blob: c691d445d19a8ca44432c4bce409369b3a026d76 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SelectionDAG class, and transitively defines the
11// SDNode class and subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_SELECTIONDAG_H
16#define LLVM_CODEGEN_SELECTIONDAG_H
17
18#include "llvm/ADT/APFloat.h"
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/DenseSet.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/SetVector.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringMap.h"
27#include "llvm/ADT/ilist.h"
28#include "llvm/ADT/iterator.h"
29#include "llvm/ADT/iterator_range.h"
30#include "llvm/Analysis/AliasAnalysis.h"
31#include "llvm/Analysis/DivergenceAnalysis.h"
32#include "llvm/CodeGen/DAGCombine.h"
33#include "llvm/CodeGen/FunctionLoweringInfo.h"
34#include "llvm/CodeGen/ISDOpcodes.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineMemOperand.h"
37#include "llvm/CodeGen/SelectionDAGNodes.h"
38#include "llvm/CodeGen/ValueTypes.h"
39#include "llvm/IR/DebugLoc.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/Metadata.h"
42#include "llvm/Support/Allocator.h"
43#include "llvm/Support/ArrayRecycler.h"
44#include "llvm/Support/AtomicOrdering.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/CodeGen.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/MachineValueType.h"
49#include "llvm/Support/RecyclingAllocator.h"
50#include <algorithm>
51#include <cassert>
52#include <cstdint>
53#include <functional>
54#include <map>
55#include <string>
56#include <tuple>
57#include <utility>
58#include <vector>
59
60namespace llvm {
61
62class BlockAddress;
63class Constant;
64class ConstantFP;
65class ConstantInt;
66class DataLayout;
67struct fltSemantics;
68class GlobalValue;
69struct KnownBits;
70class LLVMContext;
71class MachineBasicBlock;
72class MachineConstantPoolValue;
73class MCSymbol;
74class OptimizationRemarkEmitter;
75class SDDbgValue;
Andrew Scullcdfcccc2018-10-05 20:58:37 +010076class SDDbgLabel;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010077class SelectionDAG;
78class SelectionDAGTargetInfo;
79class TargetLibraryInfo;
80class TargetLowering;
81class TargetMachine;
82class TargetSubtargetInfo;
83class Value;
84
85class SDVTListNode : public FoldingSetNode {
86 friend struct FoldingSetTrait<SDVTListNode>;
87
88 /// A reference to an Interned FoldingSetNodeID for this node.
89 /// The Allocator in SelectionDAG holds the data.
90 /// SDVTList contains all types which are frequently accessed in SelectionDAG.
91 /// The size of this list is not expected to be big so it won't introduce
92 /// a memory penalty.
93 FoldingSetNodeIDRef FastID;
94 const EVT *VTs;
95 unsigned int NumVTs;
96 /// The hash value for SDVTList is fixed, so cache it to avoid
97 /// hash calculation.
98 unsigned HashValue;
99
100public:
101 SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
102 FastID(ID), VTs(VT), NumVTs(Num) {
103 HashValue = ID.ComputeHash();
104 }
105
106 SDVTList getSDVTList() {
107 SDVTList result = {VTs, NumVTs};
108 return result;
109 }
110};
111
112/// Specialize FoldingSetTrait for SDVTListNode
113/// to avoid computing temp FoldingSetNodeID and hash value.
114template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
115 static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
116 ID = X.FastID;
117 }
118
119 static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
120 unsigned IDHash, FoldingSetNodeID &TempID) {
121 if (X.HashValue != IDHash)
122 return false;
123 return ID == X.FastID;
124 }
125
126 static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
127 return X.HashValue;
128 }
129};
130
131template <> struct ilist_alloc_traits<SDNode> {
132 static void deleteNode(SDNode *) {
133 llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
134 }
135};
136
137/// Keeps track of dbg_value information through SDISel. We do
138/// not build SDNodes for these so as not to perturb the generated code;
139/// instead the info is kept off to the side in this structure. Each SDNode may
140/// have one or more associated dbg_value entries. This information is kept in
141/// DbgValMap.
142/// Byval parameters are handled separately because they don't use alloca's,
143/// which busts the normal mechanism. There is good reason for handling all
144/// parameters separately: they may not have code generated for them, they
145/// should always go at the beginning of the function regardless of other code
146/// motion, and debug info for them is potentially useful even if the parameter
147/// is unused. Right now only byval parameters are handled separately.
148class SDDbgInfo {
149 BumpPtrAllocator Alloc;
150 SmallVector<SDDbgValue*, 32> DbgValues;
151 SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100152 SmallVector<SDDbgLabel*, 4> DbgLabels;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100153 using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>;
154 DbgValMapType DbgValMap;
155
156public:
157 SDDbgInfo() = default;
158 SDDbgInfo(const SDDbgInfo &) = delete;
159 SDDbgInfo &operator=(const SDDbgInfo &) = delete;
160
161 void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
162 if (isParameter) {
163 ByvalParmDbgValues.push_back(V);
164 } else DbgValues.push_back(V);
165 if (Node)
166 DbgValMap[Node].push_back(V);
167 }
168
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100169 void add(SDDbgLabel *L) {
170 DbgLabels.push_back(L);
171 }
172
173 /// Invalidate all DbgValues attached to the node and remove
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100174 /// it from the Node-to-DbgValues map.
175 void erase(const SDNode *Node);
176
177 void clear() {
178 DbgValMap.clear();
179 DbgValues.clear();
180 ByvalParmDbgValues.clear();
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100181 DbgLabels.clear();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100182 Alloc.Reset();
183 }
184
185 BumpPtrAllocator &getAlloc() { return Alloc; }
186
187 bool empty() const {
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100188 return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100189 }
190
191 ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) {
192 DbgValMapType::iterator I = DbgValMap.find(Node);
193 if (I != DbgValMap.end())
194 return I->second;
195 return ArrayRef<SDDbgValue*>();
196 }
197
198 using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator;
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100199 using DbgLabelIterator = SmallVectorImpl<SDDbgLabel*>::iterator;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100200
201 DbgIterator DbgBegin() { return DbgValues.begin(); }
202 DbgIterator DbgEnd() { return DbgValues.end(); }
203 DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
204 DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); }
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100205 DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); }
206 DbgLabelIterator DbgLabelEnd() { return DbgLabels.end(); }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100207};
208
209void checkForCycles(const SelectionDAG *DAG, bool force = false);
210
211/// This is used to represent a portion of an LLVM function in a low-level
212/// Data Dependence DAG representation suitable for instruction selection.
213/// This DAG is constructed as the first step of instruction selection in order
214/// to allow implementation of machine specific optimizations
215/// and code simplifications.
216///
217/// The representation used by the SelectionDAG is a target-independent
218/// representation, which has some similarities to the GCC RTL representation,
219/// but is significantly more simple, powerful, and is a graph form instead of a
220/// linear form.
221///
222class SelectionDAG {
223 const TargetMachine &TM;
224 const SelectionDAGTargetInfo *TSI = nullptr;
225 const TargetLowering *TLI = nullptr;
226 const TargetLibraryInfo *LibInfo = nullptr;
227 MachineFunction *MF;
228 Pass *SDAGISelPass = nullptr;
229 LLVMContext *Context;
230 CodeGenOpt::Level OptLevel;
231
232 DivergenceAnalysis * DA = nullptr;
233 FunctionLoweringInfo * FLI = nullptr;
234
235 /// The function-level optimization remark emitter. Used to emit remarks
236 /// whenever manipulating the DAG.
237 OptimizationRemarkEmitter *ORE;
238
239 /// The starting token.
240 SDNode EntryNode;
241
242 /// The root of the entire DAG.
243 SDValue Root;
244
245 /// A linked list of nodes in the current DAG.
246 ilist<SDNode> AllNodes;
247
248 /// The AllocatorType for allocating SDNodes. We use
249 /// pool allocation with recycling.
250 using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode,
251 sizeof(LargestSDNode),
252 alignof(MostAlignedSDNode)>;
253
254 /// Pool allocation for nodes.
255 NodeAllocatorType NodeAllocator;
256
257 /// This structure is used to memoize nodes, automatically performing
258 /// CSE with existing nodes when a duplicate is requested.
259 FoldingSet<SDNode> CSEMap;
260
261 /// Pool allocation for machine-opcode SDNode operands.
262 BumpPtrAllocator OperandAllocator;
263 ArrayRecycler<SDUse> OperandRecycler;
264
265 /// Pool allocation for misc. objects that are created once per SelectionDAG.
266 BumpPtrAllocator Allocator;
267
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100268 /// Tracks dbg_value and dbg_label information through SDISel.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100269 SDDbgInfo *DbgInfo;
270
271 uint16_t NextPersistentId = 0;
272
273public:
274 /// Clients of various APIs that cause global effects on
275 /// the DAG can optionally implement this interface. This allows the clients
276 /// to handle the various sorts of updates that happen.
277 ///
278 /// A DAGUpdateListener automatically registers itself with DAG when it is
279 /// constructed, and removes itself when destroyed in RAII fashion.
280 struct DAGUpdateListener {
281 DAGUpdateListener *const Next;
282 SelectionDAG &DAG;
283
284 explicit DAGUpdateListener(SelectionDAG &D)
285 : Next(D.UpdateListeners), DAG(D) {
286 DAG.UpdateListeners = this;
287 }
288
289 virtual ~DAGUpdateListener() {
290 assert(DAG.UpdateListeners == this &&
291 "DAGUpdateListeners must be destroyed in LIFO order");
292 DAG.UpdateListeners = Next;
293 }
294
295 /// The node N that was deleted and, if E is not null, an
296 /// equivalent node E that replaced it.
297 virtual void NodeDeleted(SDNode *N, SDNode *E);
298
299 /// The node N that was updated.
300 virtual void NodeUpdated(SDNode *N);
301 };
302
303 struct DAGNodeDeletedListener : public DAGUpdateListener {
304 std::function<void(SDNode *, SDNode *)> Callback;
305
306 DAGNodeDeletedListener(SelectionDAG &DAG,
307 std::function<void(SDNode *, SDNode *)> Callback)
308 : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
309
310 void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
311 };
312
313 /// When true, additional steps are taken to
314 /// ensure that getConstant() and similar functions return DAG nodes that
315 /// have legal types. This is important after type legalization since
316 /// any illegally typed nodes generated after this point will not experience
317 /// type legalization.
318 bool NewNodesMustHaveLegalTypes = false;
319
320private:
321 /// DAGUpdateListener is a friend so it can manipulate the listener stack.
322 friend struct DAGUpdateListener;
323
324 /// Linked list of registered DAGUpdateListener instances.
325 /// This stack is maintained by DAGUpdateListener RAII.
326 DAGUpdateListener *UpdateListeners = nullptr;
327
328 /// Implementation of setSubgraphColor.
329 /// Return whether we had to truncate the search.
330 bool setSubgraphColorHelper(SDNode *N, const char *Color,
331 DenseSet<SDNode *> &visited,
332 int level, bool &printed);
333
334 template <typename SDNodeT, typename... ArgTypes>
335 SDNodeT *newSDNode(ArgTypes &&... Args) {
336 return new (NodeAllocator.template Allocate<SDNodeT>())
337 SDNodeT(std::forward<ArgTypes>(Args)...);
338 }
339
340 /// Build a synthetic SDNodeT with the given args and extract its subclass
341 /// data as an integer (e.g. for use in a folding set).
342 ///
343 /// The args to this function are the same as the args to SDNodeT's
344 /// constructor, except the second arg (assumed to be a const DebugLoc&) is
345 /// omitted.
346 template <typename SDNodeT, typename... ArgTypes>
347 static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
348 ArgTypes &&... Args) {
349 // The compiler can reduce this expression to a constant iff we pass an
350 // empty DebugLoc. Thankfully, the debug location doesn't have any bearing
351 // on the subclass data.
352 return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
353 .getRawSubclassData();
354 }
355
356 template <typename SDNodeTy>
357 static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
358 SDVTList VTs, EVT MemoryVT,
359 MachineMemOperand *MMO) {
360 return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
361 .getRawSubclassData();
362 }
363
364 void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
365
366 void removeOperands(SDNode *Node) {
367 if (!Node->OperandList)
368 return;
369 OperandRecycler.deallocate(
370 ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
371 Node->OperandList);
372 Node->NumOperands = 0;
373 Node->OperandList = nullptr;
374 }
375 void CreateTopologicalOrder(std::vector<SDNode*>& Order);
376public:
377 explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
378 SelectionDAG(const SelectionDAG &) = delete;
379 SelectionDAG &operator=(const SelectionDAG &) = delete;
380 ~SelectionDAG();
381
382 /// Prepare this SelectionDAG to process code in the given MachineFunction.
383 void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE,
384 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100385 DivergenceAnalysis * Divergence);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100386
387 void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) {
388 FLI = FuncInfo;
389 }
390
391 /// Clear state and free memory necessary to make this
392 /// SelectionDAG ready to process a new block.
393 void clear();
394
395 MachineFunction &getMachineFunction() const { return *MF; }
396 const Pass *getPass() const { return SDAGISelPass; }
397
398 const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
399 const TargetMachine &getTarget() const { return TM; }
400 const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
401 const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
402 const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
403 const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
404 LLVMContext *getContext() const {return Context; }
405 OptimizationRemarkEmitter &getORE() const { return *ORE; }
406
407 /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
408 void viewGraph(const std::string &Title);
409 void viewGraph();
410
411#ifndef NDEBUG
412 std::map<const SDNode *, std::string> NodeGraphAttrs;
413#endif
414
415 /// Clear all previously defined node graph attributes.
416 /// Intended to be used from a debugging tool (eg. gdb).
417 void clearGraphAttrs();
418
419 /// Set graph attributes for a node. (eg. "color=red".)
420 void setGraphAttrs(const SDNode *N, const char *Attrs);
421
422 /// Get graph attributes for a node. (eg. "color=red".)
423 /// Used from getNodeAttributes.
424 const std::string getGraphAttrs(const SDNode *N) const;
425
426 /// Convenience for setting node color attribute.
427 void setGraphColor(const SDNode *N, const char *Color);
428
429 /// Convenience for setting subgraph color attribute.
430 void setSubgraphColor(SDNode *N, const char *Color);
431
432 using allnodes_const_iterator = ilist<SDNode>::const_iterator;
433
434 allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
435 allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
436
437 using allnodes_iterator = ilist<SDNode>::iterator;
438
439 allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
440 allnodes_iterator allnodes_end() { return AllNodes.end(); }
441
442 ilist<SDNode>::size_type allnodes_size() const {
443 return AllNodes.size();
444 }
445
446 iterator_range<allnodes_iterator> allnodes() {
447 return make_range(allnodes_begin(), allnodes_end());
448 }
449 iterator_range<allnodes_const_iterator> allnodes() const {
450 return make_range(allnodes_begin(), allnodes_end());
451 }
452
453 /// Return the root tag of the SelectionDAG.
454 const SDValue &getRoot() const { return Root; }
455
456 /// Return the token chain corresponding to the entry of the function.
457 SDValue getEntryNode() const {
458 return SDValue(const_cast<SDNode *>(&EntryNode), 0);
459 }
460
461 /// Set the current root tag of the SelectionDAG.
462 ///
463 const SDValue &setRoot(SDValue N) {
464 assert((!N.getNode() || N.getValueType() == MVT::Other) &&
465 "DAG root value is not a chain!");
466 if (N.getNode())
467 checkForCycles(N.getNode(), this);
468 Root = N;
469 if (N.getNode())
470 checkForCycles(this);
471 return Root;
472 }
473
474 void VerifyDAGDiverence();
475
476 /// This iterates over the nodes in the SelectionDAG, folding
477 /// certain types of nodes together, or eliminating superfluous nodes. The
478 /// Level argument controls whether Combine is allowed to produce nodes and
479 /// types that are illegal on the target.
480 void Combine(CombineLevel Level, AliasAnalysis *AA,
481 CodeGenOpt::Level OptLevel);
482
483 /// This transforms the SelectionDAG into a SelectionDAG that
484 /// only uses types natively supported by the target.
485 /// Returns "true" if it made any changes.
486 ///
487 /// Note that this is an involved process that may invalidate pointers into
488 /// the graph.
489 bool LegalizeTypes();
490
491 /// This transforms the SelectionDAG into a SelectionDAG that is
492 /// compatible with the target instruction selector, as indicated by the
493 /// TargetLowering object.
494 ///
495 /// Note that this is an involved process that may invalidate pointers into
496 /// the graph.
497 void Legalize();
498
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100499 /// Transforms a SelectionDAG node and any operands to it into a node
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100500 /// that is compatible with the target instruction selector, as indicated by
501 /// the TargetLowering object.
502 ///
503 /// \returns true if \c N is a valid, legal node after calling this.
504 ///
505 /// This essentially runs a single recursive walk of the \c Legalize process
506 /// over the given node (and its operands). This can be used to incrementally
507 /// legalize the DAG. All of the nodes which are directly replaced,
508 /// potentially including N, are added to the output parameter \c
509 /// UpdatedNodes so that the delta to the DAG can be understood by the
510 /// caller.
511 ///
512 /// When this returns false, N has been legalized in a way that make the
513 /// pointer passed in no longer valid. It may have even been deleted from the
514 /// DAG, and so it shouldn't be used further. When this returns true, the
515 /// N passed in is a legal node, and can be immediately processed as such.
516 /// This may still have done some work on the DAG, and will still populate
517 /// UpdatedNodes with any new nodes replacing those originally in the DAG.
518 bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
519
520 /// This transforms the SelectionDAG into a SelectionDAG
521 /// that only uses vector math operations supported by the target. This is
522 /// necessary as a separate step from Legalize because unrolling a vector
523 /// operation can introduce illegal types, which requires running
524 /// LegalizeTypes again.
525 ///
526 /// This returns true if it made any changes; in that case, LegalizeTypes
527 /// is called again before Legalize.
528 ///
529 /// Note that this is an involved process that may invalidate pointers into
530 /// the graph.
531 bool LegalizeVectors();
532
533 /// This method deletes all unreachable nodes in the SelectionDAG.
534 void RemoveDeadNodes();
535
536 /// Remove the specified node from the system. This node must
537 /// have no referrers.
538 void DeleteNode(SDNode *N);
539
540 /// Return an SDVTList that represents the list of values specified.
541 SDVTList getVTList(EVT VT);
542 SDVTList getVTList(EVT VT1, EVT VT2);
543 SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
544 SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
545 SDVTList getVTList(ArrayRef<EVT> VTs);
546
547 //===--------------------------------------------------------------------===//
548 // Node creation methods.
549
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100550 /// Create a ConstantSDNode wrapping a constant value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100551 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
552 ///
553 /// If only legal types can be produced, this does the necessary
554 /// transformations (e.g., if the vector element type is illegal).
555 /// @{
556 SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
557 bool isTarget = false, bool isOpaque = false);
558 SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
559 bool isTarget = false, bool isOpaque = false);
560
561 SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
562 bool IsOpaque = false) {
563 return getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL,
564 VT, IsTarget, IsOpaque);
565 }
566
567 SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
568 bool isTarget = false, bool isOpaque = false);
569 SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
570 bool isTarget = false);
571 SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
572 bool isOpaque = false) {
573 return getConstant(Val, DL, VT, true, isOpaque);
574 }
575 SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
576 bool isOpaque = false) {
577 return getConstant(Val, DL, VT, true, isOpaque);
578 }
579 SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
580 bool isOpaque = false) {
581 return getConstant(Val, DL, VT, true, isOpaque);
582 }
583
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100584 /// Create a true or false constant of type \p VT using the target's
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100585 /// BooleanContent for type \p OpVT.
586 SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
587 /// @}
588
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100589 /// Create a ConstantFPSDNode wrapping a constant value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100590 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
591 ///
592 /// If only legal types can be produced, this does the necessary
593 /// transformations (e.g., if the vector element type is illegal).
594 /// The forms that take a double should only be used for simple constants
595 /// that can be exactly represented in VT. No checks are made.
596 /// @{
597 SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
598 bool isTarget = false);
599 SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
600 bool isTarget = false);
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100601 SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100602 bool isTarget = false);
603 SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
604 return getConstantFP(Val, DL, VT, true);
605 }
606 SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
607 return getConstantFP(Val, DL, VT, true);
608 }
609 SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
610 return getConstantFP(Val, DL, VT, true);
611 }
612 /// @}
613
614 SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
615 int64_t offset = 0, bool isTargetGA = false,
616 unsigned char TargetFlags = 0);
617 SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
618 int64_t offset = 0,
619 unsigned char TargetFlags = 0) {
620 return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
621 }
622 SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
623 SDValue getTargetFrameIndex(int FI, EVT VT) {
624 return getFrameIndex(FI, VT, true);
625 }
626 SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
627 unsigned char TargetFlags = 0);
628 SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) {
629 return getJumpTable(JTI, VT, true, TargetFlags);
630 }
631 SDValue getConstantPool(const Constant *C, EVT VT,
632 unsigned Align = 0, int Offs = 0, bool isT=false,
633 unsigned char TargetFlags = 0);
634 SDValue getTargetConstantPool(const Constant *C, EVT VT,
635 unsigned Align = 0, int Offset = 0,
636 unsigned char TargetFlags = 0) {
637 return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
638 }
639 SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
640 unsigned Align = 0, int Offs = 0, bool isT=false,
641 unsigned char TargetFlags = 0);
642 SDValue getTargetConstantPool(MachineConstantPoolValue *C,
643 EVT VT, unsigned Align = 0,
644 int Offset = 0, unsigned char TargetFlags=0) {
645 return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
646 }
647 SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
648 unsigned char TargetFlags = 0);
649 // When generating a branch to a BB, we don't in general know enough
650 // to provide debug info for the BB at that time, so keep this one around.
651 SDValue getBasicBlock(MachineBasicBlock *MBB);
652 SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
653 SDValue getExternalSymbol(const char *Sym, EVT VT);
654 SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
655 SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
656 unsigned char TargetFlags = 0);
657 SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
658
659 SDValue getValueType(EVT);
660 SDValue getRegister(unsigned Reg, EVT VT);
661 SDValue getRegisterMask(const uint32_t *RegMask);
662 SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
663 SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
664 MCSymbol *Label);
665 SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
666 int64_t Offset = 0, bool isTarget = false,
667 unsigned char TargetFlags = 0);
668 SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
669 int64_t Offset = 0,
670 unsigned char TargetFlags = 0) {
671 return getBlockAddress(BA, VT, Offset, true, TargetFlags);
672 }
673
674 SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
675 SDValue N) {
676 return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
677 getRegister(Reg, N.getValueType()), N);
678 }
679
680 // This version of the getCopyToReg method takes an extra operand, which
681 // indicates that there is potentially an incoming glue value (if Glue is not
682 // null) and that there should be a glue result.
683 SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
684 SDValue Glue) {
685 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
686 SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
687 return getNode(ISD::CopyToReg, dl, VTs,
688 makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
689 }
690
691 // Similar to last getCopyToReg() except parameter Reg is a SDValue
692 SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
693 SDValue Glue) {
694 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
695 SDValue Ops[] = { Chain, Reg, N, Glue };
696 return getNode(ISD::CopyToReg, dl, VTs,
697 makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
698 }
699
700 SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
701 SDVTList VTs = getVTList(VT, MVT::Other);
702 SDValue Ops[] = { Chain, getRegister(Reg, VT) };
703 return getNode(ISD::CopyFromReg, dl, VTs, Ops);
704 }
705
706 // This version of the getCopyFromReg method takes an extra operand, which
707 // indicates that there is potentially an incoming glue value (if Glue is not
708 // null) and that there should be a glue result.
709 SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
710 SDValue Glue) {
711 SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
712 SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
713 return getNode(ISD::CopyFromReg, dl, VTs,
714 makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
715 }
716
717 SDValue getCondCode(ISD::CondCode Cond);
718
719 /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
720 /// which must be a vector type, must match the number of mask elements
721 /// NumElts. An integer mask element equal to -1 is treated as undefined.
722 SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
723 ArrayRef<int> Mask);
724
725 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
726 /// which must be a vector type, must match the number of operands in Ops.
727 /// The operands must have the same type as (or, for integers, a type wider
728 /// than) VT's element type.
729 SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
730 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
731 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
732 }
733
734 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
735 /// which must be a vector type, must match the number of operands in Ops.
736 /// The operands must have the same type as (or, for integers, a type wider
737 /// than) VT's element type.
738 SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) {
739 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
740 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
741 }
742
743 /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
744 /// elements. VT must be a vector type. Op's type must be the same as (or,
745 /// for integers, a type wider than) VT's element type.
746 SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
747 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
748 if (Op.getOpcode() == ISD::UNDEF) {
749 assert((VT.getVectorElementType() == Op.getValueType() ||
750 (VT.isInteger() &&
751 VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
752 "A splatted value must have a width equal or (for integers) "
753 "greater than the vector element type!");
754 return getNode(ISD::UNDEF, SDLoc(), VT);
755 }
756
757 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
758 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
759 }
760
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100761 /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100762 /// the shuffle node in input but with swapped operands.
763 ///
764 /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
765 SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
766
767 /// Convert Op, which must be of float type, to the
768 /// float type VT, by either extending or rounding (by truncation).
769 SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
770
771 /// Convert Op, which must be of integer type, to the
772 /// integer type VT, by either any-extending or truncating it.
773 SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
774
775 /// Convert Op, which must be of integer type, to the
776 /// integer type VT, by either sign-extending or truncating it.
777 SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
778
779 /// Convert Op, which must be of integer type, to the
780 /// integer type VT, by either zero-extending or truncating it.
781 SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
782
783 /// Return the expression required to zero extend the Op
784 /// value assuming it was the smaller SrcTy value.
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100785 SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100786
787 /// Return an operation which will any-extend the low lanes of the operand
788 /// into the specified vector type. For example,
789 /// this can convert a v16i8 into a v4i32 by any-extending the low four
790 /// lanes of the operand from i8 to i32.
791 SDValue getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
792
793 /// Return an operation which will sign extend the low lanes of the operand
794 /// into the specified vector type. For example,
795 /// this can convert a v16i8 into a v4i32 by sign extending the low four
796 /// lanes of the operand from i8 to i32.
797 SDValue getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
798
799 /// Return an operation which will zero extend the low lanes of the operand
800 /// into the specified vector type. For example,
801 /// this can convert a v16i8 into a v4i32 by zero extending the low four
802 /// lanes of the operand from i8 to i32.
803 SDValue getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
804
805 /// Convert Op, which must be of integer type, to the integer type VT,
806 /// by using an extension appropriate for the target's
807 /// BooleanContent for type OpVT or truncating it.
808 SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
809
810 /// Create a bitwise NOT operation as (XOR Val, -1).
811 SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
812
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100813 /// Create a logical NOT operation as (XOR Val, BooleanOne).
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100814 SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
815
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100816 /// Create an add instruction with appropriate flags when used for
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100817 /// addressing some offset of an object. i.e. if a load is split into multiple
818 /// components, create an add nuw from the base pointer to the offset.
819 SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset) {
820 EVT VT = Op.getValueType();
821 return getObjectPtrOffset(SL, Op, getConstant(Offset, SL, VT));
822 }
823
824 SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, SDValue Offset) {
825 EVT VT = Op.getValueType();
826
827 // The object itself can't wrap around the address space, so it shouldn't be
828 // possible for the adds of the offsets to the split parts to overflow.
829 SDNodeFlags Flags;
830 Flags.setNoUnsignedWrap(true);
831 return getNode(ISD::ADD, SL, VT, Op, Offset, Flags);
832 }
833
834 /// Return a new CALLSEQ_START node, that starts new call frame, in which
835 /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
836 /// OutSize specifies part of the frame set up prior to the sequence.
837 SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
838 const SDLoc &DL) {
839 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
840 SDValue Ops[] = { Chain,
841 getIntPtrConstant(InSize, DL, true),
842 getIntPtrConstant(OutSize, DL, true) };
843 return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
844 }
845
846 /// Return a new CALLSEQ_END node, which always must have a
847 /// glue result (to ensure it's not CSE'd).
848 /// CALLSEQ_END does not have a useful SDLoc.
849 SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
850 SDValue InGlue, const SDLoc &DL) {
851 SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
852 SmallVector<SDValue, 4> Ops;
853 Ops.push_back(Chain);
854 Ops.push_back(Op1);
855 Ops.push_back(Op2);
856 if (InGlue.getNode())
857 Ops.push_back(InGlue);
858 return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
859 }
860
861 /// Return true if the result of this operation is always undefined.
862 bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
863
864 /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
865 SDValue getUNDEF(EVT VT) {
866 return getNode(ISD::UNDEF, SDLoc(), VT);
867 }
868
869 /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
870 SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
871 return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
872 }
873
874 /// Gets or creates the specified node.
875 ///
876 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
877 ArrayRef<SDUse> Ops);
878 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
879 ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags());
880 SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
881 ArrayRef<SDValue> Ops);
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100882 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100883 ArrayRef<SDValue> Ops);
884
885 // Specialize based on number of operands.
886 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100887 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100888 const SDNodeFlags Flags = SDNodeFlags());
889 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
890 SDValue N2, const SDNodeFlags Flags = SDNodeFlags());
891 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100892 SDValue N2, SDValue N3,
893 const SDNodeFlags Flags = SDNodeFlags());
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100894 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
895 SDValue N2, SDValue N3, SDValue N4);
896 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
897 SDValue N2, SDValue N3, SDValue N4, SDValue N5);
898
899 // Specialize again based on number of operands for nodes with a VTList
900 // rather than a single VT.
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100901 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList);
902 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N);
903 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100904 SDValue N2);
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100905 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100906 SDValue N2, SDValue N3);
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100907 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100908 SDValue N2, SDValue N3, SDValue N4);
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100909 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100910 SDValue N2, SDValue N3, SDValue N4, SDValue N5);
911
912 /// Compute a TokenFactor to force all the incoming stack arguments to be
913 /// loaded from the stack. This is used in tail call lowering to protect
914 /// stack arguments from being clobbered.
915 SDValue getStackArgumentTokenFactor(SDValue Chain);
916
917 SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
918 SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
919 bool isTailCall, MachinePointerInfo DstPtrInfo,
920 MachinePointerInfo SrcPtrInfo);
921
922 SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
923 SDValue Size, unsigned Align, bool isVol, bool isTailCall,
924 MachinePointerInfo DstPtrInfo,
925 MachinePointerInfo SrcPtrInfo);
926
927 SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
928 SDValue Size, unsigned Align, bool isVol, bool isTailCall,
929 MachinePointerInfo DstPtrInfo);
930
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100931 SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
932 unsigned DstAlign, SDValue Src, unsigned SrcAlign,
933 SDValue Size, Type *SizeTy, unsigned ElemSz,
934 bool isTailCall, MachinePointerInfo DstPtrInfo,
935 MachinePointerInfo SrcPtrInfo);
936
937 SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
938 unsigned DstAlign, SDValue Src, unsigned SrcAlign,
939 SDValue Size, Type *SizeTy, unsigned ElemSz,
940 bool isTailCall, MachinePointerInfo DstPtrInfo,
941 MachinePointerInfo SrcPtrInfo);
942
943 SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
944 unsigned DstAlign, SDValue Value, SDValue Size,
945 Type *SizeTy, unsigned ElemSz, bool isTailCall,
946 MachinePointerInfo DstPtrInfo);
947
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100948 /// Helper function to make it easier to build SetCC's if you just
949 /// have an ISD::CondCode instead of an SDValue.
950 ///
951 SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
952 ISD::CondCode Cond) {
953 assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
954 "Cannot compare scalars to vectors");
955 assert(LHS.getValueType().isVector() == VT.isVector() &&
956 "Cannot compare scalars to vectors");
957 assert(Cond != ISD::SETCC_INVALID &&
958 "Cannot create a setCC of an invalid node.");
959 return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
960 }
961
962 /// Helper function to make it easier to build Select's if you just
963 /// have operands and don't want to check for vector.
964 SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
965 SDValue RHS) {
966 assert(LHS.getValueType() == RHS.getValueType() &&
967 "Cannot use select on differing types");
968 assert(VT.isVector() == LHS.getValueType().isVector() &&
969 "Cannot mix vectors and scalars");
970 return getNode(Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
971 Cond, LHS, RHS);
972 }
973
974 /// Helper function to make it easier to build SelectCC's if you
975 /// just have an ISD::CondCode instead of an SDValue.
976 ///
977 SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
978 SDValue False, ISD::CondCode Cond) {
979 return getNode(ISD::SELECT_CC, DL, True.getValueType(),
980 LHS, RHS, True, False, getCondCode(Cond));
981 }
982
983 /// VAArg produces a result and token chain, and takes a pointer
984 /// and a source value as input.
985 SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
986 SDValue SV, unsigned Align);
987
988 /// Gets a node for an atomic cmpxchg op. There are two
989 /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
990 /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
991 /// a success flag (initially i1), and a chain.
992 SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
993 SDVTList VTs, SDValue Chain, SDValue Ptr,
994 SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
995 unsigned Alignment, AtomicOrdering SuccessOrdering,
996 AtomicOrdering FailureOrdering,
997 SyncScope::ID SSID);
998 SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
999 SDVTList VTs, SDValue Chain, SDValue Ptr,
1000 SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
1001
1002 /// Gets a node for an atomic op, produces result (if relevant)
1003 /// and chain and takes 2 operands.
1004 SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
1005 SDValue Ptr, SDValue Val, const Value *PtrVal,
1006 unsigned Alignment, AtomicOrdering Ordering,
1007 SyncScope::ID SSID);
1008 SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
1009 SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
1010
1011 /// Gets a node for an atomic op, produces result and chain and
1012 /// takes 1 operand.
1013 SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
1014 SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
1015
1016 /// Gets a node for an atomic op, produces result and chain and takes N
1017 /// operands.
1018 SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1019 SDVTList VTList, ArrayRef<SDValue> Ops,
1020 MachineMemOperand *MMO);
1021
1022 /// Creates a MemIntrinsicNode that may produce a
1023 /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1024 /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
1025 /// less than FIRST_TARGET_MEMORY_OPCODE.
1026 SDValue getMemIntrinsicNode(
1027 unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1028 ArrayRef<SDValue> Ops, EVT MemVT,
1029 MachinePointerInfo PtrInfo,
1030 unsigned Align = 0,
1031 MachineMemOperand::Flags Flags
1032 = MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
1033 unsigned Size = 0);
1034
1035 SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1036 ArrayRef<SDValue> Ops, EVT MemVT,
1037 MachineMemOperand *MMO);
1038
1039 /// Create a MERGE_VALUES node from the given operands.
1040 SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
1041
1042 /// Loads are not normal binary operators: their result type is not
1043 /// determined by their operands, and they produce a value AND a token chain.
1044 ///
1045 /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1046 /// you want. The MOStore flag must not be set.
1047 SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1048 MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1049 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1050 const AAMDNodes &AAInfo = AAMDNodes(),
1051 const MDNode *Ranges = nullptr);
1052 SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1053 MachineMemOperand *MMO);
1054 SDValue
1055 getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
1056 SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
1057 unsigned Alignment = 0,
1058 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1059 const AAMDNodes &AAInfo = AAMDNodes());
1060 SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1061 SDValue Chain, SDValue Ptr, EVT MemVT,
1062 MachineMemOperand *MMO);
1063 SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1064 SDValue Offset, ISD::MemIndexedMode AM);
1065 SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1066 const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1067 MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
1068 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1069 const AAMDNodes &AAInfo = AAMDNodes(),
1070 const MDNode *Ranges = nullptr);
1071 SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1072 const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1073 EVT MemVT, MachineMemOperand *MMO);
1074
1075 /// Helper function to build ISD::STORE nodes.
1076 ///
1077 /// This function will set the MOStore flag on MMOFlags, but you can set it if
1078 /// you want. The MOLoad and MOInvariant flags must not be set.
1079 SDValue
1080 getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1081 MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1082 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1083 const AAMDNodes &AAInfo = AAMDNodes());
1084 SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1085 MachineMemOperand *MMO);
1086 SDValue
1087 getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001088 MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment = 0,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001089 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1090 const AAMDNodes &AAInfo = AAMDNodes());
1091 SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001092 SDValue Ptr, EVT SVT, MachineMemOperand *MMO);
1093 SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001094 SDValue Offset, ISD::MemIndexedMode AM);
1095
1096 /// Returns sum of the base pointer and offset.
1097 SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
1098
1099 SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1100 SDValue Mask, SDValue Src0, EVT MemVT,
1101 MachineMemOperand *MMO, ISD::LoadExtType,
1102 bool IsExpanding = false);
1103 SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1104 SDValue Ptr, SDValue Mask, EVT MemVT,
1105 MachineMemOperand *MMO, bool IsTruncating = false,
1106 bool IsCompressing = false);
1107 SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
1108 ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
1109 SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
1110 ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
1111
1112 /// Return (create a new or find existing) a target-specific node.
1113 /// TargetMemSDNode should be derived class from MemSDNode.
1114 template <class TargetMemSDNode>
1115 SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
1116 const SDLoc &dl, EVT MemVT,
1117 MachineMemOperand *MMO);
1118
1119 /// Construct a node to track a Value* through the backend.
1120 SDValue getSrcValue(const Value *v);
1121
1122 /// Return an MDNodeSDNode which holds an MDNode.
1123 SDValue getMDNode(const MDNode *MD);
1124
1125 /// Return a bitcast using the SDLoc of the value operand, and casting to the
1126 /// provided type. Use getNode to set a custom SDLoc.
1127 SDValue getBitcast(EVT VT, SDValue V);
1128
1129 /// Return an AddrSpaceCastSDNode.
1130 SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
1131 unsigned DestAS);
1132
1133 /// Return the specified value casted to
1134 /// the target's desired shift amount type.
1135 SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
1136
1137 /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1138 SDValue expandVAArg(SDNode *Node);
1139
1140 /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1141 SDValue expandVACopy(SDNode *Node);
1142
1143 /// *Mutate* the specified node in-place to have the
1144 /// specified operands. If the resultant node already exists in the DAG,
1145 /// this does not modify the specified node, instead it returns the node that
1146 /// already exists. If the resultant node does not exist in the DAG, the
1147 /// input node is returned. As a degenerate case, if you specify the same
1148 /// input operands as the node already has, the input node is returned.
1149 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
1150 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
1151 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1152 SDValue Op3);
1153 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1154 SDValue Op3, SDValue Op4);
1155 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1156 SDValue Op3, SDValue Op4, SDValue Op5);
1157 SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
1158
1159 // Propagates the change in divergence to users
1160 void updateDivergence(SDNode * N);
1161
1162 /// These are used for target selectors to *mutate* the
1163 /// specified node to have the specified return type, Target opcode, and
1164 /// operands. Note that target opcodes are stored as
1165 /// ~TargetOpcode in the node opcode field. The resultant node is returned.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001166 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT);
1167 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1);
1168 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001169 SDValue Op1, SDValue Op2);
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001170 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001171 SDValue Op1, SDValue Op2, SDValue Op3);
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001172 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001173 ArrayRef<SDValue> Ops);
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001174 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2);
1175 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001176 EVT VT2, ArrayRef<SDValue> Ops);
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001177 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001178 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1179 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1180 EVT VT2, SDValue Op1);
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001181 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001182 EVT VT2, SDValue Op1, SDValue Op2);
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001183 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001184 ArrayRef<SDValue> Ops);
1185
1186 /// This *mutates* the specified node to have the specified
1187 /// return type, opcode, and operands.
1188 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
1189 ArrayRef<SDValue> Ops);
1190
1191 /// Mutate the specified strict FP node to its non-strict equivalent,
1192 /// unlinking the node from its chain and dropping the metadata arguments.
1193 /// The node must be a strict FP node.
1194 SDNode *mutateStrictFPToFP(SDNode *Node);
1195
1196 /// These are used for target selectors to create a new node
1197 /// with specified return type(s), MachineInstr opcode, and operands.
1198 ///
1199 /// Note that getMachineNode returns the resultant node. If there is already
1200 /// a node of the specified opcode and operands, it returns that node instead
1201 /// of the current one.
1202 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
1203 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1204 SDValue Op1);
1205 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1206 SDValue Op1, SDValue Op2);
1207 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1208 SDValue Op1, SDValue Op2, SDValue Op3);
1209 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1210 ArrayRef<SDValue> Ops);
1211 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1212 EVT VT2, SDValue Op1, SDValue Op2);
1213 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1214 EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
1215 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1216 EVT VT2, ArrayRef<SDValue> Ops);
1217 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1218 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
1219 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1220 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
1221 SDValue Op3);
1222 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1223 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1224 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1225 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
1226 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
1227 ArrayRef<SDValue> Ops);
1228
1229 /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1230 SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1231 SDValue Operand);
1232
1233 /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1234 SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1235 SDValue Operand, SDValue Subreg);
1236
1237 /// Get the specified node if it's already available, or else return NULL.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001238 SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001239 const SDNodeFlags Flags = SDNodeFlags());
1240
1241 /// Creates a SDDbgValue node.
1242 SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N,
1243 unsigned R, bool IsIndirect, const DebugLoc &DL,
1244 unsigned O);
1245
1246 /// Creates a constant SDDbgValue node.
1247 SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr,
1248 const Value *C, const DebugLoc &DL,
1249 unsigned O);
1250
1251 /// Creates a FrameIndex SDDbgValue node.
1252 SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001253 unsigned FI, bool IsIndirect,
1254 const DebugLoc &DL, unsigned O);
1255
1256 /// Creates a VReg SDDbgValue node.
1257 SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
1258 unsigned VReg, bool IsIndirect,
1259 const DebugLoc &DL, unsigned O);
1260
1261 /// Creates a SDDbgLabel node.
1262 SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001263
1264 /// Transfer debug values from one node to another, while optionally
1265 /// generating fragment expressions for split-up values. If \p InvalidateDbg
1266 /// is set, debug values are invalidated after they are transferred.
1267 void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0,
1268 unsigned SizeInBits = 0, bool InvalidateDbg = true);
1269
1270 /// Remove the specified node from the system. If any of its
1271 /// operands then becomes dead, remove them as well. Inform UpdateListener
1272 /// for each node deleted.
1273 void RemoveDeadNode(SDNode *N);
1274
1275 /// This method deletes the unreachable nodes in the
1276 /// given list, and any nodes that become unreachable as a result.
1277 void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
1278
1279 /// Modify anything using 'From' to use 'To' instead.
1280 /// This can cause recursive merging of nodes in the DAG. Use the first
1281 /// version if 'From' is known to have a single result, use the second
1282 /// if you have two nodes with identical results (or if 'To' has a superset
1283 /// of the results of 'From'), use the third otherwise.
1284 ///
1285 /// These methods all take an optional UpdateListener, which (if not null) is
1286 /// informed about nodes that are deleted and modified due to recursive
1287 /// changes in the dag.
1288 ///
1289 /// These functions only replace all existing uses. It's possible that as
1290 /// these replacements are being performed, CSE may cause the From node
1291 /// to be given new uses. These new uses of From are left in place, and
1292 /// not automatically transferred to To.
1293 ///
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001294 void ReplaceAllUsesWith(SDValue From, SDValue To);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001295 void ReplaceAllUsesWith(SDNode *From, SDNode *To);
1296 void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
1297
1298 /// Replace any uses of From with To, leaving
1299 /// uses of other values produced by From.getNode() alone.
1300 void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
1301
1302 /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1303 /// This correctly handles the case where
1304 /// there is an overlap between the From values and the To values.
1305 void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
1306 unsigned Num);
1307
1308 /// If an existing load has uses of its chain, create a token factor node with
1309 /// that chain and the new memory node's chain and update users of the old
1310 /// chain to the token factor. This ensures that the new memory node will have
1311 /// the same relative memory dependency position as the old load. Returns the
1312 /// new merged load chain.
1313 SDValue makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New);
1314
1315 /// Topological-sort the AllNodes list and a
1316 /// assign a unique node id for each node in the DAG based on their
1317 /// topological order. Returns the number of nodes.
1318 unsigned AssignTopologicalOrder();
1319
1320 /// Move node N in the AllNodes list to be immediately
1321 /// before the given iterator Position. This may be used to update the
1322 /// topological ordering when the list of nodes is modified.
1323 void RepositionNode(allnodes_iterator Position, SDNode *N) {
1324 AllNodes.insert(Position, AllNodes.remove(N));
1325 }
1326
1327 /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1328 /// a vector type, the element semantics are returned.
1329 static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
1330 switch (VT.getScalarType().getSimpleVT().SimpleTy) {
1331 default: llvm_unreachable("Unknown FP format");
1332 case MVT::f16: return APFloat::IEEEhalf();
1333 case MVT::f32: return APFloat::IEEEsingle();
1334 case MVT::f64: return APFloat::IEEEdouble();
1335 case MVT::f80: return APFloat::x87DoubleExtended();
1336 case MVT::f128: return APFloat::IEEEquad();
1337 case MVT::ppcf128: return APFloat::PPCDoubleDouble();
1338 }
1339 }
1340
1341 /// Add a dbg_value SDNode. If SD is non-null that means the
1342 /// value is produced by SD.
1343 void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
1344
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001345 /// Add a dbg_label SDNode.
1346 void AddDbgLabel(SDDbgLabel *DB);
1347
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001348 /// Get the debug values which reference the given SDNode.
1349 ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) {
1350 return DbgInfo->getSDDbgValues(SD);
1351 }
1352
1353public:
1354 /// Return true if there are any SDDbgValue nodes associated
1355 /// with this SelectionDAG.
1356 bool hasDebugValues() const { return !DbgInfo->empty(); }
1357
1358 SDDbgInfo::DbgIterator DbgBegin() { return DbgInfo->DbgBegin(); }
1359 SDDbgInfo::DbgIterator DbgEnd() { return DbgInfo->DbgEnd(); }
1360
1361 SDDbgInfo::DbgIterator ByvalParmDbgBegin() {
1362 return DbgInfo->ByvalParmDbgBegin();
1363 }
1364
1365 SDDbgInfo::DbgIterator ByvalParmDbgEnd() {
1366 return DbgInfo->ByvalParmDbgEnd();
1367 }
1368
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001369 SDDbgInfo::DbgLabelIterator DbgLabelBegin() {
1370 return DbgInfo->DbgLabelBegin();
1371 }
1372 SDDbgInfo::DbgLabelIterator DbgLabelEnd() {
1373 return DbgInfo->DbgLabelEnd();
1374 }
1375
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001376 /// To be invoked on an SDNode that is slated to be erased. This
1377 /// function mirrors \c llvm::salvageDebugInfo.
1378 void salvageDebugInfo(SDNode &N);
1379
1380 void dump() const;
1381
1382 /// Create a stack temporary, suitable for holding the specified value type.
1383 /// If minAlign is specified, the slot size will have at least that alignment.
1384 SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
1385
1386 /// Create a stack temporary suitable for holding either of the specified
1387 /// value types.
1388 SDValue CreateStackTemporary(EVT VT1, EVT VT2);
1389
1390 SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
1391 const GlobalAddressSDNode *GA,
1392 const SDNode *N2);
1393
1394 SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1395 SDNode *Cst1, SDNode *Cst2);
1396
1397 SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1398 const ConstantSDNode *Cst1,
1399 const ConstantSDNode *Cst2);
1400
1401 SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1402 ArrayRef<SDValue> Ops,
1403 const SDNodeFlags Flags = SDNodeFlags());
1404
1405 /// Constant fold a setcc to true or false.
1406 SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
1407 const SDLoc &dl);
1408
1409 /// See if the specified operand can be simplified with the knowledge that only
1410 /// the bits specified by Mask are used. If so, return the simpler operand,
1411 /// otherwise return a null SDValue.
1412 ///
1413 /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1414 /// simplify nodes with multiple uses more aggressively.)
1415 SDValue GetDemandedBits(SDValue V, const APInt &Mask);
1416
1417 /// Return true if the sign bit of Op is known to be zero.
1418 /// We use this predicate to simplify operations downstream.
1419 bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
1420
1421 /// Return true if 'Op & Mask' is known to be zero. We
1422 /// use this predicate to simplify operations downstream. Op and Mask are
1423 /// known to be the same type.
1424 bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
1425 const;
1426
1427 /// Determine which bits of Op are known to be either zero or one and return
1428 /// them in Known. For vectors, the known bits are those that are shared by
1429 /// every vector element.
1430 /// Targets can implement the computeKnownBitsForTargetNode method in the
1431 /// TargetLowering class to allow target nodes to be understood.
1432 void computeKnownBits(SDValue Op, KnownBits &Known, unsigned Depth = 0) const;
1433
1434 /// Determine which bits of Op are known to be either zero or one and return
1435 /// them in Known. The DemandedElts argument allows us to only collect the
1436 /// known bits that are shared by the requested vector elements.
1437 /// Targets can implement the computeKnownBitsForTargetNode method in the
1438 /// TargetLowering class to allow target nodes to be understood.
1439 void computeKnownBits(SDValue Op, KnownBits &Known, const APInt &DemandedElts,
1440 unsigned Depth = 0) const;
1441
1442 /// Used to represent the possible overflow behavior of an operation.
1443 /// Never: the operation cannot overflow.
1444 /// Always: the operation will always overflow.
1445 /// Sometime: the operation may or may not overflow.
1446 enum OverflowKind {
1447 OFK_Never,
1448 OFK_Sometime,
1449 OFK_Always,
1450 };
1451
1452 /// Determine if the result of the addition of 2 node can overflow.
1453 OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
1454
1455 /// Test if the given value is known to have exactly one bit set. This differs
1456 /// from computeKnownBits in that it doesn't necessarily determine which bit
1457 /// is set.
1458 bool isKnownToBeAPowerOfTwo(SDValue Val) const;
1459
1460 /// Return the number of times the sign bit of the register is replicated into
1461 /// the other bits. We know that at least 1 bit is always equal to the sign
1462 /// bit (itself), but other cases can give us information. For example,
1463 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1464 /// to each other, so we return 3. Targets can implement the
1465 /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
1466 /// target nodes to be understood.
1467 unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
1468
1469 /// Return the number of times the sign bit of the register is replicated into
1470 /// the other bits. We know that at least 1 bit is always equal to the sign
1471 /// bit (itself), but other cases can give us information. For example,
1472 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1473 /// to each other, so we return 3. The DemandedElts argument allows
1474 /// us to only collect the minimum sign bits of the requested vector elements.
1475 /// Targets can implement the ComputeNumSignBitsForTarget method in the
1476 /// TargetLowering class to allow target nodes to be understood.
1477 unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
1478 unsigned Depth = 0) const;
1479
1480 /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
1481 /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
1482 /// is guaranteed to have the same semantics as an ADD. This handles the
1483 /// equivalence:
1484 /// X|Cst == X+Cst iff X&Cst = 0.
1485 bool isBaseWithConstantOffset(SDValue Op) const;
1486
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001487 /// Test whether the given SDValue is known to never be NaN. If \p SNaN is
1488 /// true, returns if \p Op is known to never be a signaling NaN (it may still
1489 /// be a qNaN).
1490 bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001491
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001492 /// \returns true if \p Op is known to never be a signaling NaN.
1493 bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const {
1494 return isKnownNeverNaN(Op, true, Depth);
1495 }
1496
1497 /// Test whether the given floating point SDValue is known to never be
1498 /// positive or negative zero.
1499 bool isKnownNeverZeroFloat(SDValue Op) const;
1500
1501 /// Test whether the given SDValue is known to contain non-zero value(s).
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001502 bool isKnownNeverZero(SDValue Op) const;
1503
1504 /// Test whether two SDValues are known to compare equal. This
1505 /// is true if they are the same value, or if one is negative zero and the
1506 /// other positive zero.
1507 bool isEqualTo(SDValue A, SDValue B) const;
1508
1509 /// Return true if A and B have no common bits set. As an example, this can
1510 /// allow an 'add' to be transformed into an 'or'.
1511 bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
1512
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001513 /// Match a binop + shuffle pyramid that represents a horizontal reduction
1514 /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
1515 /// Extract. The reduction must use one of the opcodes listed in /p
1516 /// CandidateBinOps and on success /p BinOp will contain the matching opcode.
1517 /// Returns the vector that is being reduced on, or SDValue() if a reduction
1518 /// was not matched.
1519 SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
1520 ArrayRef<ISD::NodeType> CandidateBinOps);
1521
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001522 /// Utility function used by legalize and lowering to
1523 /// "unroll" a vector operation by splitting out the scalars and operating
1524 /// on each element individually. If the ResNE is 0, fully unroll the vector
1525 /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
1526 /// If the ResNE is greater than the width of the vector op, unroll the
1527 /// vector op and fill the end of the resulting vector with UNDEFS.
1528 SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
1529
1530 /// Return true if loads are next to each other and can be
1531 /// merged. Check that both are nonvolatile and if LD is loading
1532 /// 'Bytes' bytes from a location that is 'Dist' units away from the
1533 /// location that the 'Base' load is loading from.
1534 bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
1535 unsigned Bytes, int Dist) const;
1536
1537 /// Infer alignment of a load / store address. Return 0 if
1538 /// it cannot be inferred.
1539 unsigned InferPtrAlignment(SDValue Ptr) const;
1540
1541 /// Compute the VTs needed for the low/hi parts of a type
1542 /// which is split (or expanded) into two not necessarily identical pieces.
1543 std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
1544
1545 /// Split the vector with EXTRACT_SUBVECTOR using the provides
1546 /// VTs and return the low/high part.
1547 std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
1548 const EVT &LoVT, const EVT &HiVT);
1549
1550 /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
1551 std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
1552 EVT LoVT, HiVT;
1553 std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
1554 return SplitVector(N, DL, LoVT, HiVT);
1555 }
1556
1557 /// Split the node's operand with EXTRACT_SUBVECTOR and
1558 /// return the low/high part.
1559 std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
1560 {
1561 return SplitVector(N->getOperand(OpNo), SDLoc(N));
1562 }
1563
1564 /// Append the extracted elements from Start to Count out of the vector Op
1565 /// in Args. If Count is 0, all of the elements will be extracted.
1566 void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
1567 unsigned Start = 0, unsigned Count = 0);
1568
1569 /// Compute the default alignment value for the given type.
1570 unsigned getEVTAlignment(EVT MemoryVT) const;
1571
1572 /// Test whether the given value is a constant int or similar node.
1573 SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
1574
1575 /// Test whether the given value is a constant FP or similar node.
1576 SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N);
1577
1578 /// \returns true if \p N is any kind of constant or build_vector of
1579 /// constants, int or float. If a vector, it may not necessarily be a splat.
1580 inline bool isConstantValueOfAnyType(SDValue N) {
1581 return isConstantIntBuildVectorOrConstantInt(N) ||
1582 isConstantFPBuildVectorOrConstantFP(N);
1583 }
1584
1585private:
1586 void InsertNode(SDNode *N);
1587 bool RemoveNodeFromCSEMaps(SDNode *N);
1588 void AddModifiedNodeToCSEMaps(SDNode *N);
1589 SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
1590 SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
1591 void *&InsertPos);
1592 SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1593 void *&InsertPos);
1594 SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
1595
1596 void DeleteNodeNotInCSEMaps(SDNode *N);
1597 void DeallocateNode(SDNode *N);
1598
1599 void allnodes_clear();
1600
1601 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1602 /// not, return the insertion token that will make insertion faster. This
1603 /// overload is for nodes other than Constant or ConstantFP, use the other one
1604 /// for those.
1605 SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
1606
1607 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1608 /// not, return the insertion token that will make insertion faster. Performs
1609 /// additional processing for constant nodes.
1610 SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
1611 void *&InsertPos);
1612
1613 /// List of non-single value types.
1614 FoldingSet<SDVTListNode> VTListMap;
1615
1616 /// Maps to auto-CSE operations.
1617 std::vector<CondCodeSDNode*> CondCodeNodes;
1618
1619 std::vector<SDNode*> ValueTypeNodes;
1620 std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
1621 StringMap<SDNode*> ExternalSymbols;
1622
1623 std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
1624 DenseMap<MCSymbol *, SDNode *> MCSymbols;
1625};
1626
1627template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
1628 using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>;
1629
1630 static nodes_iterator nodes_begin(SelectionDAG *G) {
1631 return nodes_iterator(G->allnodes_begin());
1632 }
1633
1634 static nodes_iterator nodes_end(SelectionDAG *G) {
1635 return nodes_iterator(G->allnodes_end());
1636 }
1637};
1638
1639template <class TargetMemSDNode>
1640SDValue SelectionDAG::getTargetMemSDNode(SDVTList VTs,
1641 ArrayRef<SDValue> Ops,
1642 const SDLoc &dl, EVT MemVT,
1643 MachineMemOperand *MMO) {
1644 /// Compose node ID and try to find an existing node.
1645 FoldingSetNodeID ID;
1646 unsigned Opcode =
1647 TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
1648 ID.AddInteger(Opcode);
1649 ID.AddPointer(VTs.VTs);
1650 for (auto& Op : Ops) {
1651 ID.AddPointer(Op.getNode());
1652 ID.AddInteger(Op.getResNo());
1653 }
1654 ID.AddInteger(MemVT.getRawBits());
1655 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
1656 ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
1657 dl.getIROrder(), VTs, MemVT, MMO));
1658
1659 void *IP = nullptr;
1660 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
1661 cast<TargetMemSDNode>(E)->refineAlignment(MMO);
1662 return SDValue(E, 0);
1663 }
1664
1665 /// Existing node was not found. Create a new one.
1666 auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
1667 MemVT, MMO);
1668 createOperands(N, Ops);
1669 CSEMap.InsertNode(N, IP);
1670 InsertNode(N);
1671 return SDValue(N, 0);
1672}
1673
1674} // end namespace llvm
1675
1676#endif // LLVM_CODEGEN_SELECTIONDAG_H