions.
64 Instruction *user_back() { return cast<Instruction>(*user_begin());}
65 const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
66
67 inline const BasicBlock *getParent() const { return Parent; }
68 inline BasicBlock *getParent() { return Parent; }
69
70 /// Return the module owning the function this instruction belongs to
71 /// or nullptr it the function does not have a module.
72 ///
73 /// Note: this is undefined behavior if the instruction does not have a
74 /// parent, or the parent basic block does not have a parent function.
75 const Module *getModule() const;
76 Module *getModule() {
77 return const_cast<Module *>(
78 static_cast<const Instruction *>(this)->getModule());
79 }
80
81 /// Return the function this instruction belongs to.
82 ///
83 /// Note: it is undefined behavior to call this on an instruction not
84 /// currently inserted into a function.
85 const Function *getFunction() const;
86 Function *getFunction() {
87 return const_cast<Function *>(
88 static_cast<const Instruction *>(this)->getFunction());
89 }
90
91 /// This method unlinks 'this' from the containing basic block, but does not
92 /// delete it.
93 void removeFromParent();
94
95 /// This method unlinks 'this' from the containing basic block and deletes it.
96 ///
97 /// \returns an iterator pointing to the element after the erased one
98 SymbolTableList<Instruction>::iterator eraseFromParent();
99
100 /// Insert an unlinked instruction into a basic block immediately before
101 /// the specified instruction.
102 void insertBefore(Instruction *InsertPos);
103
104 /// Insert an unlinked instruction into a basic block immediately after the
105 /// specified instruction.
106 void insertAfter(Instruction *InsertPos);
107
108 /// Unlink this instruction from its current basic block and insert it into
109 /// the basic block that MovePos lives in, right before MovePos.
110 void moveBefore(Instruction *MovePos);
111
112 /// Unlink this instruction and insert into BB before I.
113 ///
114 /// \pre I is a valid iterator into BB.
115 void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I);
116
117 /// Unlink this instruction from its current basic block and insert it into
118 /// the basic block that MovePos lives in, right after MovePos.
119 void moveAfter(Instruction *MovePos);
120
121 //===--------------------------------------------------------------------===//
122 // Subclass classification.
123 //===--------------------------------------------------------------------===//
124
125 /// Returns a member of one of the enums like Instruction::Add.
126 unsigned getOpcode() const { return getValueID() - InstructionVal; }
127
128 const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
129 bool isTerminator() const { return isTerminator(getOpcode()); }
130 bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
131 bool isShift() { return isShift(getOpcode()); }
132 bool isCast() const { return isCast(getOpcode()); }
133 bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
134
135 static const char* getOpcodeName(unsigned OpCode);
136
137 static inline bool isTerminator(unsigned OpCode) {
138 return OpCode >= TermOpsBegin && OpCode < TermOpsEnd;
139 }
140
141 static inline bool isBinaryOp(unsigned Opcode) {
142 return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd;
143 }
144
145 /// Determine if the Opcode is one of the shift instructions.
146 static inline bool isShift(unsigned Opcode) {
147 return Opcode >= Shl && Opcode <= AShr;
148 }
149
150 /// Return true if this is a logical shift left or a logical shift right.
151 inline bool isLogicalShift() const {
152 return getOpcode() == Shl || getOpcode() == LShr;
153 }
154
155 /// Return true if this is an arithmetic shift right.
156 inline bool isArithmeticShift() const {
157 return getOpcode() == AShr;
158 }
159
160 /// Determine if the Opcode is and/or/xor.
161 static inline bool isBitwiseLogicOp(unsigned Opcode) {
162 return Opcode == And || Opcode == Or || Opcode == Xor;
163 }
164
165 /// Return true if this is and/or/xor.
166 inline bool isBitwiseLogicOp() const {
167 return isBitwiseLogicOp(getOpcode());
168 }
169
170 /// Determine if the OpCode is one of the CastInst instructions.
171 static inline bool isCast(unsigned OpCode) {
172 return OpCode >= CastOpsBegin && OpCode < CastOpsEnd;
173 }
174
175 /// Determine if the OpCode is one of the FuncletPadInst instructions.
176 static inline bool isFuncletPad(unsigned OpCode) {
177 return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd;
178 }
179
180 //===--------------------------------------------------------------------===//
181 // Metadata manipulation.
182 //===--------------------------------------------------------------------===//
183
184 /// Return true if this instruction has any metadata attached to it.
185 bool hasMetadata() const { return DbgLoc || hasMetadataHashEntry(); }
186
187 /// Return true if this instruction has metadata attached to it other than a
188 /// debug location.
189 bool hasMetadataOtherThanDebugLoc() const {
190 return hasMetadataHashEntry();
191 }
192
193 /// Get the metadata of given kind attached to this Instruction.
194 /// If the metadata is not found then return null.
195 MDNode *getMetadata(unsigned KindID) const {
196 if (!hasMetadata()) return nullptr;
197 return getMetadataImpl(KindID);
198 }
199
200 /// Get the metadata of given kind attached to this Instruction.
201 /// If the metadata is not found then return null.
202 MDNode *getMetadata(StringRef Kind) const {
203 if (!hasMetadata()) return nullptr;
204 return getMetadataImpl(Kind);
205 }
206
207 /// Get all metadata attached to this Instruction. The first element of each
208 /// pair returned is the KindID, the second element is the metadata value.
209 /// This list is returned sorted by the KindID.
210 void
211 getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
212 if (hasMetadata())
213 getAllMetadataImpl(MDs);
214 }
215
216 /// This does the same thing as getAllMetadata, except that it filters out the
217 /// debug location.
218 void getAllMetadataOtherThanDebugLoc(
219 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
220 if (hasMetadataOtherThanDebugLoc())
221 getAllMetadataOtherThanDebugLocImpl(MDs);
222 }
223
224 /// Fills the AAMDNodes structure with AA metadata from this instruction.
225 /// When Merge is true, the existing AA metadata is merged with that from this
226 /// instruction providing the most-general result.
227 void getAAMetadata(AAMDNodes &N, bool Merge = false) const;
228
229 /// Set the metadata of the specified kind to the specified node. This updates
230 /// or replaces metadata if already present, or removes it if Node is null.
231 void setMetadata(unsigned KindID, MDNode *Node);
232 void setMetadata(StringRef Kind, MDNode *Node);
233
234 /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
235 /// specifies the list of meta data that needs to be copied. If \p WL is
236 /// empty, all meta data will be copied.
237 void copyMetadata(const Instruction &SrcInst,
238 ArrayRef<unsigned> WL = ArrayRef<unsigned>());
239
240 /// If the instruction has "branch_weights" MD_prof metadata and the MDNode
241 /// has three operands (including name string), swap the order of the
242 /// metadata.
243 void swapProfMetadata();
244
245 /// Drop all unknown metadata except for debug locations.
246 /// @{
247 /// Passes are required to drop metadata they don't understand. This is a
248 /// convenience method for passes to do so.
249 void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
250 void dropUnknownNonDebugMetadata() {
251 return dropUnknownNonDebugMetadata(None);
252 }
253 void dropUnknownNonDebugMetadata(unsigned ID1) {
254 return dropUnknownNonDebugMetadata(makeArrayRef(ID1));
255 }
256 void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
257 unsigned IDs[] = {ID1, ID2};
258 return dropUnknownNonDebugMetadata(IDs);
259 }
260 /// @}
261
262 /// Sets the metadata on this instruction from the AAMDNodes structure.
263 void setAAMetadata(const AAMDNodes &N);
264
265 /// Retrieve the raw weight values of a conditional branch or select.
266 /// Returns true on success with profile weights filled in.
267 /// Returns false if no metadata or invalid metadata was found.
268 bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const;
269
270 /// Retrieve total raw weight values of a branch.
271 /// Returns true on success with profile total weights filled in.
272 /// Returns false if no metadata was found.
273 bool extractProfTotalWeight(uint64_t &TotalVal) const;
274
275 /// Updates branch_weights metadata by scaling it by \p S / \p T.
276 void updateProfWeight(uint64_t S, uint64_t T);
277
278 /// Sets the branch_weights metadata to \p W for CallInst.
279 void setProfWeight(uint64_t W);
280
281 /// Set the debug location information for this instruction.
282 void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
283
284 /// Return the debug location for this node as a DebugLoc.
285 const DebugLoc &getDebugLoc() const { return DbgLoc; }
286
287 /// Set or clear the nsw flag on this instruction, which must be an operator
288 /// which supports this flag. See LangRef.html for the meaning of this flag.
289 void setHasNoUnsignedWrap(bool b = true);
290
291 /// Set or clear the nsw flag on this instruction, which must be an operator
292 /// which supports this flag. See LangRef.html for the meaning of this flag.
293 void setHasNoSignedWrap(bool b = true);
294
295 /// Set or clear the exact flag on this instruction, which must be an operator
296 /// which supports this flag. See LangRef.html for the meaning of this flag.
297 void setIsExact(bool b = true);
298
299 /// Determine whether the no unsigned wrap flag is set.
300 bool hasNoUnsignedWrap() const;
301
302 /// Determine whether the no signed wrap flag is set.
303 bool hasNoSignedWrap() const;
304
305 /// Drops flags that may cause this instruction to evaluate to poison despite
306 /// having non-poison inputs.
307 void dropPoisonGeneratingFlags();
308
309 /// Determine whether the exact flag is set.
310 bool isExact() const;
311
312 /// Set or clear all fast-math-flags on this instruction, which must be an
313 /// operator which supports this flag. See LangRef.html for the meaning of
314 /// this flag.
315 void setFast(bool B);
316
317 /// Set or clear the reassociation flag on this instruction, which must be
318 /// an operator which supports this flag. See LangRef.html for the meaning of
319 /// this flag.
320 void setHasAllowReassoc(bool B);
321
322 /// Set or clear the no-nans flag on this instruction, which must be an
323 /// operator which supports this flag. See LangRef.html for the meaning of
324 /// this flag.
325 void setHasNoNaNs(bool B);
326
327 /// Set or clear the no-infs flag on this instruction, which must be an
328 /// operator which supports this flag. See LangRef.html for the meaning of
329 /// this flag.
330 void setHasNoInfs(bool B);
331
332 /// Set or clear the no-signed-zeros flag on this instruction, which must be
333 /// an operator which supports this flag. See LangRef.html for the meaning of
334 /// this flag.
335 void setHasNoSignedZeros(bool B);
336
337 /// Set or clear the allow-reciprocal flag on this instruction, which must be
338 /// an operator which supports this flag. See LangRef.html for the meaning of
339 /// this flag.
340 void setHasAllowReciprocal(bool B);
341
342 /// Set or clear the approximate-math-functions flag on this instruction,
343 /// which must be an operator which supports this flag. See LangRef.html for
344 /// the meaning of this flag.
345 void setHasApproxFunc(bool B);
346
347 /// Convenience function for setting multiple fast-math flags on this
348 /// instruction, which must be an operator which supports these flags. See
349 /// LangRef.html for the meaning of these flags.
350 void setFastMathFlags(FastMathFlags FMF);
351
352 /// Convenience function for transferring all fast-math flag values to this
353 /// instruction, which must be an operator which supports these flags. See
354 /// LangRef.html for the meaning of these flags.
355 void copyFastMathFlags(FastMathFlags FMF);
356
357 /// Determine whether all fast-math-flags are set.
358 bool isFast() const;
359
360 /// Determine whether the allow-reassociation flag is set.
361 bool hasAllowReassoc() const;
362
363 /// Determine whether the no-NaNs flag is set.
364 bool hasNoNaNs() const;
365
366 /// Determine whether the no-infs flag is set.
367 bool hasNoInfs() const;
368
369 /// Determine whether the no-signed-zeros flag is set.
370 bool hasNoSignedZeros() const;
371
372 /// Determine whether the allow-reciprocal flag is set.
373 bool hasAllowReciprocal() const;
374
375 /// Determine whether the allow-contract flag is set.
376 bool hasAllowContract() const;
377
378 /// Determine whether the approximate-math-functions flag is set.
379 bool hasApproxFunc() const;
380
381 /// Convenience function for getting all the fast-math flags, which must be an
382 /// operator which supports these flags. See LangRef.html for the meaning of
383 /// these flags.
384 FastMathFlags getFastMathFlags() const;
385
386 /// Copy I's fast-math flags
387 void copyFastMathFlags(const Instruction *I);
388
389 /// Convenience method to copy supported exact, fast-math, and (optionally)
390 /// wrapping flags from V to this instruction.
391 void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
392
393 /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
394 /// V and this instruction.
395 void andIRFlags(const Value *V);
396
397 /// Merge 2 debug locations and apply it to the Instruction. If the
398 /// instruction is a CallIns, we need to traverse the inline chain to find
399 /// the common scope. This is not efficient for N-way merging as each time
400 /// you merge 2 iterations, you need to rebuild the hashmap to find the
401 /// common scope. However, we still choose this API because:
402 /// 1) Simplicity: it takes 2 locations instead of a list of locations.
403 /// 2) In worst case, it increases the complexity from O(N*I) to
404 /// O(2*N*I), where N is # of Instructions to merge, and I is the
405 /// maximum level of inline stack. So it is still linear.
406 /// 3) Merging of call instructions should be extremely rare in real
407 /// applications, thus the N-way merging should be in code path.
408 /// The DebugLoc attached to this instruction will be overwritten by the
409 /// merged DebugLoc.
410 void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
411
412private:
413 /// Return true if we have an entry in the on-the-side metadata hash.
414 bool hasMetadataHashEntry() const {
415 return (getSubclassDataFromValue() & HasMetadataBit) != 0;
416 }
417
418 // These are all implemented in Metadata.cpp.
419 MDNode *getMetadataImpl(unsigned KindID) const;
420 MDNode *getMetadataImpl(StringRef Kind) const;
421 void
422 getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
423 void getAllMetadataOtherThanDebugLocImpl(
424 SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
425 /// Clear all hashtable-based metadata from this instruction.
426 void clearMetadataHashEntries();
427
428public:
429 //===--------------------------------------------------------------------===//
430 // Predicates and helper methods.
431 //===--------------------------------------------------------------------===//
432
433 /// Return true if the instruction is associative:
434 ///
435 /// Associative operators satisfy: x op (y op z) === (x op y) op z
436 ///
437 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
438 ///
439 bool isAssociative() const LLVM_READONLY;
440 static bool isAssociative(unsigned Opcode) {
441 return Opcode == And || Opcode == Or || Opcode == Xor ||
442 Opcode == Add || Opcode == Mul;
443 }
444
445 /// Return true if the instruction is commutative:
446 ///
447 /// Commutative operators satisfy: (x op y) === (y op x)
448 ///
449 /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
450 /// applied to any type.
451 ///
452 bool isCommutative() const { return isCommutative(getOpcode()); }
453 static bool isCommutative(unsigned Opcode) {
454 switch (Opcode) {
455 case Add: case FAdd:
456 case Mul: case FMul:
457 case And: case Or: case Xor:
458 return true;
459 default:
460 return false;
461 }
462 }
463
464 /// Return true if the instruction is idempotent:
465 ///
466 /// Idempotent operators satisfy: x op x === x
467 ///
468 /// In LLVM, the And and Or operators are idempotent.
469 ///
470 bool isIdempotent() const { return isIdempotent(getOpcode()); }
471 static bool isIdempotent(unsigned Opcode) {
472 return Opcode == And || Opcode == Or;
473 }
474
475 /// Return true if the instruction is nilpotent:
476 ///
477 /// Nilpotent operators satisfy: x op x === Id,
478 ///
479 /// where Id is the identity for the operator, i.e. a constant such that
480 /// x op Id === x and Id op x === x for all x.
481 ///
482 /// In LLVM, the Xor operator is nilpotent.
483 ///
484 bool isNilpotent() const { return isNilpotent(getOpcode()); }
485 static bool isNilpotent(unsigned Opcode) {
486 return Opcode == Xor;
487 }
488
489 /// Return true if this instruction may modify memory.
490 bool mayWriteToMemory() const;
491
492 /// Return true if this instruction may read memory.
493 bool mayReadFromMemory() const;
494
495 /// Return true if this instruction may read or write memory.
496 bool mayReadOrWriteMemory() const {
497 return mayReadFromMemory() || mayWriteToMemory();
498 }
499
500 /// Return true if this instruction has an AtomicOrdering of unordered or
501 /// higher.
502 bool isAtomic() const;
503
504 /// Return true if this atomic instruction loads from memory.
505 bool hasAtomicLoad() const;
506
507 /// Return true if this atomic instruction stores to memory.
508 bool hasAtomicStore() const;
509
510 /// Return true if this instruction may throw an exception.
511 bool mayThrow() const;
512
513 /// Return true if this instruction behaves like a memory fence: it can load
514 /// or store to memory location without being given a memory location.
515 bool isFenceLike() const {
516 switch (getOpcode()) {
517 default:
518 return false;
519 // This list should be kept in sync with the list in mayWriteToMemory for
520 // all opcodes which don't have a memory location.
521 case Instruction::Fence:
522 case Instruction::CatchPad:
523 case Instruction::CatchRet:
524 case Instruction::Call:
525 case Instruction::Invoke:
526 return true;
527 }
528 }
529
530 /// Return true if the instruction may have side effects.
531 ///
532 /// Note that this does not consider malloc and alloca to have side
533 /// effects because the newly allocated memory is completely invisible to
534 /// instructions which don't use the returned value. For cases where this
535 /// matters, isSafeToSpeculativelyExecute may be more appropriate.
536 bool mayHaveSideEffects() const { return mayWriteToMemory() || mayThrow(); }
537
538 /// Return true if the instruction can be removed if the result is unused.
539 ///
540 /// When constant folding some instructions cannot be removed even if their
541 /// results are unused. Specifically terminator instructions and calls that
542 /// may have side effects cannot be removed without semantically changing the
543 /// generated program.
544 bool isSafeToRemove() const;
545
546 /// Return true if the instruction is a variety of EH-block.
547 bool isEHPad() const {
548 switch (getOpcode()) {
549 case Instruction::CatchSwitch:
550 case Instruction::CatchPad:
551 case Instruction::CleanupPad:
552 case Instruction::LandingPad:
553 return true;
554 default:
555 return false;
556 }
557 }
558
559 /// Create a copy of 'this' instruction that is identical in all ways except
560 /// the following:
561 /// * The instruction has no parent
562 /// * The instruction has no name
563 ///
564 Instruction *clone() const;
565
566 /// Return true if the specified instruction is exactly identical to the
567 /// current one. This means that all operands match and any extra information
568 /// (e.g. load is volatile) agree.
569 bool isIdenticalTo(const Instruction *I) const;
570
571 /// This is like isIdenticalTo, except that it ignores the
572 /// SubclassOptionalData flags, which may specify conditions under which the
573 /// instruction's result is undefined.
574 bool isIdenticalToWhenDefined(const Instruction *I) const;
575
576 /// When checking for operation equivalence (using isSameOperationAs) it is
577 /// sometimes useful to ignore certain attributes.
578 enum OperationEquivalenceFlags {
579 /// Check for equivalence ignoring load/store alignment.
580 CompareIgnoringAlignment = 1<<0,
581 /// Check for equivalence treating a type and a vector of that type
582 /// as equivalent.
583 CompareUsingScalarTypes = 1<<1
584 };
585
586 /// This function determines if the specified instruction executes the same
587 /// operation as the current one. This means that the opcodes, type, operand
588 /// types and any other factors affecting the operation must be the same. This
589 /// is similar to isIdenticalTo except the operands themselves don't have to
590 /// be identical.
591 /// @returns true if the specified instruction is the same operation as
592 /// the current one.
593 /// @brief Determine if one instruction is the same operation as another.
594 bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const;
595
596 /// Return true if there are any uses of this instruction in blocks other than
597 /// the specified block. Note that PHI nodes are considered to evaluate their
598 /// operands in the corresponding predecessor block.
599 bool isUsedOutsideOfBlock(const BasicBlock *BB) const;
600
601
602 /// Methods for support type inquiry through isa, cast, and dyn_cast:
603 static bool classof(const Value *V) {
604 return V->getValueID() >= Value::InstructionVal;
605 }
606
607 //----------------------------------------------------------------------
608 // Exported enumerations.
609 //
610 enum TermOps { // These terminate basic blocks
611#define FIRST_TERM_INST(N) TermOpsBegin = N,
612#define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
613#define LAST_TERM_INST(N) TermOpsEnd = N+1
614#include "llvm/IR/Instruction.def"
615 };
616
617 enum BinaryOps {
618#define FIRST_BINARY_INST(N) BinaryOpsBegin = N,
619#define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
620#define LAST_BINARY_INST(N) BinaryOpsEnd = N+1
621#include "llvm/IR/Instruction.def"
622 };
623
624 enum MemoryOps {
625#define FIRST_MEMORY_INST(N) MemoryOpsBegin = N,
626#define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
627#define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1
628#include "llvm/IR/Instruction.def"
629 };
630
631 enum CastOps {
632#define FIRST_CAST_INST(N) CastOpsBegin = N,
633#define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
634#define LAST_CAST_INST(N) CastOpsEnd = N+1
635#include "llvm/IR/Instruction.def"
636 };
637
638 enum FuncletPadOps {
639#define FIRST_FUNCLETPAD_INST(N) FuncletPadOpsBegin = N,
640#define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
641#define LAST_FUNCLETPAD_INST(N) FuncletPadOpsEnd = N+1
642#include "llvm/IR/Instruction.def"
643 };
644
645 enum OtherOps {
646#define FIRST_OTHER_INST(N) OtherOpsBegin = N,
647#define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
648#define LAST_OTHER_INST(N) OtherOpsEnd = N+1
649#include "llvm/IR/Instruction.def"
650 };
651
652private:
653 friend class SymbolTableListTraits<Instruction>;
654
655 // Shadow Value::setValueSubclassData with a private forwarding method so that
656 // subclasses cannot accidentally use it.
657 void setValueSubclassData(unsigned short D) {
658 Value::setValueSubclassData(D);
659 }
660
661 unsigned short getSubclassDataFromValue() const {
662 return Value::getSubclassDataFromValue();
663 }
664
665 void setHasMetadataHashEntry(bool V) {
666 setValueSubclassData((getSubclassDataFromValue() & ~HasMetadataBit) |
667 (V ? HasMetadataBit : 0));
668 }
669
670 void setParent(BasicBlock *P);
671
672protected:
673 // Instruction subclasses can stick up to 15 bits of stuff into the
674 // SubclassData field of instruction with these members.
675
676 // Verify that only the low 15 bits are used.
677 void setInstructionSubclassData(unsigned short D) {
678 assert((D & HasMetadataBit) == 0 && "Out of range value put into field");
679 setValueSubclassData((getSubclassDataFromValue() & HasMetadataBit) | D);
680 }
681
682 unsigned getSubclassDataFromInstruction() const {
683 return getSubclassDataFromValue() & ~HasMetadataBit;
684 }
685
686 Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
687 Instruction *InsertBefore = nullptr);
688 Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
689 BasicBlock *InsertAtEnd);
690
691private:
692 /// Create a copy of this instruction.
693 Instruction *cloneImpl() const;
694};
695
696inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) {
697 V->deleteValue();
698}
699
700} // end namespace llvm
701
702#endif // LLVM_IR_INSTRUCTION_H