Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 1 | //===-BlockGenerators.h - Helper to generate code for statements-*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the BlockGenerator and VectorBlockGenerator classes, which |
| 10 | // generate sequential code and vectorized code for a polyhedral statement, |
| 11 | // respectively. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef POLLY_BLOCK_GENERATORS_H |
| 16 | #define POLLY_BLOCK_GENERATORS_H |
| 17 | |
| 18 | #include "polly/CodeGen/IRBuilder.h" |
| 19 | #include "polly/Support/ScopHelper.h" |
| 20 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 21 | #include "isl/isl-noexceptions.h" |
| 22 | |
| 23 | namespace polly { |
| 24 | using namespace llvm; |
| 25 | class MemoryAccess; |
| 26 | class ScopArrayInfo; |
| 27 | class IslExprBuilder; |
| 28 | |
| 29 | /// Generate a new basic block for a polyhedral statement. |
| 30 | class BlockGenerator { |
| 31 | public: |
| 32 | typedef llvm::SmallVector<ValueMapT, 8> VectorValueMapT; |
| 33 | |
| 34 | /// Map types to resolve scalar dependences. |
| 35 | /// |
| 36 | ///@{ |
| 37 | using AllocaMapTy = DenseMap<const ScopArrayInfo *, AssertingVH<AllocaInst>>; |
| 38 | |
| 39 | /// Simple vector of instructions to store escape users. |
| 40 | using EscapeUserVectorTy = SmallVector<Instruction *, 4>; |
| 41 | |
| 42 | /// Map type to resolve escaping users for scalar instructions. |
| 43 | /// |
| 44 | /// @see The EscapeMap member. |
| 45 | using EscapeUsersAllocaMapTy = |
| 46 | MapVector<Instruction *, |
| 47 | std::pair<AssertingVH<Value>, EscapeUserVectorTy>>; |
| 48 | |
| 49 | ///@} |
| 50 | |
| 51 | /// Create a generator for basic blocks. |
| 52 | /// |
| 53 | /// @param Builder The LLVM-IR Builder used to generate the statement. The |
| 54 | /// code is generated at the location, the Builder points |
| 55 | /// to. |
| 56 | /// @param LI The loop info for the current function |
| 57 | /// @param SE The scalar evolution info for the current function |
| 58 | /// @param DT The dominator tree of this function. |
| 59 | /// @param ScalarMap Map from scalars to their demoted location. |
| 60 | /// @param EscapeMap Map from scalars to their escape users and locations. |
| 61 | /// @param GlobalMap A mapping from llvm::Values used in the original scop |
| 62 | /// region to a new set of llvm::Values. Each reference to |
| 63 | /// an original value appearing in this mapping is replaced |
| 64 | /// with the new value it is mapped to. |
| 65 | /// @param ExprBuilder An expression builder to generate new access functions. |
| 66 | /// @param StartBlock The first basic block after the RTC. |
| 67 | BlockGenerator(PollyIRBuilder &Builder, LoopInfo &LI, ScalarEvolution &SE, |
| 68 | DominatorTree &DT, AllocaMapTy &ScalarMap, |
| 69 | EscapeUsersAllocaMapTy &EscapeMap, ValueMapT &GlobalMap, |
| 70 | IslExprBuilder *ExprBuilder, BasicBlock *StartBlock); |
| 71 | |
| 72 | /// Copy the basic block. |
| 73 | /// |
| 74 | /// This copies the entire basic block and updates references to old values |
| 75 | /// with references to new values, as defined by GlobalMap. |
| 76 | /// |
| 77 | /// @param Stmt The block statement to code generate. |
| 78 | /// @param LTS A map from old loops to new induction variables as |
| 79 | /// SCEVs. |
| 80 | /// @param NewAccesses A map from memory access ids to new ast expressions, |
| 81 | /// which may contain new access expressions for certain |
| 82 | /// memory accesses. |
| 83 | void copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, |
| 84 | isl_id_to_ast_expr *NewAccesses); |
| 85 | |
| 86 | /// Remove a ScopArrayInfo's allocation from the ScalarMap. |
| 87 | /// |
| 88 | /// This function allows to remove values from the ScalarMap. This is useful |
| 89 | /// if the corresponding alloca instruction will be deleted (or moved into |
| 90 | /// another module), as without removing these values the underlying |
| 91 | /// AssertingVH will trigger due to us still keeping reference to this |
| 92 | /// scalar. |
| 93 | /// |
| 94 | /// @param Array The array for which the alloca was generated. |
| 95 | void freeScalarAlloc(ScopArrayInfo *Array) { ScalarMap.erase(Array); } |
| 96 | |
| 97 | /// Return the alloca for @p Access. |
| 98 | /// |
| 99 | /// If no alloca was mapped for @p Access a new one is created. |
| 100 | /// |
| 101 | /// @param Access The memory access for which to generate the alloca. |
| 102 | /// |
| 103 | /// @returns The alloca for @p Access or a replacement value taken from |
| 104 | /// GlobalMap. |
| 105 | Value *getOrCreateAlloca(const MemoryAccess &Access); |
| 106 | |
| 107 | /// Return the alloca for @p Array. |
| 108 | /// |
| 109 | /// If no alloca was mapped for @p Array a new one is created. |
| 110 | /// |
| 111 | /// @param Array The array for which to generate the alloca. |
| 112 | /// |
| 113 | /// @returns The alloca for @p Array or a replacement value taken from |
| 114 | /// GlobalMap. |
| 115 | Value *getOrCreateAlloca(const ScopArrayInfo *Array); |
| 116 | |
| 117 | /// Finalize the code generation for the SCoP @p S. |
| 118 | /// |
| 119 | /// This will initialize and finalize the scalar variables we demoted during |
| 120 | /// the code generation. |
| 121 | /// |
| 122 | /// @see createScalarInitialization(Scop &) |
| 123 | /// @see createScalarFinalization(Region &) |
| 124 | void finalizeSCoP(Scop &S); |
| 125 | |
| 126 | /// An empty destructor |
| 127 | virtual ~BlockGenerator() {} |
| 128 | |
| 129 | BlockGenerator(const BlockGenerator &) = default; |
| 130 | |
| 131 | protected: |
| 132 | PollyIRBuilder &Builder; |
| 133 | LoopInfo &LI; |
| 134 | ScalarEvolution &SE; |
| 135 | IslExprBuilder *ExprBuilder; |
| 136 | |
| 137 | /// The dominator tree of this function. |
| 138 | DominatorTree &DT; |
| 139 | |
| 140 | /// The entry block of the current function. |
| 141 | BasicBlock *EntryBB; |
| 142 | |
| 143 | /// Map to resolve scalar dependences for PHI operands and scalars. |
| 144 | /// |
| 145 | /// When translating code that contains scalar dependences as they result from |
| 146 | /// inter-block scalar dependences (including the use of data carrying PHI |
| 147 | /// nodes), we do not directly regenerate in-register SSA code, but instead |
| 148 | /// allocate some stack memory through which these scalar values are passed. |
| 149 | /// Only a later pass of -mem2reg will then (re)introduce in-register |
| 150 | /// computations. |
| 151 | /// |
| 152 | /// To keep track of the memory location(s) used to store the data computed by |
| 153 | /// a given SSA instruction, we use the map 'ScalarMap'. ScalarMap maps a |
| 154 | /// given ScopArrayInfo to the junk of stack allocated memory, that is |
| 155 | /// used for code generation. |
| 156 | /// |
| 157 | /// Up to two different ScopArrayInfo objects are associated with each |
| 158 | /// llvm::Value: |
| 159 | /// |
| 160 | /// MemoryType::Value objects are used for normal scalar dependences that go |
| 161 | /// from a scalar definition to its use. Such dependences are lowered by |
| 162 | /// directly writing the value an instruction computes into the corresponding |
| 163 | /// chunk of memory and reading it back from this chunk of memory right before |
| 164 | /// every use of this original scalar value. The memory allocations for |
| 165 | /// MemoryType::Value objects end with '.s2a'. |
| 166 | /// |
| 167 | /// MemoryType::PHI (and MemoryType::ExitPHI) objects are used to model PHI |
| 168 | /// nodes. For each PHI nodes we introduce, besides the Array of type |
| 169 | /// MemoryType::Value, a second chunk of memory into which we write at the end |
| 170 | /// of each basic block preceding the PHI instruction the value passed |
| 171 | /// through this basic block. At the place where the PHI node is executed, we |
| 172 | /// replace the PHI node with a load from the corresponding MemoryType::PHI |
| 173 | /// memory location. The memory allocations for MemoryType::PHI end with |
| 174 | /// '.phiops'. |
| 175 | /// |
| 176 | /// Example: |
| 177 | /// |
| 178 | /// Input C Code |
| 179 | /// ============ |
| 180 | /// |
| 181 | /// S1: x1 = ... |
| 182 | /// for (i=0...N) { |
| 183 | /// S2: x2 = phi(x1, add) |
| 184 | /// S3: add = x2 + 42; |
| 185 | /// } |
| 186 | /// S4: print(x1) |
| 187 | /// print(x2) |
| 188 | /// print(add) |
| 189 | /// |
| 190 | /// |
| 191 | /// Unmodified IR IR After expansion |
| 192 | /// ============= ================== |
| 193 | /// |
| 194 | /// S1: x1 = ... S1: x1 = ... |
| 195 | /// x1.s2a = s1 |
| 196 | /// x2.phiops = s1 |
| 197 | /// | | |
| 198 | /// | <--<--<--<--< | <--<--<--<--< |
| 199 | /// | / \ | / \ . |
| 200 | /// V V \ V V \ . |
| 201 | /// S2: x2 = phi (x1, add) | S2: x2 = x2.phiops | |
| 202 | /// | x2.s2a = x2 | |
| 203 | /// | | |
| 204 | /// S3: add = x2 + 42 | S3: add = x2 + 42 | |
| 205 | /// | add.s2a = add | |
| 206 | /// | x2.phiops = add | |
| 207 | /// | \ / | \ / |
| 208 | /// | \ / | \ / |
| 209 | /// | >-->-->-->--> | >-->-->-->--> |
| 210 | /// V V |
| 211 | /// |
| 212 | /// S4: x1 = x1.s2a |
| 213 | /// S4: ... = x1 ... = x1 |
| 214 | /// x2 = x2.s2a |
| 215 | /// ... = x2 ... = x2 |
| 216 | /// add = add.s2a |
| 217 | /// ... = add ... = add |
| 218 | /// |
| 219 | /// ScalarMap = { x1:Value -> x1.s2a, x2:Value -> x2.s2a, |
| 220 | /// add:Value -> add.s2a, x2:PHI -> x2.phiops } |
| 221 | /// |
| 222 | /// ??? Why does a PHI-node require two memory chunks ??? |
| 223 | /// |
| 224 | /// One may wonder why a PHI node requires two memory chunks and not just |
| 225 | /// all data is stored in a single location. The following example tries |
| 226 | /// to store all data in .s2a and drops the .phiops location: |
| 227 | /// |
| 228 | /// S1: x1 = ... |
| 229 | /// x1.s2a = s1 |
| 230 | /// x2.s2a = s1 // use .s2a instead of .phiops |
| 231 | /// | |
| 232 | /// | <--<--<--<--< |
| 233 | /// | / \ . |
| 234 | /// V V \ . |
| 235 | /// S2: x2 = x2.s2a | // value is same as above, but read |
| 236 | /// | // from .s2a |
| 237 | /// | |
| 238 | /// x2.s2a = x2 | // store into .s2a as normal |
| 239 | /// | |
| 240 | /// S3: add = x2 + 42 | |
| 241 | /// add.s2a = add | |
| 242 | /// x2.s2a = add | // use s2a instead of .phiops |
| 243 | /// | \ / // !!! This is wrong, as x2.s2a now |
| 244 | /// | >-->-->-->--> // contains add instead of x2. |
| 245 | /// V |
| 246 | /// |
| 247 | /// S4: x1 = x1.s2a |
| 248 | /// ... = x1 |
| 249 | /// x2 = x2.s2a // !!! We now read 'add' instead of |
| 250 | /// ... = x2 // 'x2' |
| 251 | /// add = add.s2a |
| 252 | /// ... = add |
| 253 | /// |
| 254 | /// As visible in the example, the SSA value of the PHI node may still be |
| 255 | /// needed _after_ the basic block, which could conceptually branch to the |
| 256 | /// PHI node, has been run and has overwritten the PHI's old value. Hence, a |
| 257 | /// single memory location is not enough to code-generate a PHI node. |
| 258 | /// |
| 259 | /// Memory locations used for the special PHI node modeling. |
| 260 | AllocaMapTy &ScalarMap; |
| 261 | |
| 262 | /// Map from instructions to their escape users as well as the alloca. |
| 263 | EscapeUsersAllocaMapTy &EscapeMap; |
| 264 | |
| 265 | /// A map from llvm::Values referenced in the old code to a new set of |
| 266 | /// llvm::Values, which is used to replace these old values during |
| 267 | /// code generation. |
| 268 | ValueMapT &GlobalMap; |
| 269 | |
| 270 | /// The first basic block after the RTC. |
| 271 | BasicBlock *StartBlock; |
| 272 | |
| 273 | /// Split @p BB to create a new one we can use to clone @p BB in. |
| 274 | BasicBlock *splitBB(BasicBlock *BB); |
| 275 | |
| 276 | /// Copy the given basic block. |
| 277 | /// |
| 278 | /// @param Stmt The statement to code generate. |
| 279 | /// @param BB The basic block to code generate. |
| 280 | /// @param BBMap A mapping from old values to their new values in this |
| 281 | /// block. |
| 282 | /// @param LTS A map from old loops to new induction variables as |
| 283 | /// SCEVs. |
| 284 | /// @param NewAccesses A map from memory access ids to new ast expressions, |
| 285 | /// which may contain new access expressions for certain |
| 286 | /// memory accesses. |
| 287 | /// |
| 288 | /// @returns The copy of the basic block. |
| 289 | BasicBlock *copyBB(ScopStmt &Stmt, BasicBlock *BB, ValueMapT &BBMap, |
| 290 | LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses); |
| 291 | |
| 292 | /// Copy the given basic block. |
| 293 | /// |
| 294 | /// @param Stmt The statement to code generate. |
| 295 | /// @param BB The basic block to code generate. |
| 296 | /// @param BBCopy The new basic block to generate code in. |
| 297 | /// @param BBMap A mapping from old values to their new values in this |
| 298 | /// block. |
| 299 | /// @param LTS A map from old loops to new induction variables as |
| 300 | /// SCEVs. |
| 301 | /// @param NewAccesses A map from memory access ids to new ast expressions, |
| 302 | /// which may contain new access expressions for certain |
| 303 | /// memory accesses. |
| 304 | void copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *BBCopy, |
| 305 | ValueMapT &BBMap, LoopToScevMapT <S, |
| 306 | isl_id_to_ast_expr *NewAccesses); |
| 307 | |
| 308 | /// Generate reload of scalars demoted to memory and needed by @p Stmt. |
| 309 | /// |
| 310 | /// @param Stmt The statement we generate code for. |
| 311 | /// @param LTS A mapping from loops virtual canonical induction |
| 312 | /// variable to their new values. |
| 313 | /// @param BBMap A mapping from old values to their new values in this block. |
| 314 | /// @param NewAccesses A map from memory access ids to new ast expressions. |
| 315 | void generateScalarLoads(ScopStmt &Stmt, LoopToScevMapT <S, |
| 316 | ValueMapT &BBMap, |
| 317 | __isl_keep isl_id_to_ast_expr *NewAccesses); |
| 318 | |
| 319 | /// When statement tracing is enabled, build the print instructions for |
| 320 | /// printing the current statement instance. |
| 321 | /// |
| 322 | /// The printed output looks like: |
| 323 | /// |
| 324 | /// Stmt1(0) |
| 325 | /// |
| 326 | /// If printing of scalars is enabled, it also appends the value of each |
| 327 | /// scalar to the line: |
| 328 | /// |
| 329 | /// Stmt1(0) %i=1 %sum=5 |
| 330 | /// |
| 331 | /// @param Stmt The statement we generate code for. |
| 332 | /// @param LTS A mapping from loops virtual canonical induction |
| 333 | /// variable to their new values. |
| 334 | /// @param BBMap A mapping from old values to their new values in this block. |
| 335 | void generateBeginStmtTrace(ScopStmt &Stmt, LoopToScevMapT <S, |
| 336 | ValueMapT &BBMap); |
| 337 | |
| 338 | /// Generate instructions that compute whether one instance of @p Set is |
| 339 | /// executed. |
| 340 | /// |
| 341 | /// @param Stmt The statement we generate code for. |
| 342 | /// @param Subdomain A set in the space of @p Stmt's domain. Elements not in |
| 343 | /// @p Stmt's domain are ignored. |
| 344 | /// |
| 345 | /// @return An expression of type i1, generated into the current builder |
| 346 | /// position, that evaluates to 1 if the executed instance is part of |
| 347 | /// @p Set. |
| 348 | Value *buildContainsCondition(ScopStmt &Stmt, const isl::set &Subdomain); |
| 349 | |
| 350 | /// Generate code that executes in a subset of @p Stmt's domain. |
| 351 | /// |
| 352 | /// @param Stmt The statement we generate code for. |
| 353 | /// @param Subdomain The condition for some code to be executed. |
| 354 | /// @param Subject A name for the code that is executed |
| 355 | /// conditionally. Used to name new basic blocks and |
| 356 | /// instructions. |
| 357 | /// @param GenThenFunc Callback which generates the code to be executed |
| 358 | /// when the current executed instance is in @p Set. The |
| 359 | /// IRBuilder's position is moved to within the block that |
| 360 | /// executes conditionally for this callback. |
| 361 | void generateConditionalExecution(ScopStmt &Stmt, const isl::set &Subdomain, |
| 362 | StringRef Subject, |
| 363 | const std::function<void()> &GenThenFunc); |
| 364 | |
| 365 | /// Generate the scalar stores for the given statement. |
| 366 | /// |
| 367 | /// After the statement @p Stmt was copied all inner-SCoP scalar dependences |
| 368 | /// starting in @p Stmt (hence all scalar write accesses in @p Stmt) need to |
| 369 | /// be demoted to memory. |
| 370 | /// |
| 371 | /// @param Stmt The statement we generate code for. |
| 372 | /// @param LTS A mapping from loops virtual canonical induction |
| 373 | /// variable to their new values |
| 374 | /// (for values recalculated in the new ScoP, but not |
| 375 | /// within this basic block) |
| 376 | /// @param BBMap A mapping from old values to their new values in this block. |
| 377 | /// @param NewAccesses A map from memory access ids to new ast expressions. |
| 378 | virtual void generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, |
| 379 | ValueMapT &BBMap, |
| 380 | __isl_keep isl_id_to_ast_expr *NewAccesses); |
| 381 | |
| 382 | /// Handle users of @p Array outside the SCoP. |
| 383 | /// |
| 384 | /// @param S The current SCoP. |
| 385 | /// @param Inst The ScopArrayInfo to handle. |
| 386 | void handleOutsideUsers(const Scop &S, ScopArrayInfo *Array); |
| 387 | |
| 388 | /// Find scalar statements that have outside users. |
| 389 | /// |
| 390 | /// We register these scalar values to later update subsequent scalar uses of |
| 391 | /// these values to either use the newly computed value from within the scop |
| 392 | /// (if the scop was executed) or the unchanged original code (if the run-time |
| 393 | /// check failed). |
| 394 | /// |
| 395 | /// @param S The scop for which to find the outside users. |
| 396 | void findOutsideUsers(Scop &S); |
| 397 | |
| 398 | /// Initialize the memory of demoted scalars. |
| 399 | /// |
| 400 | /// @param S The scop for which to generate the scalar initializers. |
| 401 | void createScalarInitialization(Scop &S); |
| 402 | |
| 403 | /// Create exit PHI node merges for PHI nodes with more than two edges |
| 404 | /// from inside the scop. |
| 405 | /// |
| 406 | /// For scops which have a PHI node in the exit block that has more than two |
| 407 | /// incoming edges from inside the scop region, we require some special |
| 408 | /// handling to understand which of the possible values will be passed to the |
| 409 | /// PHI node from inside the optimized version of the scop. To do so ScopInfo |
| 410 | /// models the possible incoming values as write accesses of the ScopStmts. |
| 411 | /// |
| 412 | /// This function creates corresponding code to reload the computed outgoing |
| 413 | /// value from the stack slot it has been stored into and to pass it on to the |
| 414 | /// PHI node in the original exit block. |
| 415 | /// |
| 416 | /// @param S The scop for which to generate the exiting PHI nodes. |
| 417 | void createExitPHINodeMerges(Scop &S); |
| 418 | |
| 419 | /// Promote the values of demoted scalars after the SCoP. |
| 420 | /// |
| 421 | /// If a scalar value was used outside the SCoP we need to promote the value |
| 422 | /// stored in the memory cell allocated for that scalar and combine it with |
| 423 | /// the original value in the non-optimized SCoP. |
| 424 | void createScalarFinalization(Scop &S); |
| 425 | |
| 426 | /// Try to synthesize a new value |
| 427 | /// |
| 428 | /// Given an old value, we try to synthesize it in a new context from its |
| 429 | /// original SCEV expression. We start from the original SCEV expression, |
| 430 | /// then replace outdated parameter and loop references, and finally |
| 431 | /// expand it to code that computes this updated expression. |
| 432 | /// |
| 433 | /// @param Stmt The statement to code generate |
| 434 | /// @param Old The old Value |
| 435 | /// @param BBMap A mapping from old values to their new values |
| 436 | /// (for values recalculated within this basic block) |
| 437 | /// @param LTS A mapping from loops virtual canonical induction |
| 438 | /// variable to their new values |
| 439 | /// (for values recalculated in the new ScoP, but not |
| 440 | /// within this basic block) |
| 441 | /// @param L The loop that surrounded the instruction that referenced |
| 442 | /// this value in the original code. This loop is used to |
| 443 | /// evaluate the scalar evolution at the right scope. |
| 444 | /// |
| 445 | /// @returns o A newly synthesized value. |
| 446 | /// o NULL, if synthesizing the value failed. |
| 447 | Value *trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, |
| 448 | LoopToScevMapT <S, Loop *L) const; |
| 449 | |
| 450 | /// Get the new version of a value. |
| 451 | /// |
| 452 | /// Given an old value, we first check if a new version of this value is |
| 453 | /// available in the BBMap or GlobalMap. In case it is not and the value can |
| 454 | /// be recomputed using SCEV, we do so. If we can not recompute a value |
| 455 | /// using SCEV, but we understand that the value is constant within the scop, |
| 456 | /// we return the old value. If the value can still not be derived, this |
| 457 | /// function will assert. |
| 458 | /// |
| 459 | /// @param Stmt The statement to code generate. |
| 460 | /// @param Old The old Value. |
| 461 | /// @param BBMap A mapping from old values to their new values |
| 462 | /// (for values recalculated within this basic block). |
| 463 | /// @param LTS A mapping from loops virtual canonical induction |
| 464 | /// variable to their new values |
| 465 | /// (for values recalculated in the new ScoP, but not |
| 466 | /// within this basic block). |
| 467 | /// @param L The loop that surrounded the instruction that referenced |
| 468 | /// this value in the original code. This loop is used to |
| 469 | /// evaluate the scalar evolution at the right scope. |
| 470 | /// |
| 471 | /// @returns o The old value, if it is still valid. |
| 472 | /// o The new value, if available. |
| 473 | /// o NULL, if no value is found. |
| 474 | Value *getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, |
| 475 | LoopToScevMapT <S, Loop *L) const; |
| 476 | |
| 477 | void copyInstScalar(ScopStmt &Stmt, Instruction *Inst, ValueMapT &BBMap, |
| 478 | LoopToScevMapT <S); |
| 479 | |
| 480 | /// Get the innermost loop that surrounds the statement @p Stmt. |
| 481 | Loop *getLoopForStmt(const ScopStmt &Stmt) const; |
| 482 | |
| 483 | /// Generate the operand address |
| 484 | /// @param NewAccesses A map from memory access ids to new ast expressions, |
| 485 | /// which may contain new access expressions for certain |
| 486 | /// memory accesses. |
| 487 | Value *generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, |
| 488 | ValueMapT &BBMap, LoopToScevMapT <S, |
| 489 | isl_id_to_ast_expr *NewAccesses); |
| 490 | |
| 491 | /// Generate the operand address. |
| 492 | /// |
| 493 | /// @param Stmt The statement to generate code for. |
| 494 | /// @param L The innermost loop that surrounds the statement. |
| 495 | /// @param Pointer If the access expression is not changed (ie. not found |
| 496 | /// in @p LTS), use this Pointer from the original code |
| 497 | /// instead. |
| 498 | /// @param BBMap A mapping from old values to their new values. |
| 499 | /// @param LTS A mapping from loops virtual canonical induction |
| 500 | /// variable to their new values. |
| 501 | /// @param NewAccesses Ahead-of-time generated access expressions. |
| 502 | /// @param Id Identifier of the MemoryAccess to generate. |
| 503 | /// @param ExpectedType The type the returned value should have. |
| 504 | /// |
| 505 | /// @return The generated address. |
| 506 | Value *generateLocationAccessed(ScopStmt &Stmt, Loop *L, Value *Pointer, |
| 507 | ValueMapT &BBMap, LoopToScevMapT <S, |
| 508 | isl_id_to_ast_expr *NewAccesses, |
| 509 | __isl_take isl_id *Id, Type *ExpectedType); |
| 510 | |
| 511 | /// Generate the pointer value that is accesses by @p Access. |
| 512 | /// |
| 513 | /// For write accesses, generate the target address. For read accesses, |
| 514 | /// generate the source address. |
| 515 | /// The access can be either an array access or a scalar access. In the first |
| 516 | /// case, the returned address will point to an element into that array. In |
| 517 | /// the scalar case, an alloca is used. |
| 518 | /// If a new AccessRelation is set for the MemoryAccess, the new relation will |
| 519 | /// be used. |
| 520 | /// |
| 521 | /// @param Access The access to generate a pointer for. |
| 522 | /// @param L The innermost loop that surrounds the statement. |
| 523 | /// @param LTS A mapping from loops virtual canonical induction |
| 524 | /// variable to their new values. |
| 525 | /// @param BBMap A mapping from old values to their new values. |
| 526 | /// @param NewAccesses A map from memory access ids to new ast expressions. |
| 527 | /// |
| 528 | /// @return The generated address. |
| 529 | Value *getImplicitAddress(MemoryAccess &Access, Loop *L, LoopToScevMapT <S, |
| 530 | ValueMapT &BBMap, |
| 531 | __isl_keep isl_id_to_ast_expr *NewAccesses); |
| 532 | |
| 533 | /// @param NewAccesses A map from memory access ids to new ast expressions, |
| 534 | /// which may contain new access expressions for certain |
| 535 | /// memory accesses. |
| 536 | Value *generateArrayLoad(ScopStmt &Stmt, LoadInst *load, ValueMapT &BBMap, |
| 537 | LoopToScevMapT <S, |
| 538 | isl_id_to_ast_expr *NewAccesses); |
| 539 | |
| 540 | /// @param NewAccesses A map from memory access ids to new ast expressions, |
| 541 | /// which may contain new access expressions for certain |
| 542 | /// memory accesses. |
| 543 | void generateArrayStore(ScopStmt &Stmt, StoreInst *store, ValueMapT &BBMap, |
| 544 | LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses); |
| 545 | |
| 546 | /// Copy a single PHI instruction. |
| 547 | /// |
| 548 | /// The implementation in the BlockGenerator is trivial, however it allows |
| 549 | /// subclasses to handle PHIs different. |
| 550 | virtual void copyPHIInstruction(ScopStmt &, PHINode *, ValueMapT &, |
| 551 | LoopToScevMapT &) {} |
| 552 | |
| 553 | /// Copy a single Instruction. |
| 554 | /// |
| 555 | /// This copies a single Instruction and updates references to old values |
| 556 | /// with references to new values, as defined by GlobalMap and BBMap. |
| 557 | /// |
| 558 | /// @param Stmt The statement to code generate. |
| 559 | /// @param Inst The instruction to copy. |
| 560 | /// @param BBMap A mapping from old values to their new values |
| 561 | /// (for values recalculated within this basic block). |
| 562 | /// @param GlobalMap A mapping from old values to their new values |
| 563 | /// (for values recalculated in the new ScoP, but not |
| 564 | /// within this basic block). |
| 565 | /// @param LTS A mapping from loops virtual canonical induction |
| 566 | /// variable to their new values |
| 567 | /// (for values recalculated in the new ScoP, but not |
| 568 | /// within this basic block). |
| 569 | /// @param NewAccesses A map from memory access ids to new ast expressions, |
| 570 | /// which may contain new access expressions for certain |
| 571 | /// memory accesses. |
| 572 | void copyInstruction(ScopStmt &Stmt, Instruction *Inst, ValueMapT &BBMap, |
| 573 | LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses); |
| 574 | |
| 575 | /// Helper to determine if @p Inst can be synthesized in @p Stmt. |
| 576 | /// |
| 577 | /// @returns false, iff @p Inst can be synthesized in @p Stmt. |
| 578 | bool canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst); |
| 579 | |
| 580 | /// Remove dead instructions generated for BB |
| 581 | /// |
| 582 | /// @param BB The basic block code for which code has been generated. |
| 583 | /// @param BBMap A local map from old to new instructions. |
| 584 | void removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap); |
| 585 | |
| 586 | /// Invalidate the scalar evolution expressions for a scop. |
| 587 | /// |
| 588 | /// This function invalidates the scalar evolution results for all |
| 589 | /// instructions that are part of a given scop, and the loops |
| 590 | /// surrounding the users of merge blocks. This is necessary to ensure that |
| 591 | /// later scops do not obtain scalar evolution expressions that reference |
| 592 | /// values that earlier dominated the later scop, but have been moved in the |
| 593 | /// conditional part of an earlier scop and consequently do not any more |
| 594 | /// dominate the later scop. |
| 595 | /// |
| 596 | /// @param S The scop to invalidate. |
| 597 | void invalidateScalarEvolution(Scop &S); |
| 598 | }; |
| 599 | |
| 600 | /// Generate a new vector basic block for a polyhedral statement. |
| 601 | /// |
| 602 | /// The only public function exposed is generate(). |
| 603 | class VectorBlockGenerator : BlockGenerator { |
| 604 | public: |
| 605 | /// Generate a new vector basic block for a ScoPStmt. |
| 606 | /// |
| 607 | /// This code generation is similar to the normal, scalar code generation, |
| 608 | /// except that each instruction is code generated for several vector lanes |
| 609 | /// at a time. If possible instructions are issued as actual vector |
| 610 | /// instructions, but e.g. for address calculation instructions we currently |
| 611 | /// generate scalar instructions for each vector lane. |
| 612 | /// |
| 613 | /// @param BlockGen A block generator object used as parent. |
| 614 | /// @param Stmt The statement to code generate. |
| 615 | /// @param VLTS A mapping from loops virtual canonical induction |
| 616 | /// variable to their new values |
| 617 | /// (for values recalculated in the new ScoP, but not |
| 618 | /// within this basic block), one for each lane. |
| 619 | /// @param Schedule A map from the statement to a schedule where the |
| 620 | /// innermost dimension is the dimension of the innermost |
| 621 | /// loop containing the statement. |
| 622 | /// @param NewAccesses A map from memory access ids to new ast expressions, |
| 623 | /// which may contain new access expressions for certain |
| 624 | /// memory accesses. |
| 625 | static void generate(BlockGenerator &BlockGen, ScopStmt &Stmt, |
| 626 | std::vector<LoopToScevMapT> &VLTS, |
| 627 | __isl_keep isl_map *Schedule, |
| 628 | __isl_keep isl_id_to_ast_expr *NewAccesses) { |
| 629 | VectorBlockGenerator Generator(BlockGen, VLTS, Schedule); |
| 630 | Generator.copyStmt(Stmt, NewAccesses); |
| 631 | } |
| 632 | |
| 633 | private: |
| 634 | // This is a vector of loop->scev maps. The first map is used for the first |
| 635 | // vector lane, ... |
| 636 | // Each map, contains information about Instructions in the old ScoP, which |
| 637 | // are recalculated in the new SCoP. When copying the basic block, we replace |
| 638 | // all references to the old instructions with their recalculated values. |
| 639 | // |
| 640 | // For example, when the code generator produces this AST: |
| 641 | // |
| 642 | // for (int c1 = 0; c1 <= 1023; c1 += 1) |
| 643 | // for (int c2 = 0; c2 <= 1023; c2 += VF) |
| 644 | // for (int lane = 0; lane <= VF; lane += 1) |
| 645 | // Stmt(c2 + lane + 3, c1); |
| 646 | // |
| 647 | // VLTS[lane] contains a map: |
| 648 | // "outer loop in the old loop nest" -> SCEV("c2 + lane + 3"), |
| 649 | // "inner loop in the old loop nest" -> SCEV("c1"). |
| 650 | std::vector<LoopToScevMapT> &VLTS; |
| 651 | |
| 652 | // A map from the statement to a schedule where the innermost dimension is the |
| 653 | // dimension of the innermost loop containing the statement. |
| 654 | isl_map *Schedule; |
| 655 | |
| 656 | VectorBlockGenerator(BlockGenerator &BlockGen, |
| 657 | std::vector<LoopToScevMapT> &VLTS, |
| 658 | __isl_keep isl_map *Schedule); |
| 659 | |
| 660 | int getVectorWidth(); |
| 661 | |
| 662 | Value *getVectorValue(ScopStmt &Stmt, Value *Old, ValueMapT &VectorMap, |
| 663 | VectorValueMapT &ScalarMaps, Loop *L); |
| 664 | |
| 665 | Type *getVectorPtrTy(const Value *V, int Width); |
| 666 | |
| 667 | /// Load a vector from a set of adjacent scalars |
| 668 | /// |
| 669 | /// In case a set of scalars is known to be next to each other in memory, |
| 670 | /// create a vector load that loads those scalars |
| 671 | /// |
| 672 | /// %vector_ptr= bitcast double* %p to <4 x double>* |
| 673 | /// %vec_full = load <4 x double>* %vector_ptr |
| 674 | /// |
| 675 | /// @param Stmt The statement to code generate. |
| 676 | /// @param NegativeStride This is used to indicate a -1 stride. In such |
| 677 | /// a case we load the end of a base address and |
| 678 | /// shuffle the accesses in reverse order into the |
| 679 | /// vector. By default we would do only positive |
| 680 | /// strides. |
| 681 | /// |
| 682 | /// @param NewAccesses A map from memory access ids to new ast |
| 683 | /// expressions, which may contain new access |
| 684 | /// expressions for certain memory accesses. |
| 685 | Value *generateStrideOneLoad(ScopStmt &Stmt, LoadInst *Load, |
| 686 | VectorValueMapT &ScalarMaps, |
| 687 | __isl_keep isl_id_to_ast_expr *NewAccesses, |
| 688 | bool NegativeStride); |
| 689 | |
| 690 | /// Load a vector initialized from a single scalar in memory |
| 691 | /// |
| 692 | /// In case all elements of a vector are initialized to the same |
| 693 | /// scalar value, this value is loaded and shuffled into all elements |
| 694 | /// of the vector. |
| 695 | /// |
| 696 | /// %splat_one = load <1 x double>* %p |
| 697 | /// %splat = shufflevector <1 x double> %splat_one, <1 x |
| 698 | /// double> %splat_one, <4 x i32> zeroinitializer |
| 699 | /// |
| 700 | /// @param NewAccesses A map from memory access ids to new ast expressions, |
| 701 | /// which may contain new access expressions for certain |
| 702 | /// memory accesses. |
| 703 | Value *generateStrideZeroLoad(ScopStmt &Stmt, LoadInst *Load, |
| 704 | ValueMapT &BBMap, |
| 705 | __isl_keep isl_id_to_ast_expr *NewAccesses); |
| 706 | |
| 707 | /// Load a vector from scalars distributed in memory |
| 708 | /// |
| 709 | /// In case some scalars a distributed randomly in memory. Create a vector |
| 710 | /// by loading each scalar and by inserting one after the other into the |
| 711 | /// vector. |
| 712 | /// |
| 713 | /// %scalar_1= load double* %p_1 |
| 714 | /// %vec_1 = insertelement <2 x double> undef, double %scalar_1, i32 0 |
| 715 | /// %scalar 2 = load double* %p_2 |
| 716 | /// %vec_2 = insertelement <2 x double> %vec_1, double %scalar_1, i32 1 |
| 717 | /// |
| 718 | /// @param NewAccesses A map from memory access ids to new ast expressions, |
| 719 | /// which may contain new access expressions for certain |
| 720 | /// memory accesses. |
| 721 | Value *generateUnknownStrideLoad(ScopStmt &Stmt, LoadInst *Load, |
| 722 | VectorValueMapT &ScalarMaps, |
| 723 | __isl_keep isl_id_to_ast_expr *NewAccesses); |
| 724 | |
| 725 | /// @param NewAccesses A map from memory access ids to new ast expressions, |
| 726 | /// which may contain new access expressions for certain |
| 727 | /// memory accesses. |
| 728 | void generateLoad(ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, |
| 729 | VectorValueMapT &ScalarMaps, |
| 730 | __isl_keep isl_id_to_ast_expr *NewAccesses); |
| 731 | |
| 732 | void copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, |
| 733 | ValueMapT &VectorMap, VectorValueMapT &ScalarMaps); |
| 734 | |
| 735 | void copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, |
| 736 | ValueMapT &VectorMap, VectorValueMapT &ScalarMaps); |
| 737 | |
| 738 | /// @param NewAccesses A map from memory access ids to new ast expressions, |
| 739 | /// which may contain new access expressions for certain |
| 740 | /// memory accesses. |
| 741 | void copyStore(ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, |
| 742 | VectorValueMapT &ScalarMaps, |
| 743 | __isl_keep isl_id_to_ast_expr *NewAccesses); |
| 744 | |
| 745 | /// @param NewAccesses A map from memory access ids to new ast expressions, |
| 746 | /// which may contain new access expressions for certain |
| 747 | /// memory accesses. |
| 748 | void copyInstScalarized(ScopStmt &Stmt, Instruction *Inst, |
| 749 | ValueMapT &VectorMap, VectorValueMapT &ScalarMaps, |
| 750 | __isl_keep isl_id_to_ast_expr *NewAccesses); |
| 751 | |
| 752 | bool extractScalarValues(const Instruction *Inst, ValueMapT &VectorMap, |
| 753 | VectorValueMapT &ScalarMaps); |
| 754 | |
| 755 | bool hasVectorOperands(const Instruction *Inst, ValueMapT &VectorMap); |
| 756 | |
| 757 | /// Generate vector loads for scalars. |
| 758 | /// |
| 759 | /// @param Stmt The scop statement for which to generate the loads. |
| 760 | /// @param VectorBlockMap A map that will be updated to relate the original |
| 761 | /// values with the newly generated vector loads. |
| 762 | void generateScalarVectorLoads(ScopStmt &Stmt, ValueMapT &VectorBlockMap); |
| 763 | |
| 764 | /// Verify absence of scalar stores. |
| 765 | /// |
| 766 | /// @param Stmt The scop statement to check for scalar stores. |
| 767 | void verifyNoScalarStores(ScopStmt &Stmt); |
| 768 | |
| 769 | /// @param NewAccesses A map from memory access ids to new ast expressions, |
| 770 | /// which may contain new access expressions for certain |
| 771 | /// memory accesses. |
| 772 | void copyInstruction(ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, |
| 773 | VectorValueMapT &ScalarMaps, |
| 774 | __isl_keep isl_id_to_ast_expr *NewAccesses); |
| 775 | |
| 776 | /// @param NewAccesses A map from memory access ids to new ast expressions, |
| 777 | /// which may contain new access expressions for certain |
| 778 | /// memory accesses. |
| 779 | void copyStmt(ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses); |
| 780 | }; |
| 781 | |
| 782 | /// Generator for new versions of polyhedral region statements. |
| 783 | class RegionGenerator : public BlockGenerator { |
| 784 | public: |
| 785 | /// Create a generator for regions. |
| 786 | /// |
| 787 | /// @param BlockGen A generator for basic blocks. |
| 788 | RegionGenerator(BlockGenerator &BlockGen) : BlockGenerator(BlockGen) {} |
| 789 | |
| 790 | virtual ~RegionGenerator() {} |
| 791 | |
| 792 | /// Copy the region statement @p Stmt. |
| 793 | /// |
| 794 | /// This copies the entire region represented by @p Stmt and updates |
| 795 | /// references to old values with references to new values, as defined by |
| 796 | /// GlobalMap. |
| 797 | /// |
| 798 | /// @param Stmt The statement to code generate. |
| 799 | /// @param LTS A map from old loops to new induction variables as SCEVs. |
| 800 | void copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, |
| 801 | __isl_keep isl_id_to_ast_expr *IdToAstExp); |
| 802 | |
| 803 | private: |
| 804 | /// A map from old to the first new block in the region, that was created to |
| 805 | /// model the old basic block. |
| 806 | DenseMap<BasicBlock *, BasicBlock *> StartBlockMap; |
| 807 | |
| 808 | /// A map from old to the last new block in the region, that was created to |
| 809 | /// model the old basic block. |
| 810 | DenseMap<BasicBlock *, BasicBlock *> EndBlockMap; |
| 811 | |
| 812 | /// The "BBMaps" for the whole region (one for each block). In case a basic |
| 813 | /// block is code generated to multiple basic blocks (e.g., for partial |
| 814 | /// writes), the StartBasic is used as index for the RegionMap. |
| 815 | DenseMap<BasicBlock *, ValueMapT> RegionMaps; |
| 816 | |
| 817 | /// Mapping to remember PHI nodes that still need incoming values. |
| 818 | using PHINodePairTy = std::pair<PHINode *, PHINode *>; |
| 819 | DenseMap<BasicBlock *, SmallVector<PHINodePairTy, 4>> IncompletePHINodeMap; |
| 820 | |
| 821 | /// Repair the dominance tree after we created a copy block for @p BB. |
| 822 | /// |
| 823 | /// @returns The immediate dominator in the DT for @p BBCopy if in the region. |
| 824 | BasicBlock *repairDominance(BasicBlock *BB, BasicBlock *BBCopy); |
| 825 | |
| 826 | /// Add the new operand from the copy of @p IncomingBB to @p PHICopy. |
| 827 | /// |
| 828 | /// PHI nodes, which may have (multiple) edges that enter from outside the |
| 829 | /// non-affine subregion and even from outside the scop, are code generated as |
| 830 | /// follows: |
| 831 | /// |
| 832 | /// # Original |
| 833 | /// |
| 834 | /// Region: %A-> %exit |
| 835 | /// NonAffine Stmt: %nonaffB -> %D (includes %nonaffB, %nonaffC) |
| 836 | /// |
| 837 | /// pre: |
| 838 | /// %val = add i64 1, 1 |
| 839 | /// |
| 840 | /// A: |
| 841 | /// br label %nonaff |
| 842 | /// |
| 843 | /// nonaffB: |
| 844 | /// %phi = phi i64 [%val, %A], [%valC, %nonAffC], [%valD, %D] |
| 845 | /// %cmp = <nonaff> |
| 846 | /// br i1 %cmp, label %C, label %nonaffC |
| 847 | /// |
| 848 | /// nonaffC: |
| 849 | /// %valC = add i64 1, 1 |
| 850 | /// br i1 undef, label %D, label %nonaffB |
| 851 | /// |
| 852 | /// D: |
| 853 | /// %valD = ... |
| 854 | /// %exit_cond = <loopexit> |
| 855 | /// br i1 %exit_cond, label %nonaffB, label %exit |
| 856 | /// |
| 857 | /// exit: |
| 858 | /// ... |
| 859 | /// |
| 860 | /// - %start and %C enter from outside the non-affine region. |
| 861 | /// - %nonaffC enters from within the non-affine region. |
| 862 | /// |
| 863 | /// # New |
| 864 | /// |
| 865 | /// polly.A: |
| 866 | /// store i64 %val, i64* %phi.phiops |
| 867 | /// br label %polly.nonaffA.entry |
| 868 | /// |
| 869 | /// polly.nonaffB.entry: |
| 870 | /// %phi.phiops.reload = load i64, i64* %phi.phiops |
| 871 | /// br label %nonaffB |
| 872 | /// |
| 873 | /// polly.nonaffB: |
| 874 | /// %polly.phi = [%phi.phiops.reload, %nonaffB.entry], |
| 875 | /// [%p.valC, %polly.nonaffC] |
| 876 | /// |
| 877 | /// polly.nonaffC: |
| 878 | /// %p.valC = add i64 1, 1 |
| 879 | /// br i1 undef, label %polly.D, label %polly.nonaffB |
| 880 | /// |
| 881 | /// polly.D: |
| 882 | /// %p.valD = ... |
| 883 | /// store i64 %p.valD, i64* %phi.phiops |
| 884 | /// %p.exit_cond = <loopexit> |
| 885 | /// br i1 %p.exit_cond, label %polly.nonaffB, label %exit |
| 886 | /// |
| 887 | /// Values that enter the PHI from outside the non-affine region are stored |
| 888 | /// into the stack slot %phi.phiops by statements %polly.A and %polly.D and |
| 889 | /// reloaded in %polly.nonaffB.entry, a basic block generated before the |
| 890 | /// actual non-affine region. |
| 891 | /// |
| 892 | /// When generating the PHI node of the non-affine region in %polly.nonaffB, |
| 893 | /// incoming edges from outside the region are combined into a single branch |
| 894 | /// from %polly.nonaffB.entry which has as incoming value the value reloaded |
| 895 | /// from the %phi.phiops stack slot. Incoming edges from within the region |
| 896 | /// refer to the copied instructions (%p.valC) and basic blocks |
| 897 | /// (%polly.nonaffC) of the non-affine region. |
| 898 | /// |
| 899 | /// @param Stmt The statement to code generate. |
| 900 | /// @param PHI The original PHI we copy. |
| 901 | /// @param PHICopy The copy of @p PHI. |
| 902 | /// @param IncomingBB An incoming block of @p PHI. |
| 903 | /// @param LTS A map from old loops to new induction variables as |
| 904 | /// SCEVs. |
| 905 | void addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, PHINode *PHICopy, |
| 906 | BasicBlock *IncomingBB, LoopToScevMapT <S); |
| 907 | |
| 908 | /// Create a PHI that combines the incoming values from all incoming blocks |
| 909 | /// that are in the subregion. |
| 910 | /// |
| 911 | /// PHIs in the subregion's exit block can have incoming edges from within and |
| 912 | /// outside the subregion. This function combines the incoming values from |
| 913 | /// within the subregion to appear as if there is only one incoming edge from |
| 914 | /// the subregion (an additional exit block is created by RegionGenerator). |
| 915 | /// This is to avoid that a value is written to the .phiops location without |
| 916 | /// leaving the subregion because the exiting block as an edge back into the |
| 917 | /// subregion. |
| 918 | /// |
| 919 | /// @param MA The WRITE of MemoryKind::PHI/MemoryKind::ExitPHI for a PHI in |
| 920 | /// the subregion's exit block. |
| 921 | /// @param LTS Virtual induction variable mapping. |
| 922 | /// @param BBMap A mapping from old values to their new values in this block. |
| 923 | /// @param L Loop surrounding this region statement. |
| 924 | /// |
| 925 | /// @returns The constructed PHI node. |
| 926 | PHINode *buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, ValueMapT &BBMap, |
| 927 | Loop *L); |
| 928 | |
| 929 | /// @param Return the new value of a scalar write, creating a PHINode if |
| 930 | /// necessary. |
| 931 | /// |
| 932 | /// @param MA A scalar WRITE MemoryAccess. |
| 933 | /// @param LTS Virtual induction variable mapping. |
| 934 | /// @param BBMap A mapping from old values to their new values in this block. |
| 935 | /// |
| 936 | /// @returns The effective value of @p MA's written value when leaving the |
| 937 | /// subregion. |
| 938 | /// @see buildExitPHI |
| 939 | Value *getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, ValueMapT &BBMap); |
| 940 | |
| 941 | /// Generate the scalar stores for the given statement. |
| 942 | /// |
| 943 | /// After the statement @p Stmt was copied all inner-SCoP scalar dependences |
| 944 | /// starting in @p Stmt (hence all scalar write accesses in @p Stmt) need to |
| 945 | /// be demoted to memory. |
| 946 | /// |
| 947 | /// @param Stmt The statement we generate code for. |
| 948 | /// @param LTS A mapping from loops virtual canonical induction variable to |
| 949 | /// their new values (for values recalculated in the new ScoP, |
| 950 | /// but not within this basic block) |
| 951 | /// @param BBMap A mapping from old values to their new values in this block. |
| 952 | /// @param LTS A mapping from loops virtual canonical induction variable to |
| 953 | /// their new values. |
| 954 | virtual void |
| 955 | generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMAp, |
| 956 | __isl_keep isl_id_to_ast_expr *NewAccesses) override; |
| 957 | |
| 958 | /// Copy a single PHI instruction. |
| 959 | /// |
| 960 | /// This copies a single PHI instruction and updates references to old values |
| 961 | /// with references to new values, as defined by GlobalMap and BBMap. |
| 962 | /// |
| 963 | /// @param Stmt The statement to code generate. |
| 964 | /// @param PHI The PHI instruction to copy. |
| 965 | /// @param BBMap A mapping from old values to their new values |
| 966 | /// (for values recalculated within this basic block). |
| 967 | /// @param LTS A map from old loops to new induction variables as SCEVs. |
| 968 | virtual void copyPHIInstruction(ScopStmt &Stmt, PHINode *Inst, |
| 969 | ValueMapT &BBMap, |
| 970 | LoopToScevMapT <S) override; |
| 971 | }; |
| 972 | } // namespace polly |
| 973 | #endif |