Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/CodeGen/SelectionDAG.h b/linux-x64/clang/include/llvm/CodeGen/SelectionDAG.h
new file mode 100644
index 0000000..af43c9b
--- /dev/null
+++ b/linux-x64/clang/include/llvm/CodeGen/SelectionDAG.h
@@ -0,0 +1,1611 @@
+//===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the SelectionDAG class, and transitively defines the
+// SDNode class and subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_SELECTIONDAG_H
+#define LLVM_CODEGEN_SELECTIONDAG_H
+
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/ilist.h"
+#include "llvm/ADT/iterator.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/DivergenceAnalysis.h"
+#include "llvm/CodeGen/DAGCombine.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/ISDOpcodes.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/ArrayRecycler.h"
+#include "llvm/Support/AtomicOrdering.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MachineValueType.h"
+#include "llvm/Support/RecyclingAllocator.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <functional>
+#include <map>
+#include <string>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+namespace llvm {
+
+class BlockAddress;
+class Constant;
+class ConstantFP;
+class ConstantInt;
+class DataLayout;
+struct fltSemantics;
+class GlobalValue;
+struct KnownBits;
+class LLVMContext;
+class MachineBasicBlock;
+class MachineConstantPoolValue;
+class MCSymbol;
+class OptimizationRemarkEmitter;
+class SDDbgValue;
+class SelectionDAG;
+class SelectionDAGTargetInfo;
+class TargetLibraryInfo;
+class TargetLowering;
+class TargetMachine;
+class TargetSubtargetInfo;
+class Value;
+
+class SDVTListNode : public FoldingSetNode {
+  friend struct FoldingSetTrait<SDVTListNode>;
+
+  /// A reference to an Interned FoldingSetNodeID for this node.
+  /// The Allocator in SelectionDAG holds the data.
+  /// SDVTList contains all types which are frequently accessed in SelectionDAG.
+  /// The size of this list is not expected to be big so it won't introduce
+  /// a memory penalty.
+  FoldingSetNodeIDRef FastID;
+  const EVT *VTs;
+  unsigned int NumVTs;
+  /// The hash value for SDVTList is fixed, so cache it to avoid
+  /// hash calculation.
+  unsigned HashValue;
+
+public:
+  SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
+      FastID(ID), VTs(VT), NumVTs(Num) {
+    HashValue = ID.ComputeHash();
+  }
+
+  SDVTList getSDVTList() {
+    SDVTList result = {VTs, NumVTs};
+    return result;
+  }
+};
+
+/// Specialize FoldingSetTrait for SDVTListNode
+/// to avoid computing temp FoldingSetNodeID and hash value.
+template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
+  static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
+    ID = X.FastID;
+  }
+
+  static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
+                     unsigned IDHash, FoldingSetNodeID &TempID) {
+    if (X.HashValue != IDHash)
+      return false;
+    return ID == X.FastID;
+  }
+
+  static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
+    return X.HashValue;
+  }
+};
+
+template <> struct ilist_alloc_traits<SDNode> {
+  static void deleteNode(SDNode *) {
+    llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
+  }
+};
+
+/// Keeps track of dbg_value information through SDISel.  We do
+/// not build SDNodes for these so as not to perturb the generated code;
+/// instead the info is kept off to the side in this structure. Each SDNode may
+/// have one or more associated dbg_value entries. This information is kept in
+/// DbgValMap.
+/// Byval parameters are handled separately because they don't use alloca's,
+/// which busts the normal mechanism.  There is good reason for handling all
+/// parameters separately:  they may not have code generated for them, they
+/// should always go at the beginning of the function regardless of other code
+/// motion, and debug info for them is potentially useful even if the parameter
+/// is unused.  Right now only byval parameters are handled separately.
+class SDDbgInfo {
+  BumpPtrAllocator Alloc;
+  SmallVector<SDDbgValue*, 32> DbgValues;
+  SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
+  using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>;
+  DbgValMapType DbgValMap;
+
+public:
+  SDDbgInfo() = default;
+  SDDbgInfo(const SDDbgInfo &) = delete;
+  SDDbgInfo &operator=(const SDDbgInfo &) = delete;
+
+  void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
+    if (isParameter) {
+      ByvalParmDbgValues.push_back(V);
+    } else     DbgValues.push_back(V);
+    if (Node)
+      DbgValMap[Node].push_back(V);
+  }
+
+  /// \brief Invalidate all DbgValues attached to the node and remove
+  /// it from the Node-to-DbgValues map.
+  void erase(const SDNode *Node);
+
+  void clear() {
+    DbgValMap.clear();
+    DbgValues.clear();
+    ByvalParmDbgValues.clear();
+    Alloc.Reset();
+  }
+
+  BumpPtrAllocator &getAlloc() { return Alloc; }
+
+  bool empty() const {
+    return DbgValues.empty() && ByvalParmDbgValues.empty();
+  }
+
+  ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) {
+    DbgValMapType::iterator I = DbgValMap.find(Node);
+    if (I != DbgValMap.end())
+      return I->second;
+    return ArrayRef<SDDbgValue*>();
+  }
+
+  using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator;
+
+  DbgIterator DbgBegin() { return DbgValues.begin(); }
+  DbgIterator DbgEnd()   { return DbgValues.end(); }
+  DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
+  DbgIterator ByvalParmDbgEnd()   { return ByvalParmDbgValues.end(); }
+};
+
+void checkForCycles(const SelectionDAG *DAG, bool force = false);
+
+/// This is used to represent a portion of an LLVM function in a low-level
+/// Data Dependence DAG representation suitable for instruction selection.
+/// This DAG is constructed as the first step of instruction selection in order
+/// to allow implementation of machine specific optimizations
+/// and code simplifications.
+///
+/// The representation used by the SelectionDAG is a target-independent
+/// representation, which has some similarities to the GCC RTL representation,
+/// but is significantly more simple, powerful, and is a graph form instead of a
+/// linear form.
+///
+class SelectionDAG {
+  const TargetMachine &TM;
+  const SelectionDAGTargetInfo *TSI = nullptr;
+  const TargetLowering *TLI = nullptr;
+  const TargetLibraryInfo *LibInfo = nullptr;
+  MachineFunction *MF;
+  Pass *SDAGISelPass = nullptr;
+  LLVMContext *Context;
+  CodeGenOpt::Level OptLevel;
+
+  DivergenceAnalysis * DA = nullptr;
+  FunctionLoweringInfo * FLI = nullptr;
+
+  /// The function-level optimization remark emitter.  Used to emit remarks
+  /// whenever manipulating the DAG.
+  OptimizationRemarkEmitter *ORE;
+
+  /// The starting token.
+  SDNode EntryNode;
+
+  /// The root of the entire DAG.
+  SDValue Root;
+
+  /// A linked list of nodes in the current DAG.
+  ilist<SDNode> AllNodes;
+
+  /// The AllocatorType for allocating SDNodes. We use
+  /// pool allocation with recycling.
+  using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode,
+                                               sizeof(LargestSDNode),
+                                               alignof(MostAlignedSDNode)>;
+
+  /// Pool allocation for nodes.
+  NodeAllocatorType NodeAllocator;
+
+  /// This structure is used to memoize nodes, automatically performing
+  /// CSE with existing nodes when a duplicate is requested.
+  FoldingSet<SDNode> CSEMap;
+
+  /// Pool allocation for machine-opcode SDNode operands.
+  BumpPtrAllocator OperandAllocator;
+  ArrayRecycler<SDUse> OperandRecycler;
+
+  /// Pool allocation for misc. objects that are created once per SelectionDAG.
+  BumpPtrAllocator Allocator;
+
+  /// Tracks dbg_value information through SDISel.
+  SDDbgInfo *DbgInfo;
+
+  uint16_t NextPersistentId = 0;
+
+public:
+  /// Clients of various APIs that cause global effects on
+  /// the DAG can optionally implement this interface.  This allows the clients
+  /// to handle the various sorts of updates that happen.
+  ///
+  /// A DAGUpdateListener automatically registers itself with DAG when it is
+  /// constructed, and removes itself when destroyed in RAII fashion.
+  struct DAGUpdateListener {
+    DAGUpdateListener *const Next;
+    SelectionDAG &DAG;
+
+    explicit DAGUpdateListener(SelectionDAG &D)
+      : Next(D.UpdateListeners), DAG(D) {
+      DAG.UpdateListeners = this;
+    }
+
+    virtual ~DAGUpdateListener() {
+      assert(DAG.UpdateListeners == this &&
+             "DAGUpdateListeners must be destroyed in LIFO order");
+      DAG.UpdateListeners = Next;
+    }
+
+    /// The node N that was deleted and, if E is not null, an
+    /// equivalent node E that replaced it.
+    virtual void NodeDeleted(SDNode *N, SDNode *E);
+
+    /// The node N that was updated.
+    virtual void NodeUpdated(SDNode *N);
+  };
+
+  struct DAGNodeDeletedListener : public DAGUpdateListener {
+    std::function<void(SDNode *, SDNode *)> Callback;
+
+    DAGNodeDeletedListener(SelectionDAG &DAG,
+                           std::function<void(SDNode *, SDNode *)> Callback)
+        : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
+
+    void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
+  };
+
+  /// When true, additional steps are taken to
+  /// ensure that getConstant() and similar functions return DAG nodes that
+  /// have legal types. This is important after type legalization since
+  /// any illegally typed nodes generated after this point will not experience
+  /// type legalization.
+  bool NewNodesMustHaveLegalTypes = false;
+
+private:
+  /// DAGUpdateListener is a friend so it can manipulate the listener stack.
+  friend struct DAGUpdateListener;
+
+  /// Linked list of registered DAGUpdateListener instances.
+  /// This stack is maintained by DAGUpdateListener RAII.
+  DAGUpdateListener *UpdateListeners = nullptr;
+
+  /// Implementation of setSubgraphColor.
+  /// Return whether we had to truncate the search.
+  bool setSubgraphColorHelper(SDNode *N, const char *Color,
+                              DenseSet<SDNode *> &visited,
+                              int level, bool &printed);
+
+  template <typename SDNodeT, typename... ArgTypes>
+  SDNodeT *newSDNode(ArgTypes &&... Args) {
+    return new (NodeAllocator.template Allocate<SDNodeT>())
+        SDNodeT(std::forward<ArgTypes>(Args)...);
+  }
+
+  /// Build a synthetic SDNodeT with the given args and extract its subclass
+  /// data as an integer (e.g. for use in a folding set).
+  ///
+  /// The args to this function are the same as the args to SDNodeT's
+  /// constructor, except the second arg (assumed to be a const DebugLoc&) is
+  /// omitted.
+  template <typename SDNodeT, typename... ArgTypes>
+  static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
+                                               ArgTypes &&... Args) {
+    // The compiler can reduce this expression to a constant iff we pass an
+    // empty DebugLoc.  Thankfully, the debug location doesn't have any bearing
+    // on the subclass data.
+    return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
+        .getRawSubclassData();
+  }
+
+  template <typename SDNodeTy>
+  static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
+                                                SDVTList VTs, EVT MemoryVT,
+                                                MachineMemOperand *MMO) {
+    return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
+         .getRawSubclassData();
+  }
+
+  void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
+
+  void removeOperands(SDNode *Node) {
+    if (!Node->OperandList)
+      return;
+    OperandRecycler.deallocate(
+        ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
+        Node->OperandList);
+    Node->NumOperands = 0;
+    Node->OperandList = nullptr;
+  }
+  void CreateTopologicalOrder(std::vector<SDNode*>& Order);
+public:
+  explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
+  SelectionDAG(const SelectionDAG &) = delete;
+  SelectionDAG &operator=(const SelectionDAG &) = delete;
+  ~SelectionDAG();
+
+  /// Prepare this SelectionDAG to process code in the given MachineFunction.
+  void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE,
+            Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
+            DivergenceAnalysis * DA);
+
+  void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) {
+    FLI = FuncInfo;
+  }
+
+  /// Clear state and free memory necessary to make this
+  /// SelectionDAG ready to process a new block.
+  void clear();
+
+  MachineFunction &getMachineFunction() const { return *MF; }
+  const Pass *getPass() const { return SDAGISelPass; }
+
+  const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
+  const TargetMachine &getTarget() const { return TM; }
+  const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
+  const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
+  const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
+  const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
+  LLVMContext *getContext() const {return Context; }
+  OptimizationRemarkEmitter &getORE() const { return *ORE; }
+
+  /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
+  void viewGraph(const std::string &Title);
+  void viewGraph();
+
+#ifndef NDEBUG
+  std::map<const SDNode *, std::string> NodeGraphAttrs;
+#endif
+
+  /// Clear all previously defined node graph attributes.
+  /// Intended to be used from a debugging tool (eg. gdb).
+  void clearGraphAttrs();
+
+  /// Set graph attributes for a node. (eg. "color=red".)
+  void setGraphAttrs(const SDNode *N, const char *Attrs);
+
+  /// Get graph attributes for a node. (eg. "color=red".)
+  /// Used from getNodeAttributes.
+  const std::string getGraphAttrs(const SDNode *N) const;
+
+  /// Convenience for setting node color attribute.
+  void setGraphColor(const SDNode *N, const char *Color);
+
+  /// Convenience for setting subgraph color attribute.
+  void setSubgraphColor(SDNode *N, const char *Color);
+
+  using allnodes_const_iterator = ilist<SDNode>::const_iterator;
+
+  allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
+  allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
+
+  using allnodes_iterator = ilist<SDNode>::iterator;
+
+  allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
+  allnodes_iterator allnodes_end() { return AllNodes.end(); }
+
+  ilist<SDNode>::size_type allnodes_size() const {
+    return AllNodes.size();
+  }
+
+  iterator_range<allnodes_iterator> allnodes() {
+    return make_range(allnodes_begin(), allnodes_end());
+  }
+  iterator_range<allnodes_const_iterator> allnodes() const {
+    return make_range(allnodes_begin(), allnodes_end());
+  }
+
+  /// Return the root tag of the SelectionDAG.
+  const SDValue &getRoot() const { return Root; }
+
+  /// Return the token chain corresponding to the entry of the function.
+  SDValue getEntryNode() const {
+    return SDValue(const_cast<SDNode *>(&EntryNode), 0);
+  }
+
+  /// Set the current root tag of the SelectionDAG.
+  ///
+  const SDValue &setRoot(SDValue N) {
+    assert((!N.getNode() || N.getValueType() == MVT::Other) &&
+           "DAG root value is not a chain!");
+    if (N.getNode())
+      checkForCycles(N.getNode(), this);
+    Root = N;
+    if (N.getNode())
+      checkForCycles(this);
+    return Root;
+  }
+
+  void VerifyDAGDiverence();
+
+  /// This iterates over the nodes in the SelectionDAG, folding
+  /// certain types of nodes together, or eliminating superfluous nodes.  The
+  /// Level argument controls whether Combine is allowed to produce nodes and
+  /// types that are illegal on the target.
+  void Combine(CombineLevel Level, AliasAnalysis *AA,
+               CodeGenOpt::Level OptLevel);
+
+  /// This transforms the SelectionDAG into a SelectionDAG that
+  /// only uses types natively supported by the target.
+  /// Returns "true" if it made any changes.
+  ///
+  /// Note that this is an involved process that may invalidate pointers into
+  /// the graph.
+  bool LegalizeTypes();
+
+  /// This transforms the SelectionDAG into a SelectionDAG that is
+  /// compatible with the target instruction selector, as indicated by the
+  /// TargetLowering object.
+  ///
+  /// Note that this is an involved process that may invalidate pointers into
+  /// the graph.
+  void Legalize();
+
+  /// \brief Transforms a SelectionDAG node and any operands to it into a node
+  /// that is compatible with the target instruction selector, as indicated by
+  /// the TargetLowering object.
+  ///
+  /// \returns true if \c N is a valid, legal node after calling this.
+  ///
+  /// This essentially runs a single recursive walk of the \c Legalize process
+  /// over the given node (and its operands). This can be used to incrementally
+  /// legalize the DAG. All of the nodes which are directly replaced,
+  /// potentially including N, are added to the output parameter \c
+  /// UpdatedNodes so that the delta to the DAG can be understood by the
+  /// caller.
+  ///
+  /// When this returns false, N has been legalized in a way that make the
+  /// pointer passed in no longer valid. It may have even been deleted from the
+  /// DAG, and so it shouldn't be used further. When this returns true, the
+  /// N passed in is a legal node, and can be immediately processed as such.
+  /// This may still have done some work on the DAG, and will still populate
+  /// UpdatedNodes with any new nodes replacing those originally in the DAG.
+  bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
+
+  /// This transforms the SelectionDAG into a SelectionDAG
+  /// that only uses vector math operations supported by the target.  This is
+  /// necessary as a separate step from Legalize because unrolling a vector
+  /// operation can introduce illegal types, which requires running
+  /// LegalizeTypes again.
+  ///
+  /// This returns true if it made any changes; in that case, LegalizeTypes
+  /// is called again before Legalize.
+  ///
+  /// Note that this is an involved process that may invalidate pointers into
+  /// the graph.
+  bool LegalizeVectors();
+
+  /// This method deletes all unreachable nodes in the SelectionDAG.
+  void RemoveDeadNodes();
+
+  /// Remove the specified node from the system.  This node must
+  /// have no referrers.
+  void DeleteNode(SDNode *N);
+
+  /// Return an SDVTList that represents the list of values specified.
+  SDVTList getVTList(EVT VT);
+  SDVTList getVTList(EVT VT1, EVT VT2);
+  SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
+  SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
+  SDVTList getVTList(ArrayRef<EVT> VTs);
+
+  //===--------------------------------------------------------------------===//
+  // Node creation methods.
+
+  /// \brief Create a ConstantSDNode wrapping a constant value.
+  /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
+  ///
+  /// If only legal types can be produced, this does the necessary
+  /// transformations (e.g., if the vector element type is illegal).
+  /// @{
+  SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
+                      bool isTarget = false, bool isOpaque = false);
+  SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
+                      bool isTarget = false, bool isOpaque = false);
+
+  SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
+                             bool IsOpaque = false) {
+    return getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL,
+                       VT, IsTarget, IsOpaque);
+  }
+
+  SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
+                      bool isTarget = false, bool isOpaque = false);
+  SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
+                            bool isTarget = false);
+  SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
+                            bool isOpaque = false) {
+    return getConstant(Val, DL, VT, true, isOpaque);
+  }
+  SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
+                            bool isOpaque = false) {
+    return getConstant(Val, DL, VT, true, isOpaque);
+  }
+  SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
+                            bool isOpaque = false) {
+    return getConstant(Val, DL, VT, true, isOpaque);
+  }
+
+  /// \brief Create a true or false constant of type \p VT using the target's
+  /// BooleanContent for type \p OpVT.
+  SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
+  /// @}
+
+  /// \brief Create a ConstantFPSDNode wrapping a constant value.
+  /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
+  ///
+  /// If only legal types can be produced, this does the necessary
+  /// transformations (e.g., if the vector element type is illegal).
+  /// The forms that take a double should only be used for simple constants
+  /// that can be exactly represented in VT.  No checks are made.
+  /// @{
+  SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
+                        bool isTarget = false);
+  SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
+                        bool isTarget = false);
+  SDValue getConstantFP(const ConstantFP &CF, const SDLoc &DL, EVT VT,
+                        bool isTarget = false);
+  SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
+    return getConstantFP(Val, DL, VT, true);
+  }
+  SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
+    return getConstantFP(Val, DL, VT, true);
+  }
+  SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
+    return getConstantFP(Val, DL, VT, true);
+  }
+  /// @}
+
+  SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
+                           int64_t offset = 0, bool isTargetGA = false,
+                           unsigned char TargetFlags = 0);
+  SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
+                                 int64_t offset = 0,
+                                 unsigned char TargetFlags = 0) {
+    return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
+  }
+  SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
+  SDValue getTargetFrameIndex(int FI, EVT VT) {
+    return getFrameIndex(FI, VT, true);
+  }
+  SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
+                       unsigned char TargetFlags = 0);
+  SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) {
+    return getJumpTable(JTI, VT, true, TargetFlags);
+  }
+  SDValue getConstantPool(const Constant *C, EVT VT,
+                          unsigned Align = 0, int Offs = 0, bool isT=false,
+                          unsigned char TargetFlags = 0);
+  SDValue getTargetConstantPool(const Constant *C, EVT VT,
+                                unsigned Align = 0, int Offset = 0,
+                                unsigned char TargetFlags = 0) {
+    return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
+  }
+  SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
+                          unsigned Align = 0, int Offs = 0, bool isT=false,
+                          unsigned char TargetFlags = 0);
+  SDValue getTargetConstantPool(MachineConstantPoolValue *C,
+                                  EVT VT, unsigned Align = 0,
+                                  int Offset = 0, unsigned char TargetFlags=0) {
+    return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
+  }
+  SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
+                         unsigned char TargetFlags = 0);
+  // When generating a branch to a BB, we don't in general know enough
+  // to provide debug info for the BB at that time, so keep this one around.
+  SDValue getBasicBlock(MachineBasicBlock *MBB);
+  SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
+  SDValue getExternalSymbol(const char *Sym, EVT VT);
+  SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
+  SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
+                                  unsigned char TargetFlags = 0);
+  SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
+
+  SDValue getValueType(EVT);
+  SDValue getRegister(unsigned Reg, EVT VT);
+  SDValue getRegisterMask(const uint32_t *RegMask);
+  SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
+  SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
+                       MCSymbol *Label);
+  SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
+                          int64_t Offset = 0, bool isTarget = false,
+                          unsigned char TargetFlags = 0);
+  SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
+                                int64_t Offset = 0,
+                                unsigned char TargetFlags = 0) {
+    return getBlockAddress(BA, VT, Offset, true, TargetFlags);
+  }
+
+  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
+                       SDValue N) {
+    return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
+                   getRegister(Reg, N.getValueType()), N);
+  }
+
+  // This version of the getCopyToReg method takes an extra operand, which
+  // indicates that there is potentially an incoming glue value (if Glue is not
+  // null) and that there should be a glue result.
+  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
+                       SDValue Glue) {
+    SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
+    SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
+    return getNode(ISD::CopyToReg, dl, VTs,
+                   makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
+  }
+
+  // Similar to last getCopyToReg() except parameter Reg is a SDValue
+  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
+                       SDValue Glue) {
+    SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
+    SDValue Ops[] = { Chain, Reg, N, Glue };
+    return getNode(ISD::CopyToReg, dl, VTs,
+                   makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
+  }
+
+  SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
+    SDVTList VTs = getVTList(VT, MVT::Other);
+    SDValue Ops[] = { Chain, getRegister(Reg, VT) };
+    return getNode(ISD::CopyFromReg, dl, VTs, Ops);
+  }
+
+  // This version of the getCopyFromReg method takes an extra operand, which
+  // indicates that there is potentially an incoming glue value (if Glue is not
+  // null) and that there should be a glue result.
+  SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
+                         SDValue Glue) {
+    SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
+    SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
+    return getNode(ISD::CopyFromReg, dl, VTs,
+                   makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
+  }
+
+  SDValue getCondCode(ISD::CondCode Cond);
+
+  /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
+  /// which must be a vector type, must match the number of mask elements
+  /// NumElts. An integer mask element equal to -1 is treated as undefined.
+  SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
+                           ArrayRef<int> Mask);
+
+  /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
+  /// which must be a vector type, must match the number of operands in Ops.
+  /// The operands must have the same type as (or, for integers, a type wider
+  /// than) VT's element type.
+  SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
+    // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
+    return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
+  }
+
+  /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
+  /// which must be a vector type, must match the number of operands in Ops.
+  /// The operands must have the same type as (or, for integers, a type wider
+  /// than) VT's element type.
+  SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) {
+    // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
+    return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
+  }
+
+  /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
+  /// elements. VT must be a vector type. Op's type must be the same as (or,
+  /// for integers, a type wider than) VT's element type.
+  SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
+    // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
+    if (Op.getOpcode() == ISD::UNDEF) {
+      assert((VT.getVectorElementType() == Op.getValueType() ||
+              (VT.isInteger() &&
+               VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
+             "A splatted value must have a width equal or (for integers) "
+             "greater than the vector element type!");
+      return getNode(ISD::UNDEF, SDLoc(), VT);
+    }
+
+    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
+    return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
+  }
+
+  /// \brief Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
+  /// the shuffle node in input but with swapped operands.
+  ///
+  /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
+  SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
+
+  /// Convert Op, which must be of float type, to the
+  /// float type VT, by either extending or rounding (by truncation).
+  SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
+
+  /// Convert Op, which must be of integer type, to the
+  /// integer type VT, by either any-extending or truncating it.
+  SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
+
+  /// Convert Op, which must be of integer type, to the
+  /// integer type VT, by either sign-extending or truncating it.
+  SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
+
+  /// Convert Op, which must be of integer type, to the
+  /// integer type VT, by either zero-extending or truncating it.
+  SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
+
+  /// Return the expression required to zero extend the Op
+  /// value assuming it was the smaller SrcTy value.
+  SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT SrcTy);
+
+  /// Return an operation which will any-extend the low lanes of the operand
+  /// into the specified vector type. For example,
+  /// this can convert a v16i8 into a v4i32 by any-extending the low four
+  /// lanes of the operand from i8 to i32.
+  SDValue getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
+
+  /// Return an operation which will sign extend the low lanes of the operand
+  /// into the specified vector type. For example,
+  /// this can convert a v16i8 into a v4i32 by sign extending the low four
+  /// lanes of the operand from i8 to i32.
+  SDValue getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
+
+  /// Return an operation which will zero extend the low lanes of the operand
+  /// into the specified vector type. For example,
+  /// this can convert a v16i8 into a v4i32 by zero extending the low four
+  /// lanes of the operand from i8 to i32.
+  SDValue getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
+
+  /// Convert Op, which must be of integer type, to the integer type VT,
+  /// by using an extension appropriate for the target's
+  /// BooleanContent for type OpVT or truncating it.
+  SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
+
+  /// Create a bitwise NOT operation as (XOR Val, -1).
+  SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
+
+  /// \brief Create a logical NOT operation as (XOR Val, BooleanOne).
+  SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
+
+  /// \brief Create an add instruction with appropriate flags when used for
+  /// addressing some offset of an object. i.e. if a load is split into multiple
+  /// components, create an add nuw from the base pointer to the offset.
+  SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset) {
+    EVT VT = Op.getValueType();
+    return getObjectPtrOffset(SL, Op, getConstant(Offset, SL, VT));
+  }
+
+  SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, SDValue Offset) {
+    EVT VT = Op.getValueType();
+
+    // The object itself can't wrap around the address space, so it shouldn't be
+    // possible for the adds of the offsets to the split parts to overflow.
+    SDNodeFlags Flags;
+    Flags.setNoUnsignedWrap(true);
+    return getNode(ISD::ADD, SL, VT, Op, Offset, Flags);
+  }
+
+  /// Return a new CALLSEQ_START node, that starts new call frame, in which
+  /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
+  /// OutSize specifies part of the frame set up prior to the sequence.
+  SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
+                           const SDLoc &DL) {
+    SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
+    SDValue Ops[] = { Chain,
+                      getIntPtrConstant(InSize, DL, true),
+                      getIntPtrConstant(OutSize, DL, true) };
+    return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
+  }
+
+  /// Return a new CALLSEQ_END node, which always must have a
+  /// glue result (to ensure it's not CSE'd).
+  /// CALLSEQ_END does not have a useful SDLoc.
+  SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
+                         SDValue InGlue, const SDLoc &DL) {
+    SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
+    SmallVector<SDValue, 4> Ops;
+    Ops.push_back(Chain);
+    Ops.push_back(Op1);
+    Ops.push_back(Op2);
+    if (InGlue.getNode())
+      Ops.push_back(InGlue);
+    return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
+  }
+
+  /// Return true if the result of this operation is always undefined.
+  bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
+
+  /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
+  SDValue getUNDEF(EVT VT) {
+    return getNode(ISD::UNDEF, SDLoc(), VT);
+  }
+
+  /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
+  SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
+    return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
+  }
+
+  /// Gets or creates the specified node.
+  ///
+  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
+                  ArrayRef<SDUse> Ops);
+  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
+                  ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags());
+  SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
+                  ArrayRef<SDValue> Ops);
+  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs,
+                  ArrayRef<SDValue> Ops);
+
+  // Specialize based on number of operands.
+  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
+  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N,
+                  const SDNodeFlags Flags = SDNodeFlags());
+  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
+                  SDValue N2, const SDNodeFlags Flags = SDNodeFlags());
+  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
+                  SDValue N2, SDValue N3);
+  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
+                  SDValue N2, SDValue N3, SDValue N4);
+  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
+                  SDValue N2, SDValue N3, SDValue N4, SDValue N5);
+
+  // Specialize again based on number of operands for nodes with a VTList
+  // rather than a single VT.
+  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs);
+  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N);
+  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
+                  SDValue N2);
+  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
+                  SDValue N2, SDValue N3);
+  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
+                  SDValue N2, SDValue N3, SDValue N4);
+  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
+                  SDValue N2, SDValue N3, SDValue N4, SDValue N5);
+
+  /// Compute a TokenFactor to force all the incoming stack arguments to be
+  /// loaded from the stack. This is used in tail call lowering to protect
+  /// stack arguments from being clobbered.
+  SDValue getStackArgumentTokenFactor(SDValue Chain);
+
+  SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
+                    SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
+                    bool isTailCall, MachinePointerInfo DstPtrInfo,
+                    MachinePointerInfo SrcPtrInfo);
+
+  SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
+                     SDValue Size, unsigned Align, bool isVol, bool isTailCall,
+                     MachinePointerInfo DstPtrInfo,
+                     MachinePointerInfo SrcPtrInfo);
+
+  SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
+                    SDValue Size, unsigned Align, bool isVol, bool isTailCall,
+                    MachinePointerInfo DstPtrInfo);
+
+  /// Helper function to make it easier to build SetCC's if you just
+  /// have an ISD::CondCode instead of an SDValue.
+  ///
+  SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
+                   ISD::CondCode Cond) {
+    assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
+      "Cannot compare scalars to vectors");
+    assert(LHS.getValueType().isVector() == VT.isVector() &&
+      "Cannot compare scalars to vectors");
+    assert(Cond != ISD::SETCC_INVALID &&
+        "Cannot create a setCC of an invalid node.");
+    return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
+  }
+
+  /// Helper function to make it easier to build Select's if you just
+  /// have operands and don't want to check for vector.
+  SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
+                    SDValue RHS) {
+    assert(LHS.getValueType() == RHS.getValueType() &&
+           "Cannot use select on differing types");
+    assert(VT.isVector() == LHS.getValueType().isVector() &&
+           "Cannot mix vectors and scalars");
+    return getNode(Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
+                   Cond, LHS, RHS);
+  }
+
+  /// Helper function to make it easier to build SelectCC's if you
+  /// just have an ISD::CondCode instead of an SDValue.
+  ///
+  SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
+                      SDValue False, ISD::CondCode Cond) {
+    return getNode(ISD::SELECT_CC, DL, True.getValueType(),
+                   LHS, RHS, True, False, getCondCode(Cond));
+  }
+
+  /// VAArg produces a result and token chain, and takes a pointer
+  /// and a source value as input.
+  SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
+                   SDValue SV, unsigned Align);
+
+  /// Gets a node for an atomic cmpxchg op. There are two
+  /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
+  /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
+  /// a success flag (initially i1), and a chain.
+  SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
+                           SDVTList VTs, SDValue Chain, SDValue Ptr,
+                           SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
+                           unsigned Alignment, AtomicOrdering SuccessOrdering,
+                           AtomicOrdering FailureOrdering,
+                           SyncScope::ID SSID);
+  SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
+                           SDVTList VTs, SDValue Chain, SDValue Ptr,
+                           SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
+
+  /// Gets a node for an atomic op, produces result (if relevant)
+  /// and chain and takes 2 operands.
+  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
+                    SDValue Ptr, SDValue Val, const Value *PtrVal,
+                    unsigned Alignment, AtomicOrdering Ordering,
+                    SyncScope::ID SSID);
+  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
+                    SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
+
+  /// Gets a node for an atomic op, produces result and chain and
+  /// takes 1 operand.
+  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
+                    SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
+
+  /// Gets a node for an atomic op, produces result and chain and takes N
+  /// operands.
+  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
+                    SDVTList VTList, ArrayRef<SDValue> Ops,
+                    MachineMemOperand *MMO);
+
+  /// Creates a MemIntrinsicNode that may produce a
+  /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
+  /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
+  /// less than FIRST_TARGET_MEMORY_OPCODE.
+  SDValue getMemIntrinsicNode(
+    unsigned Opcode, const SDLoc &dl, SDVTList VTList,
+    ArrayRef<SDValue> Ops, EVT MemVT,
+    MachinePointerInfo PtrInfo,
+    unsigned Align = 0,
+    MachineMemOperand::Flags Flags
+    = MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
+    unsigned Size = 0);
+
+  SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
+                              ArrayRef<SDValue> Ops, EVT MemVT,
+                              MachineMemOperand *MMO);
+
+  /// Create a MERGE_VALUES node from the given operands.
+  SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
+
+  /// Loads are not normal binary operators: their result type is not
+  /// determined by their operands, and they produce a value AND a token chain.
+  ///
+  /// This function will set the MOLoad flag on MMOFlags, but you can set it if
+  /// you want.  The MOStore flag must not be set.
+  SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
+                  MachinePointerInfo PtrInfo, unsigned Alignment = 0,
+                  MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
+                  const AAMDNodes &AAInfo = AAMDNodes(),
+                  const MDNode *Ranges = nullptr);
+  SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
+                  MachineMemOperand *MMO);
+  SDValue
+  getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
+             SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
+             unsigned Alignment = 0,
+             MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
+             const AAMDNodes &AAInfo = AAMDNodes());
+  SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
+                     SDValue Chain, SDValue Ptr, EVT MemVT,
+                     MachineMemOperand *MMO);
+  SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
+                         SDValue Offset, ISD::MemIndexedMode AM);
+  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
+                  const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
+                  MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
+                  MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
+                  const AAMDNodes &AAInfo = AAMDNodes(),
+                  const MDNode *Ranges = nullptr);
+  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
+                  const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
+                  EVT MemVT, MachineMemOperand *MMO);
+
+  /// Helper function to build ISD::STORE nodes.
+  ///
+  /// This function will set the MOStore flag on MMOFlags, but you can set it if
+  /// you want.  The MOLoad and MOInvariant flags must not be set.
+  SDValue
+  getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
+           MachinePointerInfo PtrInfo, unsigned Alignment = 0,
+           MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
+           const AAMDNodes &AAInfo = AAMDNodes());
+  SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
+                   MachineMemOperand *MMO);
+  SDValue
+  getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
+                MachinePointerInfo PtrInfo, EVT TVT, unsigned Alignment = 0,
+                MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
+                const AAMDNodes &AAInfo = AAMDNodes());
+  SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
+                        SDValue Ptr, EVT TVT, MachineMemOperand *MMO);
+  SDValue getIndexedStore(SDValue OrigStoe, const SDLoc &dl, SDValue Base,
+                          SDValue Offset, ISD::MemIndexedMode AM);
+
+  /// Returns sum of the base pointer and offset.
+  SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
+
+  SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
+                        SDValue Mask, SDValue Src0, EVT MemVT,
+                        MachineMemOperand *MMO, ISD::LoadExtType,
+                        bool IsExpanding = false);
+  SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
+                         SDValue Ptr, SDValue Mask, EVT MemVT,
+                         MachineMemOperand *MMO, bool IsTruncating = false,
+                         bool IsCompressing = false);
+  SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
+                          ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
+  SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
+                           ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
+
+  /// Return (create a new or find existing) a target-specific node.
+  /// TargetMemSDNode should be derived class from MemSDNode.
+  template <class TargetMemSDNode>
+  SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
+                             const SDLoc &dl, EVT MemVT,
+                             MachineMemOperand *MMO);
+
+  /// Construct a node to track a Value* through the backend.
+  SDValue getSrcValue(const Value *v);
+
+  /// Return an MDNodeSDNode which holds an MDNode.
+  SDValue getMDNode(const MDNode *MD);
+
+  /// Return a bitcast using the SDLoc of the value operand, and casting to the
+  /// provided type. Use getNode to set a custom SDLoc.
+  SDValue getBitcast(EVT VT, SDValue V);
+
+  /// Return an AddrSpaceCastSDNode.
+  SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
+                           unsigned DestAS);
+
+  /// Return the specified value casted to
+  /// the target's desired shift amount type.
+  SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
+
+  /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
+  SDValue expandVAArg(SDNode *Node);
+
+  /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
+  SDValue expandVACopy(SDNode *Node);
+
+  /// *Mutate* the specified node in-place to have the
+  /// specified operands.  If the resultant node already exists in the DAG,
+  /// this does not modify the specified node, instead it returns the node that
+  /// already exists.  If the resultant node does not exist in the DAG, the
+  /// input node is returned.  As a degenerate case, if you specify the same
+  /// input operands as the node already has, the input node is returned.
+  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
+  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
+  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
+                               SDValue Op3);
+  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
+                               SDValue Op3, SDValue Op4);
+  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
+                               SDValue Op3, SDValue Op4, SDValue Op5);
+  SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
+
+  // Propagates the change in divergence to users
+  void updateDivergence(SDNode * N);
+
+  /// These are used for target selectors to *mutate* the
+  /// specified node to have the specified return type, Target opcode, and
+  /// operands.  Note that target opcodes are stored as
+  /// ~TargetOpcode in the node opcode field.  The resultant node is returned.
+  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT);
+  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT, SDValue Op1);
+  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
+                       SDValue Op1, SDValue Op2);
+  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
+                       SDValue Op1, SDValue Op2, SDValue Op3);
+  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
+                       ArrayRef<SDValue> Ops);
+  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, EVT VT2);
+  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
+                       EVT VT2, ArrayRef<SDValue> Ops);
+  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
+                       EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
+  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
+                       EVT VT2, SDValue Op1);
+  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
+                       EVT VT2, SDValue Op1, SDValue Op2);
+  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, SDVTList VTs,
+                       ArrayRef<SDValue> Ops);
+
+  /// This *mutates* the specified node to have the specified
+  /// return type, opcode, and operands.
+  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
+                      ArrayRef<SDValue> Ops);
+
+  /// Mutate the specified strict FP node to its non-strict equivalent,
+  /// unlinking the node from its chain and dropping the metadata arguments.
+  /// The node must be a strict FP node.
+  SDNode *mutateStrictFPToFP(SDNode *Node);
+
+  /// These are used for target selectors to create a new node
+  /// with specified return type(s), MachineInstr opcode, and operands.
+  ///
+  /// Note that getMachineNode returns the resultant node.  If there is already
+  /// a node of the specified opcode and operands, it returns that node instead
+  /// of the current one.
+  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
+  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
+                                SDValue Op1);
+  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
+                                SDValue Op1, SDValue Op2);
+  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
+                                SDValue Op1, SDValue Op2, SDValue Op3);
+  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
+                                ArrayRef<SDValue> Ops);
+  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
+                                EVT VT2, SDValue Op1, SDValue Op2);
+  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
+                                EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
+  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
+                                EVT VT2, ArrayRef<SDValue> Ops);
+  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
+                                EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
+  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
+                                EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
+                                SDValue Op3);
+  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
+                                EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
+  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
+                                ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
+  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
+                                ArrayRef<SDValue> Ops);
+
+  /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
+  SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
+                                 SDValue Operand);
+
+  /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
+  SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
+                                SDValue Operand, SDValue Subreg);
+
+  /// Get the specified node if it's already available, or else return NULL.
+  SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTs, ArrayRef<SDValue> Ops,
+                          const SDNodeFlags Flags = SDNodeFlags());
+
+  /// Creates a SDDbgValue node.
+  SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N,
+                          unsigned R, bool IsIndirect, const DebugLoc &DL,
+                          unsigned O);
+
+  /// Creates a constant SDDbgValue node.
+  SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr,
+                                  const Value *C, const DebugLoc &DL,
+                                  unsigned O);
+
+  /// Creates a FrameIndex SDDbgValue node.
+  SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
+                                    unsigned FI, const DebugLoc &DL,
+                                    unsigned O);
+
+  /// Transfer debug values from one node to another, while optionally
+  /// generating fragment expressions for split-up values. If \p InvalidateDbg
+  /// is set, debug values are invalidated after they are transferred.
+  void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0,
+                         unsigned SizeInBits = 0, bool InvalidateDbg = true);
+
+  /// Remove the specified node from the system. If any of its
+  /// operands then becomes dead, remove them as well. Inform UpdateListener
+  /// for each node deleted.
+  void RemoveDeadNode(SDNode *N);
+
+  /// This method deletes the unreachable nodes in the
+  /// given list, and any nodes that become unreachable as a result.
+  void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
+
+  /// Modify anything using 'From' to use 'To' instead.
+  /// This can cause recursive merging of nodes in the DAG.  Use the first
+  /// version if 'From' is known to have a single result, use the second
+  /// if you have two nodes with identical results (or if 'To' has a superset
+  /// of the results of 'From'), use the third otherwise.
+  ///
+  /// These methods all take an optional UpdateListener, which (if not null) is
+  /// informed about nodes that are deleted and modified due to recursive
+  /// changes in the dag.
+  ///
+  /// These functions only replace all existing uses. It's possible that as
+  /// these replacements are being performed, CSE may cause the From node
+  /// to be given new uses. These new uses of From are left in place, and
+  /// not automatically transferred to To.
+  ///
+  void ReplaceAllUsesWith(SDValue From, SDValue Op);
+  void ReplaceAllUsesWith(SDNode *From, SDNode *To);
+  void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
+
+  /// Replace any uses of From with To, leaving
+  /// uses of other values produced by From.getNode() alone.
+  void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
+
+  /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
+  /// This correctly handles the case where
+  /// there is an overlap between the From values and the To values.
+  void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
+                                  unsigned Num);
+
+  /// If an existing load has uses of its chain, create a token factor node with
+  /// that chain and the new memory node's chain and update users of the old
+  /// chain to the token factor. This ensures that the new memory node will have
+  /// the same relative memory dependency position as the old load. Returns the
+  /// new merged load chain.
+  SDValue makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New);
+
+  /// Topological-sort the AllNodes list and a
+  /// assign a unique node id for each node in the DAG based on their
+  /// topological order. Returns the number of nodes.
+  unsigned AssignTopologicalOrder();
+
+  /// Move node N in the AllNodes list to be immediately
+  /// before the given iterator Position. This may be used to update the
+  /// topological ordering when the list of nodes is modified.
+  void RepositionNode(allnodes_iterator Position, SDNode *N) {
+    AllNodes.insert(Position, AllNodes.remove(N));
+  }
+
+  /// Returns an APFloat semantics tag appropriate for the given type. If VT is
+  /// a vector type, the element semantics are returned.
+  static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
+    switch (VT.getScalarType().getSimpleVT().SimpleTy) {
+    default: llvm_unreachable("Unknown FP format");
+    case MVT::f16:     return APFloat::IEEEhalf();
+    case MVT::f32:     return APFloat::IEEEsingle();
+    case MVT::f64:     return APFloat::IEEEdouble();
+    case MVT::f80:     return APFloat::x87DoubleExtended();
+    case MVT::f128:    return APFloat::IEEEquad();
+    case MVT::ppcf128: return APFloat::PPCDoubleDouble();
+    }
+  }
+
+  /// Add a dbg_value SDNode. If SD is non-null that means the
+  /// value is produced by SD.
+  void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
+
+  /// Get the debug values which reference the given SDNode.
+  ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) {
+    return DbgInfo->getSDDbgValues(SD);
+  }
+
+public:
+  /// Return true if there are any SDDbgValue nodes associated
+  /// with this SelectionDAG.
+  bool hasDebugValues() const { return !DbgInfo->empty(); }
+
+  SDDbgInfo::DbgIterator DbgBegin() { return DbgInfo->DbgBegin(); }
+  SDDbgInfo::DbgIterator DbgEnd()   { return DbgInfo->DbgEnd(); }
+
+  SDDbgInfo::DbgIterator ByvalParmDbgBegin() {
+    return DbgInfo->ByvalParmDbgBegin();
+  }
+
+  SDDbgInfo::DbgIterator ByvalParmDbgEnd()   {
+    return DbgInfo->ByvalParmDbgEnd();
+  }
+
+  /// To be invoked on an SDNode that is slated to be erased. This
+  /// function mirrors \c llvm::salvageDebugInfo.
+  void salvageDebugInfo(SDNode &N);
+
+  void dump() const;
+
+  /// Create a stack temporary, suitable for holding the specified value type.
+  /// If minAlign is specified, the slot size will have at least that alignment.
+  SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
+
+  /// Create a stack temporary suitable for holding either of the specified
+  /// value types.
+  SDValue CreateStackTemporary(EVT VT1, EVT VT2);
+
+  SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
+                           const GlobalAddressSDNode *GA,
+                           const SDNode *N2);
+
+  SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
+                                 SDNode *Cst1, SDNode *Cst2);
+
+  SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
+                                 const ConstantSDNode *Cst1,
+                                 const ConstantSDNode *Cst2);
+
+  SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
+                                       ArrayRef<SDValue> Ops,
+                                       const SDNodeFlags Flags = SDNodeFlags());
+
+  /// Constant fold a setcc to true or false.
+  SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
+                    const SDLoc &dl);
+
+  /// See if the specified operand can be simplified with the knowledge that only
+  /// the bits specified by Mask are used.  If so, return the simpler operand,
+  /// otherwise return a null SDValue.
+  ///
+  /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
+  /// simplify nodes with multiple uses more aggressively.)
+  SDValue GetDemandedBits(SDValue V, const APInt &Mask);
+
+  /// Return true if the sign bit of Op is known to be zero.
+  /// We use this predicate to simplify operations downstream.
+  bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
+
+  /// Return true if 'Op & Mask' is known to be zero.  We
+  /// use this predicate to simplify operations downstream.  Op and Mask are
+  /// known to be the same type.
+  bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
+    const;
+
+  /// Determine which bits of Op are known to be either zero or one and return
+  /// them in Known. For vectors, the known bits are those that are shared by
+  /// every vector element.
+  /// Targets can implement the computeKnownBitsForTargetNode method in the
+  /// TargetLowering class to allow target nodes to be understood.
+  void computeKnownBits(SDValue Op, KnownBits &Known, unsigned Depth = 0) const;
+
+  /// Determine which bits of Op are known to be either zero or one and return
+  /// them in Known. The DemandedElts argument allows us to only collect the
+  /// known bits that are shared by the requested vector elements.
+  /// Targets can implement the computeKnownBitsForTargetNode method in the
+  /// TargetLowering class to allow target nodes to be understood.
+  void computeKnownBits(SDValue Op, KnownBits &Known, const APInt &DemandedElts,
+                        unsigned Depth = 0) const;
+
+  /// Used to represent the possible overflow behavior of an operation.
+  /// Never: the operation cannot overflow.
+  /// Always: the operation will always overflow.
+  /// Sometime: the operation may or may not overflow.
+  enum OverflowKind {
+    OFK_Never,
+    OFK_Sometime,
+    OFK_Always,
+  };
+
+  /// Determine if the result of the addition of 2 node can overflow.
+  OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
+
+  /// Test if the given value is known to have exactly one bit set. This differs
+  /// from computeKnownBits in that it doesn't necessarily determine which bit
+  /// is set.
+  bool isKnownToBeAPowerOfTwo(SDValue Val) const;
+
+  /// Return the number of times the sign bit of the register is replicated into
+  /// the other bits. We know that at least 1 bit is always equal to the sign
+  /// bit (itself), but other cases can give us information. For example,
+  /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
+  /// to each other, so we return 3. Targets can implement the
+  /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
+  /// target nodes to be understood.
+  unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
+
+  /// Return the number of times the sign bit of the register is replicated into
+  /// the other bits. We know that at least 1 bit is always equal to the sign
+  /// bit (itself), but other cases can give us information. For example,
+  /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
+  /// to each other, so we return 3. The DemandedElts argument allows
+  /// us to only collect the minimum sign bits of the requested vector elements.
+  /// Targets can implement the ComputeNumSignBitsForTarget method in the
+  /// TargetLowering class to allow target nodes to be understood.
+  unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
+                              unsigned Depth = 0) const;
+
+  /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
+  /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
+  /// is guaranteed to have the same semantics as an ADD. This handles the
+  /// equivalence:
+  ///     X|Cst == X+Cst iff X&Cst = 0.
+  bool isBaseWithConstantOffset(SDValue Op) const;
+
+  /// Test whether the given SDValue is known to never be NaN.
+  bool isKnownNeverNaN(SDValue Op) const;
+
+  /// Test whether the given SDValue is known to never be positive or negative
+  /// zero.
+  bool isKnownNeverZero(SDValue Op) const;
+
+  /// Test whether two SDValues are known to compare equal. This
+  /// is true if they are the same value, or if one is negative zero and the
+  /// other positive zero.
+  bool isEqualTo(SDValue A, SDValue B) const;
+
+  /// Return true if A and B have no common bits set. As an example, this can
+  /// allow an 'add' to be transformed into an 'or'.
+  bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
+
+  /// Utility function used by legalize and lowering to
+  /// "unroll" a vector operation by splitting out the scalars and operating
+  /// on each element individually.  If the ResNE is 0, fully unroll the vector
+  /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
+  /// If the  ResNE is greater than the width of the vector op, unroll the
+  /// vector op and fill the end of the resulting vector with UNDEFS.
+  SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
+
+  /// Return true if loads are next to each other and can be
+  /// merged. Check that both are nonvolatile and if LD is loading
+  /// 'Bytes' bytes from a location that is 'Dist' units away from the
+  /// location that the 'Base' load is loading from.
+  bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
+                                      unsigned Bytes, int Dist) const;
+
+  /// Infer alignment of a load / store address. Return 0 if
+  /// it cannot be inferred.
+  unsigned InferPtrAlignment(SDValue Ptr) const;
+
+  /// Compute the VTs needed for the low/hi parts of a type
+  /// which is split (or expanded) into two not necessarily identical pieces.
+  std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
+
+  /// Split the vector with EXTRACT_SUBVECTOR using the provides
+  /// VTs and return the low/high part.
+  std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
+                                          const EVT &LoVT, const EVT &HiVT);
+
+  /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
+  std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
+    EVT LoVT, HiVT;
+    std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
+    return SplitVector(N, DL, LoVT, HiVT);
+  }
+
+  /// Split the node's operand with EXTRACT_SUBVECTOR and
+  /// return the low/high part.
+  std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
+  {
+    return SplitVector(N->getOperand(OpNo), SDLoc(N));
+  }
+
+  /// Append the extracted elements from Start to Count out of the vector Op
+  /// in Args. If Count is 0, all of the elements will be extracted.
+  void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
+                             unsigned Start = 0, unsigned Count = 0);
+
+  /// Compute the default alignment value for the given type.
+  unsigned getEVTAlignment(EVT MemoryVT) const;
+
+  /// Test whether the given value is a constant int or similar node.
+  SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
+
+  /// Test whether the given value is a constant FP or similar node.
+  SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N);
+
+  /// \returns true if \p N is any kind of constant or build_vector of
+  /// constants, int or float. If a vector, it may not necessarily be a splat.
+  inline bool isConstantValueOfAnyType(SDValue N) {
+    return isConstantIntBuildVectorOrConstantInt(N) ||
+           isConstantFPBuildVectorOrConstantFP(N);
+  }
+
+private:
+  void InsertNode(SDNode *N);
+  bool RemoveNodeFromCSEMaps(SDNode *N);
+  void AddModifiedNodeToCSEMaps(SDNode *N);
+  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
+  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
+                               void *&InsertPos);
+  SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
+                               void *&InsertPos);
+  SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
+
+  void DeleteNodeNotInCSEMaps(SDNode *N);
+  void DeallocateNode(SDNode *N);
+
+  void allnodes_clear();
+
+  /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
+  /// not, return the insertion token that will make insertion faster.  This
+  /// overload is for nodes other than Constant or ConstantFP, use the other one
+  /// for those.
+  SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
+
+  /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
+  /// not, return the insertion token that will make insertion faster.  Performs
+  /// additional processing for constant nodes.
+  SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
+                              void *&InsertPos);
+
+  /// List of non-single value types.
+  FoldingSet<SDVTListNode> VTListMap;
+
+  /// Maps to auto-CSE operations.
+  std::vector<CondCodeSDNode*> CondCodeNodes;
+
+  std::vector<SDNode*> ValueTypeNodes;
+  std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
+  StringMap<SDNode*> ExternalSymbols;
+
+  std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
+  DenseMap<MCSymbol *, SDNode *> MCSymbols;
+};
+
+template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
+  using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>;
+
+  static nodes_iterator nodes_begin(SelectionDAG *G) {
+    return nodes_iterator(G->allnodes_begin());
+  }
+
+  static nodes_iterator nodes_end(SelectionDAG *G) {
+    return nodes_iterator(G->allnodes_end());
+  }
+};
+
+template <class TargetMemSDNode>
+SDValue SelectionDAG::getTargetMemSDNode(SDVTList VTs,
+                                         ArrayRef<SDValue> Ops,
+                                         const SDLoc &dl, EVT MemVT,
+                                         MachineMemOperand *MMO) {
+  /// Compose node ID and try to find an existing node.
+  FoldingSetNodeID ID;
+  unsigned Opcode =
+    TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
+  ID.AddInteger(Opcode);
+  ID.AddPointer(VTs.VTs);
+  for (auto& Op : Ops) {
+    ID.AddPointer(Op.getNode());
+    ID.AddInteger(Op.getResNo());
+  }
+  ID.AddInteger(MemVT.getRawBits());
+  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
+  ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
+    dl.getIROrder(), VTs, MemVT, MMO));
+
+  void *IP = nullptr;
+  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
+    cast<TargetMemSDNode>(E)->refineAlignment(MMO);
+    return SDValue(E, 0);
+  }
+
+  /// Existing node was not found. Create a new one.
+  auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
+                                       MemVT, MMO);
+  createOperands(N, Ops);
+  CSEMap.InsertNode(N, IP);
+  InsertNode(N);
+  return SDValue(N, 0);
+}
+
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_SELECTIONDAG_H