blob: 305107c4875068fe3b2a493e103f73cb5589f975 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file describes how to lower LLVM code to machine code. This has two
11/// main components:
12///
13/// 1. Which ValueTypes are natively supported by the target.
14/// 2. Which operations are supported for supported ValueTypes.
15/// 3. Cost thresholds for alternative implementations of certain operations.
16///
17/// In addition it has a few other components, like information about FP
18/// immediates.
19///
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_CODEGEN_TARGETLOWERING_H
23#define LLVM_CODEGEN_TARGETLOWERING_H
24
25#include "llvm/ADT/APInt.h"
26#include "llvm/ADT/ArrayRef.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringRef.h"
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010031#include "llvm/CodeGen/DAGCombine.h"
32#include "llvm/CodeGen/ISDOpcodes.h"
33#include "llvm/CodeGen/RuntimeLibcalls.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/CodeGen/SelectionDAGNodes.h"
36#include "llvm/CodeGen/TargetCallingConv.h"
37#include "llvm/CodeGen/ValueTypes.h"
38#include "llvm/IR/Attributes.h"
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010039#include "llvm/IR/CallingConv.h"
40#include "llvm/IR/DataLayout.h"
41#include "llvm/IR/DerivedTypes.h"
42#include "llvm/IR/Function.h"
43#include "llvm/IR/IRBuilder.h"
44#include "llvm/IR/InlineAsm.h"
45#include "llvm/IR/Instruction.h"
46#include "llvm/IR/Instructions.h"
47#include "llvm/IR/Type.h"
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020048#include "llvm/Support/Alignment.h"
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010049#include "llvm/Support/AtomicOrdering.h"
50#include "llvm/Support/Casting.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MachineValueType.h"
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010053#include <algorithm>
54#include <cassert>
55#include <climits>
56#include <cstdint>
57#include <iterator>
58#include <map>
59#include <string>
60#include <utility>
61#include <vector>
62
63namespace llvm {
64
65class BranchProbability;
66class CCState;
67class CCValAssign;
68class Constant;
69class FastISel;
70class FunctionLoweringInfo;
71class GlobalValue;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020072class GISelKnownBits;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010073class IntrinsicInst;
74struct KnownBits;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020075class LegacyDivergenceAnalysis;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010076class LLVMContext;
77class MachineBasicBlock;
78class MachineFunction;
79class MachineInstr;
80class MachineJumpTableInfo;
81class MachineLoop;
82class MachineRegisterInfo;
83class MCContext;
84class MCExpr;
85class Module;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020086class ProfileSummaryInfo;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010087class TargetLibraryInfo;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020088class TargetMachine;
89class TargetRegisterClass;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010090class TargetRegisterInfo;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020091class TargetTransformInfo;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010092class Value;
93
94namespace Sched {
95
96 enum Preference {
97 None, // No preference
98 Source, // Follow source order.
99 RegPressure, // Scheduling for lowest register pressure.
100 Hybrid, // Scheduling for both latency and register pressure.
101 ILP, // Scheduling for ILP in low register pressure mode.
102 VLIW // Scheduling for VLIW targets.
103 };
104
105} // end namespace Sched
106
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200107// MemOp models a memory operation, either memset or memcpy/memmove.
108struct MemOp {
109private:
110 // Shared
111 uint64_t Size;
112 bool DstAlignCanChange; // true if destination alignment can satisfy any
113 // constraint.
114 Align DstAlign; // Specified alignment of the memory operation.
115
116 bool AllowOverlap;
117 // memset only
118 bool IsMemset; // If setthis memory operation is a memset.
119 bool ZeroMemset; // If set clears out memory with zeros.
120 // memcpy only
121 bool MemcpyStrSrc; // Indicates whether the memcpy source is an in-register
122 // constant so it does not need to be loaded.
123 Align SrcAlign; // Inferred alignment of the source or default value if the
124 // memory operation does not need to load the value.
125public:
126 static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
127 Align SrcAlign, bool IsVolatile,
128 bool MemcpyStrSrc = false) {
129 MemOp Op;
130 Op.Size = Size;
131 Op.DstAlignCanChange = DstAlignCanChange;
132 Op.DstAlign = DstAlign;
133 Op.AllowOverlap = !IsVolatile;
134 Op.IsMemset = false;
135 Op.ZeroMemset = false;
136 Op.MemcpyStrSrc = MemcpyStrSrc;
137 Op.SrcAlign = SrcAlign;
138 return Op;
139 }
140
141 static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
142 bool IsZeroMemset, bool IsVolatile) {
143 MemOp Op;
144 Op.Size = Size;
145 Op.DstAlignCanChange = DstAlignCanChange;
146 Op.DstAlign = DstAlign;
147 Op.AllowOverlap = !IsVolatile;
148 Op.IsMemset = true;
149 Op.ZeroMemset = IsZeroMemset;
150 Op.MemcpyStrSrc = false;
151 return Op;
152 }
153
154 uint64_t size() const { return Size; }
155 Align getDstAlign() const {
156 assert(!DstAlignCanChange);
157 return DstAlign;
158 }
159 bool isFixedDstAlign() const { return !DstAlignCanChange; }
160 bool allowOverlap() const { return AllowOverlap; }
161 bool isMemset() const { return IsMemset; }
162 bool isMemcpy() const { return !IsMemset; }
163 bool isMemcpyWithFixedDstAlign() const {
164 return isMemcpy() && !DstAlignCanChange;
165 }
166 bool isZeroMemset() const { return isMemset() && ZeroMemset; }
167 bool isMemcpyStrSrc() const {
168 assert(isMemcpy() && "Must be a memcpy");
169 return MemcpyStrSrc;
170 }
171 Align getSrcAlign() const {
172 assert(isMemcpy() && "Must be a memcpy");
173 return SrcAlign;
174 }
175 bool isSrcAligned(Align AlignCheck) const {
176 return isMemset() || llvm::isAligned(AlignCheck, SrcAlign.value());
177 }
178 bool isDstAligned(Align AlignCheck) const {
179 return DstAlignCanChange || llvm::isAligned(AlignCheck, DstAlign.value());
180 }
181 bool isAligned(Align AlignCheck) const {
182 return isSrcAligned(AlignCheck) && isDstAligned(AlignCheck);
183 }
184};
185
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100186/// This base class for TargetLowering contains the SelectionDAG-independent
187/// parts that can be used from the rest of CodeGen.
188class TargetLoweringBase {
189public:
190 /// This enum indicates whether operations are valid for a target, and if not,
191 /// what action should be used to make them valid.
192 enum LegalizeAction : uint8_t {
193 Legal, // The target natively supports this operation.
194 Promote, // This operation should be executed in a larger type.
195 Expand, // Try to expand this to other ops, otherwise use a libcall.
196 LibCall, // Don't try to expand this to other ops, always use a libcall.
197 Custom // Use the LowerOperation hook to implement custom lowering.
198 };
199
200 /// This enum indicates whether a types are legal for a target, and if not,
201 /// what action should be used to make them valid.
202 enum LegalizeTypeAction : uint8_t {
203 TypeLegal, // The target natively supports this type.
204 TypePromoteInteger, // Replace this integer with a larger one.
205 TypeExpandInteger, // Split this integer into two of half the size.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200206 TypeSoftenFloat, // Convert this float to a same size integer type.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100207 TypeExpandFloat, // Split this float into two of half the size.
208 TypeScalarizeVector, // Replace this one-element vector with its element.
209 TypeSplitVector, // Split this vector into two of half the size.
210 TypeWidenVector, // This vector should be widened into a larger vector.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200211 TypePromoteFloat, // Replace this float with a larger one.
212 TypeSoftPromoteHalf, // Soften half to i16 and use float to do arithmetic.
213 TypeScalarizeScalableVector, // This action is explicitly left unimplemented.
214 // While it is theoretically possible to
215 // legalize operations on scalable types with a
216 // loop that handles the vscale * #lanes of the
217 // vector, this is non-trivial at SelectionDAG
218 // level and these types are better to be
219 // widened or promoted.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100220 };
221
222 /// LegalizeKind holds the legalization kind that needs to happen to EVT
223 /// in order to type-legalize it.
224 using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
225
226 /// Enum that describes how the target represents true/false values.
227 enum BooleanContent {
228 UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage.
229 ZeroOrOneBooleanContent, // All bits zero except for bit 0.
230 ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
231 };
232
233 /// Enum that describes what type of support for selects the target has.
234 enum SelectSupportKind {
235 ScalarValSelect, // The target supports scalar selects (ex: cmov).
236 ScalarCondVectorVal, // The target supports selects with a scalar condition
237 // and vector values (ex: cmov).
238 VectorMaskSelect // The target supports vector selects with a vector
239 // mask (ex: x86 blends).
240 };
241
242 /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
243 /// to, if at all. Exists because different targets have different levels of
244 /// support for these atomic instructions, and also have different options
245 /// w.r.t. what they should expand to.
246 enum class AtomicExpansionKind {
247 None, // Don't expand the instruction.
248 LLSC, // Expand the instruction into loadlinked/storeconditional; used
249 // by ARM/AArch64.
250 LLOnly, // Expand the (load) instruction into just a load-linked, which has
251 // greater atomic guarantees than a normal load.
252 CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
Andrew Scull0372a572018-11-16 15:47:06 +0000253 MaskedIntrinsic, // Use a target-specific intrinsic for the LL/SC loop.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100254 };
255
256 /// Enum that specifies when a multiplication should be expanded.
257 enum class MulExpansionKind {
258 Always, // Always expand the instruction.
259 OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
260 // or custom.
261 };
262
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200263 /// Enum that specifies when a float negation is beneficial.
264 enum class NegatibleCost {
265 Cheaper = 0, // Negated expression is cheaper.
266 Neutral = 1, // Negated expression has the same cost.
267 Expensive = 2 // Negated expression is more expensive.
268 };
269
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100270 class ArgListEntry {
271 public:
272 Value *Val = nullptr;
273 SDValue Node = SDValue();
274 Type *Ty = nullptr;
275 bool IsSExt : 1;
276 bool IsZExt : 1;
277 bool IsInReg : 1;
278 bool IsSRet : 1;
279 bool IsNest : 1;
280 bool IsByVal : 1;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200281 bool IsByRef : 1;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100282 bool IsInAlloca : 1;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200283 bool IsPreallocated : 1;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100284 bool IsReturned : 1;
285 bool IsSwiftSelf : 1;
286 bool IsSwiftError : 1;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200287 bool IsCFGuardTarget : 1;
288 MaybeAlign Alignment = None;
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100289 Type *ByValType = nullptr;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200290 Type *PreallocatedType = nullptr;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100291
292 ArgListEntry()
293 : IsSExt(false), IsZExt(false), IsInReg(false), IsSRet(false),
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200294 IsNest(false), IsByVal(false), IsByRef(false), IsInAlloca(false),
295 IsPreallocated(false), IsReturned(false), IsSwiftSelf(false),
296 IsSwiftError(false), IsCFGuardTarget(false) {}
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100297
Andrew Walbran16937d02019-10-22 13:54:20 +0100298 void setAttributes(const CallBase *Call, unsigned ArgIdx);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100299 };
300 using ArgListTy = std::vector<ArgListEntry>;
301
302 virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
303 ArgListTy &Args) const {};
304
305 static ISD::NodeType getExtendForContent(BooleanContent Content) {
306 switch (Content) {
307 case UndefinedBooleanContent:
308 // Extend by adding rubbish bits.
309 return ISD::ANY_EXTEND;
310 case ZeroOrOneBooleanContent:
311 // Extend by adding zero bits.
312 return ISD::ZERO_EXTEND;
313 case ZeroOrNegativeOneBooleanContent:
314 // Extend by copying the sign bit.
315 return ISD::SIGN_EXTEND;
316 }
317 llvm_unreachable("Invalid content kind");
318 }
319
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100320 explicit TargetLoweringBase(const TargetMachine &TM);
321 TargetLoweringBase(const TargetLoweringBase &) = delete;
322 TargetLoweringBase &operator=(const TargetLoweringBase &) = delete;
323 virtual ~TargetLoweringBase() = default;
324
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200325 /// Return true if the target support strict float operation
326 bool isStrictFPEnabled() const {
327 return IsStrictFPEnabled;
328 }
329
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100330protected:
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100331 /// Initialize all of the actions to default values.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100332 void initActions();
333
334public:
335 const TargetMachine &getTargetMachine() const { return TM; }
336
337 virtual bool useSoftFloat() const { return false; }
338
339 /// Return the pointer type for the given address space, defaults to
340 /// the pointer type from the data layout.
341 /// FIXME: The default needs to be removed once all the code is updated.
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100342 virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
343 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
344 }
345
346 /// Return the in-memory pointer type for the given address space, defaults to
347 /// the pointer type from the data layout. FIXME: The default needs to be
348 /// removed once all the code is updated.
349 MVT getPointerMemTy(const DataLayout &DL, uint32_t AS = 0) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100350 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
351 }
352
353 /// Return the type for frame index, which is determined by
354 /// the alloca address space specified through the data layout.
355 MVT getFrameIndexTy(const DataLayout &DL) const {
356 return getPointerTy(DL, DL.getAllocaAddrSpace());
357 }
358
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200359 /// Return the type for code pointers, which is determined by the program
360 /// address space specified through the data layout.
361 MVT getProgramPointerTy(const DataLayout &DL) const {
362 return getPointerTy(DL, DL.getProgramAddressSpace());
363 }
364
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100365 /// Return the type for operands of fence.
366 /// TODO: Let fence operands be of i32 type and remove this.
367 virtual MVT getFenceOperandTy(const DataLayout &DL) const {
368 return getPointerTy(DL);
369 }
370
371 /// EVT is not used in-tree, but is used by out-of-tree target.
372 /// A documentation for this function would be nice...
373 virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
374
375 EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
376 bool LegalTypes = true) const;
377
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200378 /// Return the preferred type to use for a shift opcode, given the shifted
379 /// amount type is \p ShiftValueTy.
380 LLVM_READONLY
381 virtual LLT getPreferredShiftAmountTy(LLT ShiftValueTy) const {
382 return ShiftValueTy;
383 }
384
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100385 /// Returns the type to be used for the index operand of:
386 /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
387 /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
388 virtual MVT getVectorIdxTy(const DataLayout &DL) const {
389 return getPointerTy(DL);
390 }
391
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200392 /// This callback is used to inspect load/store instructions and add
393 /// target-specific MachineMemOperand flags to them. The default
394 /// implementation does nothing.
395 virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const {
396 return MachineMemOperand::MONone;
397 }
398
399 MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI,
400 const DataLayout &DL) const;
401 MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI,
402 const DataLayout &DL) const;
403 MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI,
404 const DataLayout &DL) const;
405
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100406 virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
407 return true;
408 }
409
Andrew Walbran16937d02019-10-22 13:54:20 +0100410 /// Return true if it is profitable to convert a select of FP constants into
411 /// a constant pool load whose address depends on the select condition. The
412 /// parameter may be used to differentiate a select with FP compare from
413 /// integer compare.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200414 virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const {
Andrew Walbran16937d02019-10-22 13:54:20 +0100415 return true;
416 }
417
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100418 /// Return true if multiple condition registers are available.
419 bool hasMultipleConditionRegisters() const {
420 return HasMultipleConditionRegisters;
421 }
422
423 /// Return true if the target has BitExtract instructions.
424 bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
425
426 /// Return the preferred vector type legalization action.
427 virtual TargetLoweringBase::LegalizeTypeAction
Andrew Walbran16937d02019-10-22 13:54:20 +0100428 getPreferredVectorAction(MVT VT) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100429 // The default action for one element vectors is to scalarize
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200430 if (VT.getVectorElementCount().isScalar())
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100431 return TypeScalarizeVector;
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100432 // The default action for an odd-width vector is to widen.
433 if (!VT.isPow2VectorType())
434 return TypeWidenVector;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100435 // The default action for other vectors is to promote
436 return TypePromoteInteger;
437 }
438
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200439 // Return true if the half type should be passed around as i16, but promoted
440 // to float around arithmetic. The default behavior is to pass around as
441 // float and convert around loads/stores/bitcasts and other places where
442 // the size matters.
443 virtual bool softPromoteHalfType() const { return false; }
444
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100445 // There are two general methods for expanding a BUILD_VECTOR node:
446 // 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
447 // them together.
448 // 2. Build the vector on the stack and then load it.
449 // If this function returns true, then method (1) will be used, subject to
450 // the constraint that all of the necessary shuffles are legal (as determined
451 // by isShuffleMaskLegal). If this function returns false, then method (2) is
452 // always used. The vector type, and the number of defined values, are
453 // provided.
454 virtual bool
455 shouldExpandBuildVectorWithShuffles(EVT /* VT */,
456 unsigned DefinedValues) const {
457 return DefinedValues < 3;
458 }
459
460 /// Return true if integer divide is usually cheaper than a sequence of
461 /// several shifts, adds, and multiplies for this target.
462 /// The definition of "cheaper" may depend on whether we're optimizing
463 /// for speed or for size.
464 virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
465
466 /// Return true if the target can handle a standalone remainder operation.
467 virtual bool hasStandaloneRem(EVT VT) const {
468 return true;
469 }
470
471 /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
472 virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
473 // Default behavior is to replace SQRT(X) with X*RSQRT(X).
474 return false;
475 }
476
477 /// Reciprocal estimate status values used by the functions below.
478 enum ReciprocalEstimate : int {
479 Unspecified = -1,
480 Disabled = 0,
481 Enabled = 1
482 };
483
484 /// Return a ReciprocalEstimate enum value for a square root of the given type
485 /// based on the function's attributes. If the operation is not overridden by
486 /// the function's attributes, "Unspecified" is returned and target defaults
487 /// are expected to be used for instruction selection.
488 int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const;
489
490 /// Return a ReciprocalEstimate enum value for a division of the given type
491 /// based on the function's attributes. If the operation is not overridden by
492 /// the function's attributes, "Unspecified" is returned and target defaults
493 /// are expected to be used for instruction selection.
494 int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const;
495
496 /// Return the refinement step count for a square root of the given type based
497 /// on the function's attributes. If the operation is not overridden by
498 /// the function's attributes, "Unspecified" is returned and target defaults
499 /// are expected to be used for instruction selection.
500 int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
501
502 /// Return the refinement step count for a division of the given type based
503 /// on the function's attributes. If the operation is not overridden by
504 /// the function's attributes, "Unspecified" is returned and target defaults
505 /// are expected to be used for instruction selection.
506 int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
507
508 /// Returns true if target has indicated at least one type should be bypassed.
509 bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
510
511 /// Returns map of slow types for division or remainder with corresponding
512 /// fast types
513 const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
514 return BypassSlowDivWidths;
515 }
516
517 /// Return true if Flow Control is an expensive operation that should be
518 /// avoided.
519 bool isJumpExpensive() const { return JumpIsExpensive; }
520
521 /// Return true if selects are only cheaper than branches if the branch is
522 /// unlikely to be predicted right.
523 bool isPredictableSelectExpensive() const {
524 return PredictableSelectIsExpensive;
525 }
526
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200527 virtual bool fallBackToDAGISel(const Instruction &Inst) const {
528 return false;
529 }
530
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100531 /// If a branch or a select condition is skewed in one direction by more than
532 /// this factor, it is very likely to be predicted correctly.
533 virtual BranchProbability getPredictableBranchThreshold() const;
534
535 /// Return true if the following transform is beneficial:
536 /// fold (conv (load x)) -> (load (conv*)x)
537 /// On architectures that don't natively support some vector loads
538 /// efficiently, casting the load to a smaller vector of larger types and
539 /// loading is more efficient, however, this can be undone by optimizations in
540 /// dag combiner.
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100541 virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
542 const SelectionDAG &DAG,
543 const MachineMemOperand &MMO) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100544 // Don't do if we could do an indexed load on the original type, but not on
545 // the new one.
546 if (!LoadVT.isSimple() || !BitcastVT.isSimple())
547 return true;
548
549 MVT LoadMVT = LoadVT.getSimpleVT();
550
551 // Don't bother doing this if it's just going to be promoted again later, as
552 // doing so might interfere with other combines.
553 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
554 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
555 return false;
556
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100557 bool Fast = false;
558 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
559 MMO, &Fast) && Fast;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100560 }
561
562 /// Return true if the following transform is beneficial:
563 /// (store (y (conv x)), y*)) -> (store x, (x*))
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100564 virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT,
565 const SelectionDAG &DAG,
566 const MachineMemOperand &MMO) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100567 // Default to the same logic as loads.
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100568 return isLoadBitCastBeneficial(StoreVT, BitcastVT, DAG, MMO);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100569 }
570
571 /// Return true if it is expected to be cheaper to do a store of a non-zero
572 /// vector constant with the given size and type for the address space than to
573 /// store the individual scalar element constants.
574 virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
575 unsigned NumElem,
576 unsigned AddrSpace) const {
577 return false;
578 }
579
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100580 /// Allow store merging for the specified type after legalization in addition
581 /// to before legalization. This may transform stores that do not exist
582 /// earlier (for example, stores created from intrinsics).
583 virtual bool mergeStoresAfterLegalization(EVT MemVT) const {
584 return true;
585 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100586
587 /// Returns if it's reasonable to merge stores to MemVT size.
588 virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
589 const SelectionDAG &DAG) const {
590 return true;
591 }
592
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100593 /// Return true if it is cheap to speculate a call to intrinsic cttz.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100594 virtual bool isCheapToSpeculateCttz() const {
595 return false;
596 }
597
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100598 /// Return true if it is cheap to speculate a call to intrinsic ctlz.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100599 virtual bool isCheapToSpeculateCtlz() const {
600 return false;
601 }
602
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100603 /// Return true if ctlz instruction is fast.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100604 virtual bool isCtlzFast() const {
605 return false;
606 }
607
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200608 /// Return the maximum number of "x & (x - 1)" operations that can be done
609 /// instead of deferring to a custom CTPOP.
610 virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const {
611 return 1;
612 }
613
614 /// Return true if instruction generated for equality comparison is folded
615 /// with instruction generated for signed comparison.
616 virtual bool isEqualityCmpFoldedWithSignedCmp() const { return true; }
617
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100618 /// Return true if it is safe to transform an integer-domain bitwise operation
619 /// into the equivalent floating-point operation. This should be set to true
620 /// if the target has IEEE-754-compliant fabs/fneg operations for the input
621 /// type.
622 virtual bool hasBitPreservingFPLogic(EVT VT) const {
623 return false;
624 }
625
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100626 /// Return true if it is cheaper to split the store of a merged int val
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100627 /// from a pair of smaller values into multiple stores.
628 virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
629 return false;
630 }
631
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100632 /// Return if the target supports combining a
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100633 /// chain like:
634 /// \code
635 /// %andResult = and %val1, #mask
636 /// %icmpResult = icmp %andResult, 0
637 /// \endcode
638 /// into a single machine instruction of a form like:
639 /// \code
640 /// cc = test %register, #mask
641 /// \endcode
642 virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
643 return false;
644 }
645
646 /// Use bitwise logic to make pairs of compares more efficient. For example:
647 /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
648 /// This should be true when it takes more than one instruction to lower
649 /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
650 /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
651 virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
652 return false;
653 }
654
655 /// Return the preferred operand type if the target has a quick way to compare
656 /// integer values of the given size. Assume that any legal integer type can
657 /// be compared efficiently. Targets may override this to allow illegal wide
658 /// types to return a vector type if there is support to compare that type.
659 virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
660 MVT VT = MVT::getIntegerVT(NumBits);
661 return isTypeLegal(VT) ? VT : MVT::INVALID_SIMPLE_VALUE_TYPE;
662 }
663
664 /// Return true if the target should transform:
665 /// (X & Y) == Y ---> (~X & Y) == 0
666 /// (X & Y) != Y ---> (~X & Y) != 0
667 ///
668 /// This may be profitable if the target has a bitwise and-not operation that
669 /// sets comparison flags. A target may want to limit the transformation based
670 /// on the type of Y or if Y is a constant.
671 ///
672 /// Note that the transform will not occur if Y is known to be a power-of-2
673 /// because a mask and compare of a single bit can be handled by inverting the
674 /// predicate, for example:
675 /// (X & 8) == 8 ---> (X & 8) != 0
676 virtual bool hasAndNotCompare(SDValue Y) const {
677 return false;
678 }
679
680 /// Return true if the target has a bitwise and-not operation:
681 /// X = ~A & B
682 /// This can be used to simplify select or other instructions.
683 virtual bool hasAndNot(SDValue X) const {
684 // If the target has the more complex version of this operation, assume that
685 // it has this operation too.
686 return hasAndNotCompare(X);
687 }
688
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200689 /// Return true if the target has a bit-test instruction:
690 /// (X & (1 << Y)) ==/!= 0
691 /// This knowledge can be used to prevent breaking the pattern,
692 /// or creating it if it could be recognized.
693 virtual bool hasBitTest(SDValue X, SDValue Y) const { return false; }
694
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100695 /// There are two ways to clear extreme bits (either low or high):
696 /// Mask: x & (-1 << y) (the instcombine canonical form)
697 /// Shifts: x >> y << y
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100698 /// Return true if the variant with 2 variable shifts is preferred.
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100699 /// Return false if there is no preference.
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100700 virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const {
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100701 // By default, let's assume that no one prefers shifts.
702 return false;
703 }
704
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100705 /// Return true if it is profitable to fold a pair of shifts into a mask.
706 /// This is usually true on most targets. But some targets, like Thumb1,
707 /// have immediate shift instructions, but no immediate "and" instruction;
708 /// this makes the fold unprofitable.
709 virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N,
710 CombineLevel Level) const {
711 return true;
712 }
713
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100714 /// Should we tranform the IR-optimal check for whether given truncation
715 /// down into KeptBits would be truncating or not:
716 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
717 /// Into it's more traditional form:
718 /// ((%x << C) a>> C) dstcond %x
719 /// Return true if we should transform.
720 /// Return false if there is no preference.
721 virtual bool shouldTransformSignedTruncationCheck(EVT XVT,
722 unsigned KeptBits) const {
723 // By default, let's assume that no one prefers shifts.
724 return false;
725 }
726
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200727 /// Given the pattern
728 /// (X & (C l>>/<< Y)) ==/!= 0
729 /// return true if it should be transformed into:
730 /// ((X <</l>> Y) & C) ==/!= 0
731 /// WARNING: if 'X' is a constant, the fold may deadlock!
732 /// FIXME: we could avoid passing XC, but we can't use isConstOrConstSplat()
733 /// here because it can end up being not linked in.
734 virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
735 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
736 unsigned OldShiftOpcode, unsigned NewShiftOpcode,
737 SelectionDAG &DAG) const {
738 if (hasBitTest(X, Y)) {
739 // One interesting pattern that we'd want to form is 'bit test':
740 // ((1 << Y) & C) ==/!= 0
741 // But we also need to be careful not to try to reverse that fold.
742
743 // Is this '1 << Y' ?
744 if (OldShiftOpcode == ISD::SHL && CC->isOne())
745 return false; // Keep the 'bit test' pattern.
746
747 // Will it be '1 << Y' after the transform ?
748 if (XC && NewShiftOpcode == ISD::SHL && XC->isOne())
749 return true; // Do form the 'bit test' pattern.
750 }
751
752 // If 'X' is a constant, and we transform, then we will immediately
753 // try to undo the fold, thus causing endless combine loop.
754 // So by default, let's assume everyone prefers the fold
755 // iff 'X' is not a constant.
756 return !XC;
757 }
758
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100759 /// These two forms are equivalent:
760 /// sub %y, (xor %x, -1)
761 /// add (add %x, 1), %y
762 /// The variant with two add's is IR-canonical.
763 /// Some targets may prefer one to the other.
764 virtual bool preferIncOfAddToSubOfNot(EVT VT) const {
765 // By default, let's assume that everyone prefers the form with two add's.
766 return true;
767 }
768
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100769 /// Return true if the target wants to use the optimization that
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100770 /// turns ext(promotableInst1(...(promotableInstN(load)))) into
771 /// promotedInst1(...(promotedInstN(ext(load)))).
772 bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
773
774 /// Return true if the target can combine store(extractelement VectorTy,
775 /// Idx).
776 /// \p Cost[out] gives the cost of that transformation when this is true.
777 virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
778 unsigned &Cost) const {
779 return false;
780 }
781
Andrew Scull0372a572018-11-16 15:47:06 +0000782 /// Return true if inserting a scalar into a variable element of an undef
783 /// vector is more efficiently handled by splatting the scalar instead.
784 virtual bool shouldSplatInsEltVarIndex(EVT) const {
785 return false;
786 }
787
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100788 /// Return true if target always beneficiates from combining into FMA for a
789 /// given value type. This must typically return false on targets where FMA
790 /// takes more cycles to execute than FADD.
791 virtual bool enableAggressiveFMAFusion(EVT VT) const {
792 return false;
793 }
794
795 /// Return the ValueType of the result of SETCC operations.
796 virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
797 EVT VT) const;
798
799 /// Return the ValueType for comparison libcalls. Comparions libcalls include
800 /// floating point comparion calls, and Ordered/Unordered check calls on
801 /// floating point numbers.
802 virtual
803 MVT::SimpleValueType getCmpLibcallReturnType() const;
804
805 /// For targets without i1 registers, this gives the nature of the high-bits
806 /// of boolean values held in types wider than i1.
807 ///
808 /// "Boolean values" are special true/false values produced by nodes like
809 /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
810 /// Not to be confused with general values promoted from i1. Some cpus
811 /// distinguish between vectors of boolean and scalars; the isVec parameter
812 /// selects between the two kinds. For example on X86 a scalar boolean should
813 /// be zero extended from i1, while the elements of a vector of booleans
814 /// should be sign extended from i1.
815 ///
816 /// Some cpus also treat floating point types the same way as they treat
817 /// vectors instead of the way they treat scalars.
818 BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
819 if (isVec)
820 return BooleanVectorContents;
821 return isFloat ? BooleanFloatContents : BooleanContents;
822 }
823
824 BooleanContent getBooleanContents(EVT Type) const {
825 return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
826 }
827
828 /// Return target scheduling preference.
829 Sched::Preference getSchedulingPreference() const {
830 return SchedPreferenceInfo;
831 }
832
833 /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
834 /// for different nodes. This function returns the preference (or none) for
835 /// the given node.
836 virtual Sched::Preference getSchedulingPreference(SDNode *) const {
837 return Sched::None;
838 }
839
840 /// Return the register class that should be used for the specified value
841 /// type.
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100842 virtual const TargetRegisterClass *getRegClassFor(MVT VT, bool isDivergent = false) const {
843 (void)isDivergent;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100844 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
845 assert(RC && "This value type is not natively supported!");
846 return RC;
847 }
848
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100849 /// Allows target to decide about the register class of the
850 /// specific value that is live outside the defining block.
851 /// Returns true if the value needs uniform register class.
852 virtual bool requiresUniformRegister(MachineFunction &MF,
853 const Value *) const {
854 return false;
855 }
856
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100857 /// Return the 'representative' register class for the specified value
858 /// type.
859 ///
860 /// The 'representative' register class is the largest legal super-reg
861 /// register class for the register class of the value type. For example, on
862 /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
863 /// register class is GR64 on x86_64.
864 virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
865 const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
866 return RC;
867 }
868
869 /// Return the cost of the 'representative' register class for the specified
870 /// value type.
871 virtual uint8_t getRepRegClassCostFor(MVT VT) const {
872 return RepRegClassCostForVT[VT.SimpleTy];
873 }
874
Andrew Walbran16937d02019-10-22 13:54:20 +0100875 /// Return true if SHIFT instructions should be expanded to SHIFT_PARTS
876 /// instructions, and false if a library call is preferred (e.g for code-size
877 /// reasons).
878 virtual bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
879 return true;
880 }
881
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100882 /// Return true if the target has native support for the specified value type.
883 /// This means that it has a register that directly holds it without
884 /// promotions or expansions.
885 bool isTypeLegal(EVT VT) const {
886 assert(!VT.isSimple() ||
887 (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
888 return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
889 }
890
891 class ValueTypeActionImpl {
892 /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
893 /// that indicates how instruction selection should deal with the type.
894 LegalizeTypeAction ValueTypeActions[MVT::LAST_VALUETYPE];
895
896 public:
897 ValueTypeActionImpl() {
898 std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
899 TypeLegal);
900 }
901
902 LegalizeTypeAction getTypeAction(MVT VT) const {
903 return ValueTypeActions[VT.SimpleTy];
904 }
905
906 void setTypeAction(MVT VT, LegalizeTypeAction Action) {
907 ValueTypeActions[VT.SimpleTy] = Action;
908 }
909 };
910
911 const ValueTypeActionImpl &getValueTypeActions() const {
912 return ValueTypeActions;
913 }
914
915 /// Return how we should legalize values of this type, either it is already
916 /// legal (return 'Legal') or we need to promote it to a larger type (return
917 /// 'Promote'), or we need to expand it into multiple registers of smaller
918 /// integer type (return 'Expand'). 'Custom' is not an option.
919 LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
920 return getTypeConversion(Context, VT).first;
921 }
922 LegalizeTypeAction getTypeAction(MVT VT) const {
923 return ValueTypeActions.getTypeAction(VT);
924 }
925
926 /// For types supported by the target, this is an identity function. For
927 /// types that must be promoted to larger types, this returns the larger type
928 /// to promote to. For integer types that are larger than the largest integer
929 /// register, this contains one step in the expansion to get to the smaller
930 /// register. For illegal floating point types, this returns the integer type
931 /// to transform to.
932 EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
933 return getTypeConversion(Context, VT).second;
934 }
935
936 /// For types supported by the target, this is an identity function. For
937 /// types that must be expanded (i.e. integer types that are larger than the
938 /// largest integer register or illegal floating point types), this returns
939 /// the largest legal type it will be expanded to.
940 EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
941 assert(!VT.isVector());
942 while (true) {
943 switch (getTypeAction(Context, VT)) {
944 case TypeLegal:
945 return VT;
946 case TypeExpandInteger:
947 VT = getTypeToTransformTo(Context, VT);
948 break;
949 default:
950 llvm_unreachable("Type is not legal nor is it to be expanded!");
951 }
952 }
953 }
954
955 /// Vector types are broken down into some number of legal first class types.
956 /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
957 /// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64
958 /// turns into 4 EVT::i32 values with both PPC and X86.
959 ///
960 /// This method returns the number of registers needed, and the VT for each
961 /// register. It also returns the VT and quantity of the intermediate values
962 /// before they are promoted/expanded.
963 unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
964 EVT &IntermediateVT,
965 unsigned &NumIntermediates,
966 MVT &RegisterVT) const;
967
968 /// Certain targets such as MIPS require that some types such as vectors are
969 /// always broken down into scalars in some contexts. This occurs even if the
970 /// vector type is legal.
971 virtual unsigned getVectorTypeBreakdownForCallingConv(
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100972 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100973 unsigned &NumIntermediates, MVT &RegisterVT) const {
974 return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
975 RegisterVT);
976 }
977
978 struct IntrinsicInfo {
979 unsigned opc = 0; // target opcode
980 EVT memVT; // memory VT
981
982 // value representing memory location
983 PointerUnion<const Value *, const PseudoSourceValue *> ptrVal;
984
985 int offset = 0; // offset off of ptrVal
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200986 uint64_t size = 0; // the size of the memory location
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100987 // (taken from memVT if zero)
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200988 MaybeAlign align = Align(1); // alignment
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100989
990 MachineMemOperand::Flags flags = MachineMemOperand::MONone;
991 IntrinsicInfo() = default;
992 };
993
994 /// Given an intrinsic, checks if on the target the intrinsic will need to map
995 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
996 /// true and store the intrinsic information into the IntrinsicInfo that was
997 /// passed to the function.
998 virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
999 MachineFunction &,
1000 unsigned /*Intrinsic*/) const {
1001 return false;
1002 }
1003
1004 /// Returns true if the target can instruction select the specified FP
1005 /// immediate natively. If false, the legalizer will materialize the FP
1006 /// immediate as a load from a constant pool.
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001007 virtual bool isFPImmLegal(const APFloat & /*Imm*/, EVT /*VT*/,
1008 bool ForCodeSize = false) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001009 return false;
1010 }
1011
1012 /// Targets can use this to indicate that they only support *some*
1013 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
1014 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
1015 /// legal.
1016 virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
1017 return true;
1018 }
1019
1020 /// Returns true if the operation can trap for the value type.
1021 ///
1022 /// VT must be a legal type. By default, we optimistically assume most
1023 /// operations don't trap except for integer divide and remainder.
1024 virtual bool canOpTrap(unsigned Op, EVT VT) const;
1025
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001026 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1027 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1028 /// constant pool entry.
1029 virtual bool isVectorClearMaskLegal(ArrayRef<int> /*Mask*/,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001030 EVT /*VT*/) const {
1031 return false;
1032 }
1033
1034 /// Return how this operation should be treated: either it is legal, needs to
1035 /// be promoted to a larger size, needs to be expanded to some other code
1036 /// sequence, or the target has a custom expander for it.
1037 LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
1038 if (VT.isExtended()) return Expand;
1039 // If a target-specific SDNode requires legalization, require the target
1040 // to provide custom legalization for it.
1041 if (Op >= array_lengthof(OpActions[0])) return Custom;
1042 return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
1043 }
1044
Andrew Walbran16937d02019-10-22 13:54:20 +01001045 /// Custom method defined by each target to indicate if an operation which
1046 /// may require a scale is supported natively by the target.
1047 /// If not, the operation is illegal.
1048 virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT,
1049 unsigned Scale) const {
1050 return false;
1051 }
1052
1053 /// Some fixed point operations may be natively supported by the target but
1054 /// only for specific scales. This method allows for checking
1055 /// if the width is supported by the target for a given operation that may
1056 /// depend on scale.
1057 LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT,
1058 unsigned Scale) const {
1059 auto Action = getOperationAction(Op, VT);
1060 if (Action != Legal)
1061 return Action;
1062
1063 // This operation is supported in this type but may only work on specific
1064 // scales.
1065 bool Supported;
1066 switch (Op) {
1067 default:
1068 llvm_unreachable("Unexpected fixed point operation.");
1069 case ISD::SMULFIX:
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001070 case ISD::SMULFIXSAT:
Andrew Walbran16937d02019-10-22 13:54:20 +01001071 case ISD::UMULFIX:
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001072 case ISD::UMULFIXSAT:
1073 case ISD::SDIVFIX:
1074 case ISD::SDIVFIXSAT:
1075 case ISD::UDIVFIX:
1076 case ISD::UDIVFIXSAT:
Andrew Walbran16937d02019-10-22 13:54:20 +01001077 Supported = isSupportedFixedPointOperation(Op, VT, Scale);
1078 break;
1079 }
1080
1081 return Supported ? Action : Expand;
1082 }
1083
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001084 // If Op is a strict floating-point operation, return the result
1085 // of getOperationAction for the equivalent non-strict operation.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001086 LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const {
1087 unsigned EqOpc;
1088 switch (Op) {
1089 default: llvm_unreachable("Unexpected FP pseudo-opcode");
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001090#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1091 case ISD::STRICT_##DAGN: EqOpc = ISD::DAGN; break;
1092#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1093 case ISD::STRICT_##DAGN: EqOpc = ISD::SETCC; break;
1094#include "llvm/IR/ConstrainedOps.def"
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001095 }
1096
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001097 return getOperationAction(EqOpc, VT);
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001098 }
1099
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001100 /// Return true if the specified operation is legal on this target or can be
1101 /// made legal with custom lowering. This is used to help guide high-level
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001102 /// lowering decisions. LegalOnly is an optional convenience for code paths
1103 /// traversed pre and post legalisation.
1104 bool isOperationLegalOrCustom(unsigned Op, EVT VT,
1105 bool LegalOnly = false) const {
1106 if (LegalOnly)
1107 return isOperationLegal(Op, VT);
1108
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001109 return (VT == MVT::Other || isTypeLegal(VT)) &&
1110 (getOperationAction(Op, VT) == Legal ||
1111 getOperationAction(Op, VT) == Custom);
1112 }
1113
1114 /// Return true if the specified operation is legal on this target or can be
1115 /// made legal using promotion. This is used to help guide high-level lowering
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001116 /// decisions. LegalOnly is an optional convenience for code paths traversed
1117 /// pre and post legalisation.
1118 bool isOperationLegalOrPromote(unsigned Op, EVT VT,
1119 bool LegalOnly = false) const {
1120 if (LegalOnly)
1121 return isOperationLegal(Op, VT);
1122
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001123 return (VT == MVT::Other || isTypeLegal(VT)) &&
1124 (getOperationAction(Op, VT) == Legal ||
1125 getOperationAction(Op, VT) == Promote);
1126 }
1127
1128 /// Return true if the specified operation is legal on this target or can be
1129 /// made legal with custom lowering or using promotion. This is used to help
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001130 /// guide high-level lowering decisions. LegalOnly is an optional convenience
1131 /// for code paths traversed pre and post legalisation.
1132 bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT,
1133 bool LegalOnly = false) const {
1134 if (LegalOnly)
1135 return isOperationLegal(Op, VT);
1136
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001137 return (VT == MVT::Other || isTypeLegal(VT)) &&
1138 (getOperationAction(Op, VT) == Legal ||
1139 getOperationAction(Op, VT) == Custom ||
1140 getOperationAction(Op, VT) == Promote);
1141 }
1142
1143 /// Return true if the operation uses custom lowering, regardless of whether
1144 /// the type is legal or not.
1145 bool isOperationCustom(unsigned Op, EVT VT) const {
1146 return getOperationAction(Op, VT) == Custom;
1147 }
1148
1149 /// Return true if lowering to a jump table is allowed.
1150 virtual bool areJTsAllowed(const Function *Fn) const {
1151 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
1152 return false;
1153
1154 return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1155 isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
1156 }
1157
1158 /// Check whether the range [Low,High] fits in a machine word.
1159 bool rangeFitsInWord(const APInt &Low, const APInt &High,
1160 const DataLayout &DL) const {
1161 // FIXME: Using the pointer type doesn't seem ideal.
1162 uint64_t BW = DL.getIndexSizeInBits(0u);
1163 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
1164 return Range <= BW;
1165 }
1166
1167 /// Return true if lowering to a jump table is suitable for a set of case
1168 /// clusters which may contain \p NumCases cases, \p Range range of values.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001169 virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001170 uint64_t Range, ProfileSummaryInfo *PSI,
1171 BlockFrequencyInfo *BFI) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001172
1173 /// Return true if lowering to a bit test is suitable for a set of case
1174 /// clusters which contains \p NumDests unique destinations, \p Low and
1175 /// \p High as its lowest and highest case values, and expects \p NumCmps
1176 /// case value comparisons. Check if the number of destinations, comparison
1177 /// metric, and range are all suitable.
1178 bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
1179 const APInt &Low, const APInt &High,
1180 const DataLayout &DL) const {
1181 // FIXME: I don't think NumCmps is the correct metric: a single case and a
1182 // range of cases both require only one branch to lower. Just looking at the
1183 // number of clusters and destinations should be enough to decide whether to
1184 // build bit tests.
1185
1186 // To lower a range with bit tests, the range must fit the bitwidth of a
1187 // machine word.
1188 if (!rangeFitsInWord(Low, High, DL))
1189 return false;
1190
1191 // Decide whether it's profitable to lower this range with bit tests. Each
1192 // destination requires a bit test and branch, and there is an overall range
1193 // check branch. For a small number of clusters, separate comparisons might
1194 // be cheaper, and for many destinations, splitting the range might be
1195 // better.
1196 return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
1197 (NumDests == 3 && NumCmps >= 6);
1198 }
1199
1200 /// Return true if the specified operation is illegal on this target or
1201 /// unlikely to be made legal with custom lowering. This is used to help guide
1202 /// high-level lowering decisions.
1203 bool isOperationExpand(unsigned Op, EVT VT) const {
1204 return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
1205 }
1206
1207 /// Return true if the specified operation is legal on this target.
1208 bool isOperationLegal(unsigned Op, EVT VT) const {
1209 return (VT == MVT::Other || isTypeLegal(VT)) &&
1210 getOperationAction(Op, VT) == Legal;
1211 }
1212
1213 /// Return how this load with extension should be treated: either it is legal,
1214 /// needs to be promoted to a larger size, needs to be expanded to some other
1215 /// code sequence, or the target has a custom expander for it.
1216 LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
1217 EVT MemVT) const {
1218 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1219 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1220 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1221 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
1222 MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
1223 unsigned Shift = 4 * ExtType;
1224 return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
1225 }
1226
1227 /// Return true if the specified load with extension is legal on this target.
1228 bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1229 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1230 }
1231
1232 /// Return true if the specified load with extension is legal or custom
1233 /// on this target.
1234 bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1235 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
1236 getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
1237 }
1238
1239 /// Return how this store with truncation should be treated: either it is
1240 /// legal, needs to be promoted to a larger size, needs to be expanded to some
1241 /// other code sequence, or the target has a custom expander for it.
1242 LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
1243 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1244 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1245 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1246 assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
1247 "Table isn't big enough!");
1248 return TruncStoreActions[ValI][MemI];
1249 }
1250
1251 /// Return true if the specified store with truncation is legal on this
1252 /// target.
1253 bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
1254 return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
1255 }
1256
1257 /// Return true if the specified store with truncation has solution on this
1258 /// target.
1259 bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
1260 return isTypeLegal(ValVT) &&
1261 (getTruncStoreAction(ValVT, MemVT) == Legal ||
1262 getTruncStoreAction(ValVT, MemVT) == Custom);
1263 }
1264
1265 /// Return how the indexed load should be treated: either it is legal, needs
1266 /// to be promoted to a larger size, needs to be expanded to some other code
1267 /// sequence, or the target has a custom expander for it.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001268 LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
1269 return getIndexedModeAction(IdxMode, VT, IMAB_Load);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001270 }
1271
1272 /// Return true if the specified indexed load is legal on this target.
1273 bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
1274 return VT.isSimple() &&
1275 (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1276 getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1277 }
1278
1279 /// Return how the indexed store should be treated: either it is legal, needs
1280 /// to be promoted to a larger size, needs to be expanded to some other code
1281 /// sequence, or the target has a custom expander for it.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001282 LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
1283 return getIndexedModeAction(IdxMode, VT, IMAB_Store);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001284 }
1285
1286 /// Return true if the specified indexed load is legal on this target.
1287 bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
1288 return VT.isSimple() &&
1289 (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1290 getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1291 }
1292
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001293 /// Return how the indexed load should be treated: either it is legal, needs
1294 /// to be promoted to a larger size, needs to be expanded to some other code
1295 /// sequence, or the target has a custom expander for it.
1296 LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const {
1297 return getIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad);
1298 }
1299
1300 /// Return true if the specified indexed load is legal on this target.
1301 bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const {
1302 return VT.isSimple() &&
1303 (getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1304 getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1305 }
1306
1307 /// Return how the indexed store should be treated: either it is legal, needs
1308 /// to be promoted to a larger size, needs to be expanded to some other code
1309 /// sequence, or the target has a custom expander for it.
1310 LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const {
1311 return getIndexedModeAction(IdxMode, VT, IMAB_MaskedStore);
1312 }
1313
1314 /// Return true if the specified indexed load is legal on this target.
1315 bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const {
1316 return VT.isSimple() &&
1317 (getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1318 getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1319 }
1320
1321 // Returns true if VT is a legal index type for masked gathers/scatters
1322 // on this target
1323 virtual bool shouldRemoveExtendFromGSIndex(EVT VT) const { return false; }
1324
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001325 /// Return how the condition code should be treated: either it is legal, needs
1326 /// to be expanded to some other code sequence, or the target has a custom
1327 /// expander for it.
1328 LegalizeAction
1329 getCondCodeAction(ISD::CondCode CC, MVT VT) const {
1330 assert((unsigned)CC < array_lengthof(CondCodeActions) &&
1331 ((unsigned)VT.SimpleTy >> 3) < array_lengthof(CondCodeActions[0]) &&
1332 "Table isn't big enough!");
1333 // See setCondCodeAction for how this is encoded.
1334 uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
1335 uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
1336 LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
1337 assert(Action != Promote && "Can't promote condition code!");
1338 return Action;
1339 }
1340
1341 /// Return true if the specified condition code is legal on this target.
1342 bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
1343 return getCondCodeAction(CC, VT) == Legal;
1344 }
1345
1346 /// Return true if the specified condition code is legal or custom on this
1347 /// target.
1348 bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const {
1349 return getCondCodeAction(CC, VT) == Legal ||
1350 getCondCodeAction(CC, VT) == Custom;
1351 }
1352
1353 /// If the action for this operation is to promote, this method returns the
1354 /// ValueType to promote to.
1355 MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
1356 assert(getOperationAction(Op, VT) == Promote &&
1357 "This operation isn't promoted!");
1358
1359 // See if this has an explicit type specified.
1360 std::map<std::pair<unsigned, MVT::SimpleValueType>,
1361 MVT::SimpleValueType>::const_iterator PTTI =
1362 PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
1363 if (PTTI != PromoteToType.end()) return PTTI->second;
1364
1365 assert((VT.isInteger() || VT.isFloatingPoint()) &&
1366 "Cannot autopromote this type, add it with AddPromotedToType.");
1367
1368 MVT NVT = VT;
1369 do {
1370 NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
1371 assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
1372 "Didn't find type to promote to!");
1373 } while (!isTypeLegal(NVT) ||
1374 getOperationAction(Op, NVT) == Promote);
1375 return NVT;
1376 }
1377
1378 /// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM
1379 /// operations except for the pointer size. If AllowUnknown is true, this
1380 /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
1381 /// otherwise it will assert.
1382 EVT getValueType(const DataLayout &DL, Type *Ty,
1383 bool AllowUnknown = false) const {
1384 // Lower scalar pointers to native pointer types.
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001385 if (auto *PTy = dyn_cast<PointerType>(Ty))
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001386 return getPointerTy(DL, PTy->getAddressSpace());
1387
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001388 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1389 Type *EltTy = VTy->getElementType();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001390 // Lower vectors of pointers to native pointer types.
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001391 if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1392 EVT PointerTy(getPointerTy(DL, PTy->getAddressSpace()));
1393 EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1394 }
1395 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001396 VTy->getElementCount());
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001397 }
1398
1399 return EVT::getEVT(Ty, AllowUnknown);
1400 }
1401
1402 EVT getMemValueType(const DataLayout &DL, Type *Ty,
1403 bool AllowUnknown = false) const {
1404 // Lower scalar pointers to native pointer types.
1405 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
1406 return getPointerMemTy(DL, PTy->getAddressSpace());
1407 else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1408 Type *Elm = VTy->getElementType();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001409 if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001410 EVT PointerTy(getPointerMemTy(DL, PT->getAddressSpace()));
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001411 Elm = PointerTy.getTypeForEVT(Ty->getContext());
1412 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001413 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001414 VTy->getElementCount());
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001415 }
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001416
1417 return getValueType(DL, Ty, AllowUnknown);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001418 }
1419
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001420
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001421 /// Return the MVT corresponding to this LLVM type. See getValueType.
1422 MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
1423 bool AllowUnknown = false) const {
1424 return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
1425 }
1426
1427 /// Return the desired alignment for ByVal or InAlloca aggregate function
1428 /// arguments in the caller parameter area. This is the actual alignment, not
1429 /// its logarithm.
1430 virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
1431
1432 /// Return the type of registers that this ValueType will eventually require.
1433 MVT getRegisterType(MVT VT) const {
1434 assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
1435 return RegisterTypeForVT[VT.SimpleTy];
1436 }
1437
1438 /// Return the type of registers that this ValueType will eventually require.
1439 MVT getRegisterType(LLVMContext &Context, EVT VT) const {
1440 if (VT.isSimple()) {
1441 assert((unsigned)VT.getSimpleVT().SimpleTy <
1442 array_lengthof(RegisterTypeForVT));
1443 return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
1444 }
1445 if (VT.isVector()) {
1446 EVT VT1;
1447 MVT RegisterVT;
1448 unsigned NumIntermediates;
1449 (void)getVectorTypeBreakdown(Context, VT, VT1,
1450 NumIntermediates, RegisterVT);
1451 return RegisterVT;
1452 }
1453 if (VT.isInteger()) {
1454 return getRegisterType(Context, getTypeToTransformTo(Context, VT));
1455 }
1456 llvm_unreachable("Unsupported extended type!");
1457 }
1458
1459 /// Return the number of registers that this ValueType will eventually
1460 /// require.
1461 ///
1462 /// This is one for any types promoted to live in larger registers, but may be
1463 /// more than one for types (like i64) that are split into pieces. For types
1464 /// like i140, which are first promoted then expanded, it is the number of
1465 /// registers needed to hold all the bits of the original type. For an i140
1466 /// on a 32 bit machine this means 5 registers.
1467 unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
1468 if (VT.isSimple()) {
1469 assert((unsigned)VT.getSimpleVT().SimpleTy <
1470 array_lengthof(NumRegistersForVT));
1471 return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
1472 }
1473 if (VT.isVector()) {
1474 EVT VT1;
1475 MVT VT2;
1476 unsigned NumIntermediates;
1477 return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
1478 }
1479 if (VT.isInteger()) {
1480 unsigned BitWidth = VT.getSizeInBits();
1481 unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
1482 return (BitWidth + RegWidth - 1) / RegWidth;
1483 }
1484 llvm_unreachable("Unsupported extended type!");
1485 }
1486
1487 /// Certain combinations of ABIs, Targets and features require that types
1488 /// are legal for some operations and not for other operations.
1489 /// For MIPS all vector types must be passed through the integer register set.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001490 virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context,
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001491 CallingConv::ID CC, EVT VT) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001492 return getRegisterType(Context, VT);
1493 }
1494
1495 /// Certain targets require unusual breakdowns of certain types. For MIPS,
1496 /// this occurs when a vector type is used, as vector are passed through the
1497 /// integer register set.
1498 virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context,
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001499 CallingConv::ID CC,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001500 EVT VT) const {
1501 return getNumRegisters(Context, VT);
1502 }
1503
1504 /// Certain targets have context senstive alignment requirements, where one
1505 /// type has the alignment requirement of another type.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001506 virtual Align getABIAlignmentForCallingConv(Type *ArgTy,
1507 DataLayout DL) const {
1508 return DL.getABITypeAlign(ArgTy);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001509 }
1510
1511 /// If true, then instruction selection should seek to shrink the FP constant
1512 /// of the specified type to a smaller type in order to save space and / or
1513 /// reduce runtime.
1514 virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
1515
Andrew Walbran16937d02019-10-22 13:54:20 +01001516 /// Return true if it is profitable to reduce a load to a smaller type.
1517 /// Example: (i16 (trunc (i32 (load x))) -> i16 load x
1518 virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001519 EVT NewVT) const {
Andrew Walbran16937d02019-10-22 13:54:20 +01001520 // By default, assume that it is cheaper to extract a subvector from a wide
1521 // vector load rather than creating multiple narrow vector loads.
1522 if (NewVT.isVector() && !Load->hasOneUse())
1523 return false;
1524
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001525 return true;
1526 }
1527
1528 /// When splitting a value of the specified type into parts, does the Lo
1529 /// or Hi part come first? This usually follows the endianness, except
1530 /// for ppcf128, where the Hi part always comes first.
1531 bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
1532 return DL.isBigEndian() || VT == MVT::ppcf128;
1533 }
1534
1535 /// If true, the target has custom DAG combine transformations that it can
1536 /// perform for the specified node.
1537 bool hasTargetDAGCombine(ISD::NodeType NT) const {
1538 assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1539 return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
1540 }
1541
1542 unsigned getGatherAllAliasesMaxDepth() const {
1543 return GatherAllAliasesMaxDepth;
1544 }
1545
1546 /// Returns the size of the platform's va_list object.
1547 virtual unsigned getVaListSizeInBits(const DataLayout &DL) const {
1548 return getPointerTy(DL).getSizeInBits();
1549 }
1550
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001551 /// Get maximum # of store operations permitted for llvm.memset
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001552 ///
1553 /// This function returns the maximum number of store operations permitted
1554 /// to replace a call to llvm.memset. The value is set by the target at the
1555 /// performance threshold for such a replacement. If OptSize is true,
1556 /// return the limit for functions that have OptSize attribute.
1557 unsigned getMaxStoresPerMemset(bool OptSize) const {
1558 return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
1559 }
1560
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001561 /// Get maximum # of store operations permitted for llvm.memcpy
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001562 ///
1563 /// This function returns the maximum number of store operations permitted
1564 /// to replace a call to llvm.memcpy. The value is set by the target at the
1565 /// performance threshold for such a replacement. If OptSize is true,
1566 /// return the limit for functions that have OptSize attribute.
1567 unsigned getMaxStoresPerMemcpy(bool OptSize) const {
1568 return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
1569 }
1570
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001571 /// \brief Get maximum # of store operations to be glued together
1572 ///
1573 /// This function returns the maximum number of store operations permitted
1574 /// to glue together during lowering of llvm.memcpy. The value is set by
1575 // the target at the performance threshold for such a replacement.
1576 virtual unsigned getMaxGluedStoresPerMemcpy() const {
1577 return MaxGluedStoresPerMemcpy;
1578 }
1579
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001580 /// Get maximum # of load operations permitted for memcmp
1581 ///
1582 /// This function returns the maximum number of load operations permitted
1583 /// to replace a call to memcmp. The value is set by the target at the
1584 /// performance threshold for such a replacement. If OptSize is true,
1585 /// return the limit for functions that have OptSize attribute.
1586 unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
1587 return OptSize ? MaxLoadsPerMemcmpOptSize : MaxLoadsPerMemcmp;
1588 }
1589
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001590 /// Get maximum # of store operations permitted for llvm.memmove
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001591 ///
1592 /// This function returns the maximum number of store operations permitted
1593 /// to replace a call to llvm.memmove. The value is set by the target at the
1594 /// performance threshold for such a replacement. If OptSize is true,
1595 /// return the limit for functions that have OptSize attribute.
1596 unsigned getMaxStoresPerMemmove(bool OptSize) const {
1597 return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
1598 }
1599
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001600 /// Determine if the target supports unaligned memory accesses.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001601 ///
1602 /// This function returns true if the target allows unaligned memory accesses
1603 /// of the specified type in the given address space. If true, it also returns
1604 /// whether the unaligned memory access is "fast" in the last argument by
1605 /// reference. This is used, for example, in situations where an array
1606 /// copy/move/set is converted to a sequence of store operations. Its use
1607 /// helps to ensure that such replacements don't generate code that causes an
1608 /// alignment error (trap) on the target machine.
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001609 virtual bool allowsMisalignedMemoryAccesses(
1610 EVT, unsigned AddrSpace = 0, unsigned Align = 1,
1611 MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1612 bool * /*Fast*/ = nullptr) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001613 return false;
1614 }
1615
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001616 /// LLT handling variant.
1617 virtual bool allowsMisalignedMemoryAccesses(
1618 LLT, unsigned AddrSpace = 0, Align Alignment = Align(1),
1619 MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1620 bool * /*Fast*/ = nullptr) const {
1621 return false;
1622 }
1623
1624 /// This function returns true if the memory access is aligned or if the
1625 /// target allows this specific unaligned memory access. If the access is
1626 /// allowed, the optional final parameter returns if the access is also fast
1627 /// (as defined by the target).
1628 bool allowsMemoryAccessForAlignment(
1629 LLVMContext &Context, const DataLayout &DL, EVT VT,
1630 unsigned AddrSpace = 0, Align Alignment = Align(1),
1631 MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1632 bool *Fast = nullptr) const;
1633
1634 /// Return true if the memory access of this type is aligned or if the target
1635 /// allows this specific unaligned access for the given MachineMemOperand.
1636 /// If the access is allowed, the optional final parameter returns if the
1637 /// access is also fast (as defined by the target).
1638 bool allowsMemoryAccessForAlignment(LLVMContext &Context,
1639 const DataLayout &DL, EVT VT,
1640 const MachineMemOperand &MMO,
1641 bool *Fast = nullptr) const;
1642
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001643 /// Return true if the target supports a memory access of this type for the
1644 /// given address space and alignment. If the access is allowed, the optional
1645 /// final parameter returns if the access is also fast (as defined by the
1646 /// target).
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001647 virtual bool
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001648 allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001649 unsigned AddrSpace = 0, Align Alignment = Align(1),
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001650 MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1651 bool *Fast = nullptr) const;
1652
1653 /// Return true if the target supports a memory access of this type for the
1654 /// given MachineMemOperand. If the access is allowed, the optional
1655 /// final parameter returns if the access is also fast (as defined by the
1656 /// target).
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001657 bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001658 const MachineMemOperand &MMO,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001659 bool *Fast = nullptr) const;
1660
1661 /// Returns the target specific optimal type for load and store operations as
1662 /// a result of memset, memcpy, and memmove lowering.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001663 /// It returns EVT::Other if the type should be determined using generic
1664 /// target-independent logic.
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001665 virtual EVT
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001666 getOptimalMemOpType(const MemOp &Op,
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001667 const AttributeList & /*FuncAttributes*/) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001668 return MVT::Other;
1669 }
1670
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001671 /// LLT returning variant.
1672 virtual LLT
1673 getOptimalMemOpLLT(const MemOp &Op,
1674 const AttributeList & /*FuncAttributes*/) const {
1675 return LLT();
1676 }
1677
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001678 /// Returns true if it's safe to use load / store of the specified type to
1679 /// expand memcpy / memset inline.
1680 ///
1681 /// This is mostly true for all types except for some special cases. For
1682 /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
1683 /// fstpl which also does type conversion. Note the specified type doesn't
1684 /// have to be legal as the hook is used before type legalization.
1685 virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
1686
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001687 /// Return lower limit for number of blocks in a jump table.
1688 virtual unsigned getMinimumJumpTableEntries() const;
1689
1690 /// Return lower limit of the density in a jump table.
1691 unsigned getMinimumJumpTableDensity(bool OptForSize) const;
1692
1693 /// Return upper limit for number of entries in a jump table.
1694 /// Zero if no limit.
1695 unsigned getMaximumJumpTableSize() const;
1696
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001697 virtual bool isJumpTableRelative() const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001698
1699 /// If a physical register, this specifies the register that
1700 /// llvm.savestack/llvm.restorestack should save and restore.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001701 Register getStackPointerRegisterToSaveRestore() const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001702 return StackPointerRegisterToSaveRestore;
1703 }
1704
1705 /// If a physical register, this returns the register that receives the
1706 /// exception address on entry to an EH pad.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001707 virtual Register
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001708 getExceptionPointerRegister(const Constant *PersonalityFn) const {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001709 return Register();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001710 }
1711
1712 /// If a physical register, this returns the register that receives the
1713 /// exception typeid on entry to a landing pad.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001714 virtual Register
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001715 getExceptionSelectorRegister(const Constant *PersonalityFn) const {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001716 return Register();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001717 }
1718
1719 virtual bool needsFixedCatchObjects() const {
1720 report_fatal_error("Funclet EH is not implemented for this target");
1721 }
1722
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001723 /// Return the minimum stack alignment of an argument.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001724 Align getMinStackArgumentAlignment() const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001725 return MinStackArgumentAlignment;
1726 }
1727
1728 /// Return the minimum function alignment.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001729 Align getMinFunctionAlignment() const { return MinFunctionAlignment; }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001730
1731 /// Return the preferred function alignment.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001732 Align getPrefFunctionAlignment() const { return PrefFunctionAlignment; }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001733
1734 /// Return the preferred loop alignment.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001735 virtual Align getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001736 return PrefLoopAlignment;
1737 }
1738
Andrew Scull0372a572018-11-16 15:47:06 +00001739 /// Should loops be aligned even when the function is marked OptSize (but not
1740 /// MinSize).
1741 virtual bool alignLoopsWithOptSize() const {
1742 return false;
1743 }
1744
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001745 /// If the target has a standard location for the stack protector guard,
1746 /// returns the address of that location. Otherwise, returns nullptr.
1747 /// DEPRECATED: please override useLoadStackGuardNode and customize
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001748 /// LOAD_STACK_GUARD, or customize \@llvm.stackguard().
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001749 virtual Value *getIRStackGuard(IRBuilder<> &IRB) const;
1750
1751 /// Inserts necessary declarations for SSP (stack protection) purpose.
1752 /// Should be used only when getIRStackGuard returns nullptr.
1753 virtual void insertSSPDeclarations(Module &M) const;
1754
1755 /// Return the variable that's previously inserted by insertSSPDeclarations,
1756 /// if any, otherwise return nullptr. Should be used only when
1757 /// getIRStackGuard returns nullptr.
1758 virtual Value *getSDagStackGuard(const Module &M) const;
1759
1760 /// If this function returns true, stack protection checks should XOR the
1761 /// frame pointer (or whichever pointer is used to address locals) into the
1762 /// stack guard value before checking it. getIRStackGuard must return nullptr
1763 /// if this returns true.
1764 virtual bool useStackGuardXorFP() const { return false; }
1765
1766 /// If the target has a standard stack protection check function that
1767 /// performs validation and error handling, returns the function. Otherwise,
1768 /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
1769 /// Should be used only when getIRStackGuard returns nullptr.
Andrew Walbran16937d02019-10-22 13:54:20 +01001770 virtual Function *getSSPStackGuardCheck(const Module &M) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001771
1772protected:
1773 Value *getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1774 bool UseTLS) const;
1775
1776public:
1777 /// Returns the target-specific address of the unsafe stack pointer.
1778 virtual Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const;
1779
1780 /// Returns the name of the symbol used to emit stack probes or the empty
1781 /// string if not applicable.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001782 virtual bool hasStackProbeSymbol(MachineFunction &MF) const { return false; }
1783
1784 virtual bool hasInlineStackProbe(MachineFunction &MF) const { return false; }
1785
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001786 virtual StringRef getStackProbeSymbolName(MachineFunction &MF) const {
1787 return "";
1788 }
1789
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001790 /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001791 /// are happy to sink it into basic blocks. A cast may be free, but not
1792 /// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001793 virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001794
1795 /// Return true if the pointer arguments to CI should be aligned by aligning
1796 /// the object whose address is being passed. If so then MinSize is set to the
1797 /// minimum size the object must be to be aligned and PrefAlign is set to the
1798 /// preferred alignment.
1799 virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
1800 unsigned & /*PrefAlign*/) const {
1801 return false;
1802 }
1803
1804 //===--------------------------------------------------------------------===//
1805 /// \name Helpers for TargetTransformInfo implementations
1806 /// @{
1807
1808 /// Get the ISD node that corresponds to the Instruction class opcode.
1809 int InstructionOpcodeToISD(unsigned Opcode) const;
1810
1811 /// Estimate the cost of type-legalization and the legalized type.
1812 std::pair<int, MVT> getTypeLegalizationCost(const DataLayout &DL,
1813 Type *Ty) const;
1814
1815 /// @}
1816
1817 //===--------------------------------------------------------------------===//
1818 /// \name Helpers for atomic expansion.
1819 /// @{
1820
1821 /// Returns the maximum atomic operation size (in bits) supported by
1822 /// the backend. Atomic operations greater than this size (as well
1823 /// as ones that are not naturally aligned), will be expanded by
1824 /// AtomicExpandPass into an __atomic_* library call.
1825 unsigned getMaxAtomicSizeInBitsSupported() const {
1826 return MaxAtomicSizeInBitsSupported;
1827 }
1828
1829 /// Returns the size of the smallest cmpxchg or ll/sc instruction
1830 /// the backend supports. Any smaller operations are widened in
1831 /// AtomicExpandPass.
1832 ///
1833 /// Note that *unlike* operations above the maximum size, atomic ops
1834 /// are still natively supported below the minimum; they just
1835 /// require a more complex expansion.
1836 unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
1837
1838 /// Whether the target supports unaligned atomic operations.
1839 bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
1840
1841 /// Whether AtomicExpandPass should automatically insert fences and reduce
1842 /// ordering for this atomic. This should be true for most architectures with
1843 /// weak memory ordering. Defaults to false.
1844 virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
1845 return false;
1846 }
1847
1848 /// Perform a load-linked operation on Addr, returning a "Value *" with the
1849 /// corresponding pointee type. This may entail some non-trivial operations to
1850 /// truncate or reconstruct types that will be illegal in the backend. See
1851 /// ARMISelLowering for an example implementation.
1852 virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
1853 AtomicOrdering Ord) const {
1854 llvm_unreachable("Load linked unimplemented on this target");
1855 }
1856
1857 /// Perform a store-conditional operation to Addr. Return the status of the
1858 /// store. This should be 0 if the store succeeded, non-zero otherwise.
1859 virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
1860 Value *Addr, AtomicOrdering Ord) const {
1861 llvm_unreachable("Store conditional unimplemented on this target");
1862 }
1863
Andrew Scull0372a572018-11-16 15:47:06 +00001864 /// Perform a masked atomicrmw using a target-specific intrinsic. This
1865 /// represents the core LL/SC loop which will be lowered at a late stage by
1866 /// the backend.
1867 virtual Value *emitMaskedAtomicRMWIntrinsic(IRBuilder<> &Builder,
1868 AtomicRMWInst *AI,
1869 Value *AlignedAddr, Value *Incr,
1870 Value *Mask, Value *ShiftAmt,
1871 AtomicOrdering Ord) const {
1872 llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
1873 }
1874
1875 /// Perform a masked cmpxchg using a target-specific intrinsic. This
1876 /// represents the core LL/SC loop which will be lowered at a late stage by
1877 /// the backend.
1878 virtual Value *emitMaskedAtomicCmpXchgIntrinsic(
1879 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
1880 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
1881 llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
1882 }
1883
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001884 /// Inserts in the IR a target-specific intrinsic specifying a fence.
1885 /// It is called by AtomicExpandPass before expanding an
1886 /// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
1887 /// if shouldInsertFencesForAtomic returns true.
1888 ///
1889 /// Inst is the original atomic instruction, prior to other expansions that
1890 /// may be performed.
1891 ///
1892 /// This function should either return a nullptr, or a pointer to an IR-level
1893 /// Instruction*. Even complex fence sequences can be represented by a
1894 /// single Instruction* through an intrinsic to be lowered later.
1895 /// Backends should override this method to produce target-specific intrinsic
1896 /// for their fences.
1897 /// FIXME: Please note that the default implementation here in terms of
1898 /// IR-level fences exists for historical/compatibility reasons and is
1899 /// *unsound* ! Fences cannot, in general, be used to restore sequential
1900 /// consistency. For example, consider the following example:
1901 /// atomic<int> x = y = 0;
1902 /// int r1, r2, r3, r4;
1903 /// Thread 0:
1904 /// x.store(1);
1905 /// Thread 1:
1906 /// y.store(1);
1907 /// Thread 2:
1908 /// r1 = x.load();
1909 /// r2 = y.load();
1910 /// Thread 3:
1911 /// r3 = y.load();
1912 /// r4 = x.load();
1913 /// r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
1914 /// seq_cst. But if they are lowered to monotonic accesses, no amount of
1915 /// IR-level fences can prevent it.
1916 /// @{
1917 virtual Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
1918 AtomicOrdering Ord) const {
1919 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
1920 return Builder.CreateFence(Ord);
1921 else
1922 return nullptr;
1923 }
1924
1925 virtual Instruction *emitTrailingFence(IRBuilder<> &Builder,
1926 Instruction *Inst,
1927 AtomicOrdering Ord) const {
1928 if (isAcquireOrStronger(Ord))
1929 return Builder.CreateFence(Ord);
1930 else
1931 return nullptr;
1932 }
1933 /// @}
1934
1935 // Emits code that executes when the comparison result in the ll/sc
1936 // expansion of a cmpxchg instruction is such that the store-conditional will
1937 // not execute. This makes it possible to balance out the load-linked with
1938 // a dedicated instruction, if desired.
1939 // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
1940 // be unnecessarily held, except if clrex, inserted by this hook, is executed.
1941 virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {}
1942
1943 /// Returns true if the given (atomic) store should be expanded by the
1944 /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
1945 virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
1946 return false;
1947 }
1948
1949 /// Returns true if arguments should be sign-extended in lib calls.
1950 virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
1951 return IsSigned;
1952 }
1953
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001954 /// Returns true if arguments should be extended in lib calls.
1955 virtual bool shouldExtendTypeInLibCall(EVT Type) const {
1956 return true;
1957 }
1958
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001959 /// Returns how the given (atomic) load should be expanded by the
1960 /// IR-level AtomicExpand pass.
1961 virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
1962 return AtomicExpansionKind::None;
1963 }
1964
Andrew Scull0372a572018-11-16 15:47:06 +00001965 /// Returns how the given atomic cmpxchg should be expanded by the IR-level
1966 /// AtomicExpand pass.
1967 virtual AtomicExpansionKind
1968 shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
1969 return AtomicExpansionKind::None;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001970 }
1971
1972 /// Returns how the IR-level AtomicExpand pass should expand the given
1973 /// AtomicRMW, if at all. Default is to never expand.
Andrew Walbran16937d02019-10-22 13:54:20 +01001974 virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
1975 return RMW->isFloatingPointOperation() ?
1976 AtomicExpansionKind::CmpXChg : AtomicExpansionKind::None;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001977 }
1978
1979 /// On some platforms, an AtomicRMW that never actually modifies the value
1980 /// (such as fetch_add of 0) can be turned into a fence followed by an
1981 /// atomic load. This may sound useless, but it makes it possible for the
1982 /// processor to keep the cacheline shared, dramatically improving
1983 /// performance. And such idempotent RMWs are useful for implementing some
1984 /// kinds of locks, see for example (justification + benchmarks):
1985 /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
1986 /// This method tries doing that transformation, returning the atomic load if
1987 /// it succeeds, and nullptr otherwise.
1988 /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
1989 /// another round of expansion.
1990 virtual LoadInst *
1991 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
1992 return nullptr;
1993 }
1994
1995 /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
1996 /// SIGN_EXTEND, or ANY_EXTEND).
1997 virtual ISD::NodeType getExtendForAtomicOps() const {
1998 return ISD::ZERO_EXTEND;
1999 }
2000
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002001 /// Returns how the platform's atomic compare and swap expects its comparison
2002 /// value to be extended (ZERO_EXTEND, SIGN_EXTEND, or ANY_EXTEND). This is
2003 /// separate from getExtendForAtomicOps, which is concerned with the
2004 /// sign-extension of the instruction's output, whereas here we are concerned
2005 /// with the sign-extension of the input. For targets with compare-and-swap
2006 /// instructions (or sub-word comparisons in their LL/SC loop expansions),
2007 /// the input can be ANY_EXTEND, but the output will still have a specific
2008 /// extension.
2009 virtual ISD::NodeType getExtendForAtomicCmpSwapArg() const {
2010 return ISD::ANY_EXTEND;
2011 }
2012
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002013 /// @}
2014
2015 /// Returns true if we should normalize
2016 /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
2017 /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
2018 /// that it saves us from materializing N0 and N1 in an integer register.
2019 /// Targets that are able to perform and/or on flags should return false here.
2020 virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
2021 EVT VT) const {
2022 // If a target has multiple condition registers, then it likely has logical
2023 // operations on those registers.
2024 if (hasMultipleConditionRegisters())
2025 return false;
2026 // Only do the transform if the value won't be split into multiple
2027 // registers.
2028 LegalizeTypeAction Action = getTypeAction(Context, VT);
2029 return Action != TypeExpandInteger && Action != TypeExpandFloat &&
2030 Action != TypeSplitVector;
2031 }
2032
Andrew Walbran16937d02019-10-22 13:54:20 +01002033 virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const { return true; }
2034
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002035 /// Return true if a select of constants (select Cond, C1, C2) should be
2036 /// transformed into simple math ops with the condition value. For example:
2037 /// select Cond, C1, C1-1 --> add (zext Cond), C1-1
2038 virtual bool convertSelectOfConstantsToMath(EVT VT) const {
2039 return false;
2040 }
2041
Andrew Scull0372a572018-11-16 15:47:06 +00002042 /// Return true if it is profitable to transform an integer
2043 /// multiplication-by-constant into simpler operations like shifts and adds.
2044 /// This may be true if the target does not directly support the
2045 /// multiplication operation for the specified type or the sequence of simpler
2046 /// ops is faster than the multiply.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002047 virtual bool decomposeMulByConstant(LLVMContext &Context,
2048 EVT VT, SDValue C) const {
Andrew Scull0372a572018-11-16 15:47:06 +00002049 return false;
2050 }
2051
Andrew Walbran16937d02019-10-22 13:54:20 +01002052 /// Return true if it is more correct/profitable to use strict FP_TO_INT
2053 /// conversion operations - canonicalizing the FP source value instead of
2054 /// converting all cases and then selecting based on value.
2055 /// This may be true if the target throws exceptions for out of bounds
2056 /// conversions or has fast FP CMOV.
2057 virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
2058 bool IsSigned) const {
2059 return false;
2060 }
2061
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002062 //===--------------------------------------------------------------------===//
2063 // TargetLowering Configuration Methods - These methods should be invoked by
2064 // the derived class constructor to configure this object for the target.
2065 //
2066protected:
2067 /// Specify how the target extends the result of integer and floating point
2068 /// boolean values from i1 to a wider type. See getBooleanContents.
2069 void setBooleanContents(BooleanContent Ty) {
2070 BooleanContents = Ty;
2071 BooleanFloatContents = Ty;
2072 }
2073
2074 /// Specify how the target extends the result of integer and floating point
2075 /// boolean values from i1 to a wider type. See getBooleanContents.
2076 void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
2077 BooleanContents = IntTy;
2078 BooleanFloatContents = FloatTy;
2079 }
2080
2081 /// Specify how the target extends the result of a vector boolean value from a
2082 /// vector of i1 to a wider type. See getBooleanContents.
2083 void setBooleanVectorContents(BooleanContent Ty) {
2084 BooleanVectorContents = Ty;
2085 }
2086
2087 /// Specify the target scheduling preference.
2088 void setSchedulingPreference(Sched::Preference Pref) {
2089 SchedPreferenceInfo = Pref;
2090 }
2091
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002092 /// Indicate the minimum number of blocks to generate jump tables.
2093 void setMinimumJumpTableEntries(unsigned Val);
2094
2095 /// Indicate the maximum number of entries in jump tables.
2096 /// Set to zero to generate unlimited jump tables.
2097 void setMaximumJumpTableSize(unsigned);
2098
2099 /// If set to a physical register, this specifies the register that
2100 /// llvm.savestack/llvm.restorestack should save and restore.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002101 void setStackPointerRegisterToSaveRestore(Register R) {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002102 StackPointerRegisterToSaveRestore = R;
2103 }
2104
2105 /// Tells the code generator that the target has multiple (allocatable)
2106 /// condition registers that can be used to store the results of comparisons
2107 /// for use by selects and conditional branches. With multiple condition
2108 /// registers, the code generator will not aggressively sink comparisons into
2109 /// the blocks of their users.
2110 void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
2111 HasMultipleConditionRegisters = hasManyRegs;
2112 }
2113
2114 /// Tells the code generator that the target has BitExtract instructions.
2115 /// The code generator will aggressively sink "shift"s into the blocks of
2116 /// their users if the users will generate "and" instructions which can be
2117 /// combined with "shift" to BitExtract instructions.
2118 void setHasExtractBitsInsn(bool hasExtractInsn = true) {
2119 HasExtractBitsInsn = hasExtractInsn;
2120 }
2121
2122 /// Tells the code generator not to expand logic operations on comparison
2123 /// predicates into separate sequences that increase the amount of flow
2124 /// control.
2125 void setJumpIsExpensive(bool isExpensive = true);
2126
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002127 /// Tells the code generator which bitwidths to bypass.
2128 void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
2129 BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
2130 }
2131
2132 /// Add the specified register class as an available regclass for the
2133 /// specified value type. This indicates the selector can handle values of
2134 /// that class natively.
2135 void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
2136 assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
2137 RegClassForVT[VT.SimpleTy] = RC;
2138 }
2139
2140 /// Return the largest legal super-reg register class of the register class
2141 /// for the specified type and its associated "cost".
2142 virtual std::pair<const TargetRegisterClass *, uint8_t>
2143 findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
2144
2145 /// Once all of the register classes are added, this allows us to compute
2146 /// derived properties we expose.
2147 void computeRegisterProperties(const TargetRegisterInfo *TRI);
2148
2149 /// Indicate that the specified operation does not work with the specified
2150 /// type and indicate what to do about it. Note that VT may refer to either
2151 /// the type of a result or that of an operand of Op.
2152 void setOperationAction(unsigned Op, MVT VT,
2153 LegalizeAction Action) {
2154 assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
2155 OpActions[(unsigned)VT.SimpleTy][Op] = Action;
2156 }
2157
2158 /// Indicate that the specified load with extension does not work with the
2159 /// specified type and indicate what to do about it.
2160 void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
2161 LegalizeAction Action) {
2162 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
2163 MemVT.isValid() && "Table isn't big enough!");
2164 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2165 unsigned Shift = 4 * ExtType;
2166 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
2167 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
2168 }
2169
2170 /// Indicate that the specified truncating store does not work with the
2171 /// specified type and indicate what to do about it.
2172 void setTruncStoreAction(MVT ValVT, MVT MemVT,
2173 LegalizeAction Action) {
2174 assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
2175 TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
2176 }
2177
2178 /// Indicate that the specified indexed load does or does not work with the
2179 /// specified type and indicate what to do abort it.
2180 ///
2181 /// NOTE: All indexed mode loads are initialized to Expand in
2182 /// TargetLowering.cpp
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002183 void setIndexedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action) {
2184 setIndexedModeAction(IdxMode, VT, IMAB_Load, Action);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002185 }
2186
2187 /// Indicate that the specified indexed store does or does not work with the
2188 /// specified type and indicate what to do about it.
2189 ///
2190 /// NOTE: All indexed mode stores are initialized to Expand in
2191 /// TargetLowering.cpp
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002192 void setIndexedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action) {
2193 setIndexedModeAction(IdxMode, VT, IMAB_Store, Action);
2194 }
2195
2196 /// Indicate that the specified indexed masked load does or does not work with
2197 /// the specified type and indicate what to do about it.
2198 ///
2199 /// NOTE: All indexed mode masked loads are initialized to Expand in
2200 /// TargetLowering.cpp
2201 void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT,
2202 LegalizeAction Action) {
2203 setIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad, Action);
2204 }
2205
2206 /// Indicate that the specified indexed masked store does or does not work
2207 /// with the specified type and indicate what to do about it.
2208 ///
2209 /// NOTE: All indexed mode masked stores are initialized to Expand in
2210 /// TargetLowering.cpp
2211 void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT,
2212 LegalizeAction Action) {
2213 setIndexedModeAction(IdxMode, VT, IMAB_MaskedStore, Action);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002214 }
2215
2216 /// Indicate that the specified condition code is or isn't supported on the
2217 /// target and indicate what to do about it.
2218 void setCondCodeAction(ISD::CondCode CC, MVT VT,
2219 LegalizeAction Action) {
2220 assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
2221 "Table isn't big enough!");
2222 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2223 /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit
2224 /// value and the upper 29 bits index into the second dimension of the array
2225 /// to select what 32-bit value to use.
2226 uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
2227 CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
2228 CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
2229 }
2230
2231 /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
2232 /// to trying a larger integer/fp until it can find one that works. If that
2233 /// default is insufficient, this method can be used by the target to override
2234 /// the default.
2235 void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2236 PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
2237 }
2238
2239 /// Convenience method to set an operation to Promote and specify the type
2240 /// in a single call.
2241 void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2242 setOperationAction(Opc, OrigVT, Promote);
2243 AddPromotedToType(Opc, OrigVT, DestVT);
2244 }
2245
2246 /// Targets should invoke this method for each target independent node that
2247 /// they want to provide a custom DAG combiner for by implementing the
2248 /// PerformDAGCombine virtual method.
2249 void setTargetDAGCombine(ISD::NodeType NT) {
2250 assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
2251 TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
2252 }
2253
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002254 /// Set the target's minimum function alignment.
2255 void setMinFunctionAlignment(Align Alignment) {
2256 MinFunctionAlignment = Alignment;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002257 }
2258
2259 /// Set the target's preferred function alignment. This should be set if
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002260 /// there is a performance benefit to higher-than-minimum alignment
2261 void setPrefFunctionAlignment(Align Alignment) {
2262 PrefFunctionAlignment = Alignment;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002263 }
2264
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002265 /// Set the target's preferred loop alignment. Default alignment is one, it
2266 /// means the target does not care about loop alignment. The target may also
2267 /// override getPrefLoopAlignment to provide per-loop values.
2268 void setPrefLoopAlignment(Align Alignment) { PrefLoopAlignment = Alignment; }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002269
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002270 /// Set the minimum stack alignment of an argument.
2271 void setMinStackArgumentAlignment(Align Alignment) {
2272 MinStackArgumentAlignment = Alignment;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002273 }
2274
2275 /// Set the maximum atomic operation size supported by the
2276 /// backend. Atomic operations greater than this size (as well as
2277 /// ones that are not naturally aligned), will be expanded by
2278 /// AtomicExpandPass into an __atomic_* library call.
2279 void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
2280 MaxAtomicSizeInBitsSupported = SizeInBits;
2281 }
2282
2283 /// Sets the minimum cmpxchg or ll/sc size supported by the backend.
2284 void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
2285 MinCmpXchgSizeInBits = SizeInBits;
2286 }
2287
2288 /// Sets whether unaligned atomic operations are supported.
2289 void setSupportsUnalignedAtomics(bool UnalignedSupported) {
2290 SupportsUnalignedAtomics = UnalignedSupported;
2291 }
2292
2293public:
2294 //===--------------------------------------------------------------------===//
2295 // Addressing mode description hooks (used by LSR etc).
2296 //
2297
2298 /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
2299 /// instructions reading the address. This allows as much computation as
2300 /// possible to be done in the address mode for that operand. This hook lets
2301 /// targets also pass back when this should be done on intrinsics which
2302 /// load/store.
2303 virtual bool getAddrModeArguments(IntrinsicInst * /*I*/,
2304 SmallVectorImpl<Value*> &/*Ops*/,
2305 Type *&/*AccessTy*/) const {
2306 return false;
2307 }
2308
2309 /// This represents an addressing mode of:
2310 /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
2311 /// If BaseGV is null, there is no BaseGV.
2312 /// If BaseOffs is zero, there is no base offset.
2313 /// If HasBaseReg is false, there is no base register.
2314 /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
2315 /// no scale.
2316 struct AddrMode {
2317 GlobalValue *BaseGV = nullptr;
2318 int64_t BaseOffs = 0;
2319 bool HasBaseReg = false;
2320 int64_t Scale = 0;
2321 AddrMode() = default;
2322 };
2323
2324 /// Return true if the addressing mode represented by AM is legal for this
2325 /// target, for a load/store of the specified type.
2326 ///
2327 /// The type may be VoidTy, in which case only return true if the addressing
2328 /// mode is legal for a load/store of any legal type. TODO: Handle
2329 /// pre/postinc as well.
2330 ///
2331 /// If the address space cannot be determined, it will be -1.
2332 ///
2333 /// TODO: Remove default argument
2334 virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
2335 Type *Ty, unsigned AddrSpace,
2336 Instruction *I = nullptr) const;
2337
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002338 /// Return the cost of the scaling factor used in the addressing mode
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002339 /// represented by AM for this target, for a load/store of the specified type.
2340 ///
2341 /// If the AM is supported, the return value must be >= 0.
2342 /// If the AM is not supported, it returns a negative value.
2343 /// TODO: Handle pre/postinc as well.
2344 /// TODO: Remove default argument
2345 virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM,
2346 Type *Ty, unsigned AS = 0) const {
2347 // Default: assume that any scaling factor used in a legal AM is free.
2348 if (isLegalAddressingMode(DL, AM, Ty, AS))
2349 return 0;
2350 return -1;
2351 }
2352
2353 /// Return true if the specified immediate is legal icmp immediate, that is
2354 /// the target has icmp instructions which can compare a register against the
2355 /// immediate without having to materialize the immediate into a register.
2356 virtual bool isLegalICmpImmediate(int64_t) const {
2357 return true;
2358 }
2359
2360 /// Return true if the specified immediate is legal add immediate, that is the
2361 /// target has add instructions which can add a register with the immediate
2362 /// without having to materialize the immediate into a register.
2363 virtual bool isLegalAddImmediate(int64_t) const {
2364 return true;
2365 }
2366
Andrew Walbran16937d02019-10-22 13:54:20 +01002367 /// Return true if the specified immediate is legal for the value input of a
2368 /// store instruction.
2369 virtual bool isLegalStoreImmediate(int64_t Value) const {
2370 // Default implementation assumes that at least 0 works since it is likely
2371 // that a zero register exists or a zero immediate is allowed.
2372 return Value == 0;
2373 }
2374
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002375 /// Return true if it's significantly cheaper to shift a vector by a uniform
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002376 /// scalar than by an amount which will vary across each lane. On x86 before
2377 /// AVX2 for example, there is a "psllw" instruction for the former case, but
2378 /// no simple instruction for a general "a << b" operation on vectors.
2379 /// This should also apply to lowering for vector funnel shifts (rotates).
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002380 virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
2381 return false;
2382 }
2383
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002384 /// Given a shuffle vector SVI representing a vector splat, return a new
2385 /// scalar type of size equal to SVI's scalar type if the new type is more
2386 /// profitable. Returns nullptr otherwise. For example under MVE float splats
2387 /// are converted to integer to prevent the need to move from SPR to GPR
2388 /// registers.
2389 virtual Type* shouldConvertSplatType(ShuffleVectorInst* SVI) const {
2390 return nullptr;
2391 }
2392
2393 /// Given a set in interconnected phis of type 'From' that are loaded/stored
2394 /// or bitcast to type 'To', return true if the set should be converted to
2395 /// 'To'.
2396 virtual bool shouldConvertPhiType(Type *From, Type *To) const {
2397 return (From->isIntegerTy() || From->isFloatingPointTy()) &&
2398 (To->isIntegerTy() || To->isFloatingPointTy());
2399 }
2400
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002401 /// Returns true if the opcode is a commutative binary operation.
2402 virtual bool isCommutativeBinOp(unsigned Opcode) const {
2403 // FIXME: This should get its info from the td file.
2404 switch (Opcode) {
2405 case ISD::ADD:
2406 case ISD::SMIN:
2407 case ISD::SMAX:
2408 case ISD::UMIN:
2409 case ISD::UMAX:
2410 case ISD::MUL:
2411 case ISD::MULHU:
2412 case ISD::MULHS:
2413 case ISD::SMUL_LOHI:
2414 case ISD::UMUL_LOHI:
2415 case ISD::FADD:
2416 case ISD::FMUL:
2417 case ISD::AND:
2418 case ISD::OR:
2419 case ISD::XOR:
2420 case ISD::SADDO:
2421 case ISD::UADDO:
2422 case ISD::ADDC:
2423 case ISD::ADDE:
Andrew Walbran16937d02019-10-22 13:54:20 +01002424 case ISD::SADDSAT:
2425 case ISD::UADDSAT:
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002426 case ISD::FMINNUM:
2427 case ISD::FMAXNUM:
Andrew Walbran3d2c1972020-04-07 12:24:26 +01002428 case ISD::FMINNUM_IEEE:
2429 case ISD::FMAXNUM_IEEE:
Andrew Walbran16937d02019-10-22 13:54:20 +01002430 case ISD::FMINIMUM:
2431 case ISD::FMAXIMUM:
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002432 return true;
2433 default: return false;
2434 }
2435 }
2436
Andrew Walbran3d2c1972020-04-07 12:24:26 +01002437 /// Return true if the node is a math/logic binary operator.
2438 virtual bool isBinOp(unsigned Opcode) const {
2439 // A commutative binop must be a binop.
2440 if (isCommutativeBinOp(Opcode))
2441 return true;
2442 // These are non-commutative binops.
2443 switch (Opcode) {
2444 case ISD::SUB:
2445 case ISD::SHL:
2446 case ISD::SRL:
2447 case ISD::SRA:
2448 case ISD::SDIV:
2449 case ISD::UDIV:
2450 case ISD::SREM:
2451 case ISD::UREM:
2452 case ISD::FSUB:
2453 case ISD::FDIV:
2454 case ISD::FREM:
2455 return true;
2456 default:
2457 return false;
2458 }
2459 }
2460
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002461 /// Return true if it's free to truncate a value of type FromTy to type
2462 /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
2463 /// by referencing its sub-register AX.
2464 /// Targets must return false when FromTy <= ToTy.
2465 virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
2466 return false;
2467 }
2468
2469 /// Return true if a truncation from FromTy to ToTy is permitted when deciding
2470 /// whether a call is in tail position. Typically this means that both results
2471 /// would be assigned to the same register or stack slot, but it could mean
2472 /// the target performs adequate checks of its own before proceeding with the
2473 /// tail call. Targets must return false when FromTy <= ToTy.
2474 virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
2475 return false;
2476 }
2477
2478 virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const {
2479 return false;
2480 }
2481
2482 virtual bool isProfitableToHoist(Instruction *I) const { return true; }
2483
2484 /// Return true if the extension represented by \p I is free.
2485 /// Unlikely the is[Z|FP]ExtFree family which is based on types,
2486 /// this method can use the context provided by \p I to decide
2487 /// whether or not \p I is free.
2488 /// This method extends the behavior of the is[Z|FP]ExtFree family.
2489 /// In other words, if is[Z|FP]Free returns true, then this method
2490 /// returns true as well. The converse is not true.
2491 /// The target can perform the adequate checks by overriding isExtFreeImpl.
2492 /// \pre \p I must be a sign, zero, or fp extension.
2493 bool isExtFree(const Instruction *I) const {
2494 switch (I->getOpcode()) {
2495 case Instruction::FPExt:
2496 if (isFPExtFree(EVT::getEVT(I->getType()),
2497 EVT::getEVT(I->getOperand(0)->getType())))
2498 return true;
2499 break;
2500 case Instruction::ZExt:
2501 if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
2502 return true;
2503 break;
2504 case Instruction::SExt:
2505 break;
2506 default:
2507 llvm_unreachable("Instruction is not an extension");
2508 }
2509 return isExtFreeImpl(I);
2510 }
2511
2512 /// Return true if \p Load and \p Ext can form an ExtLoad.
2513 /// For example, in AArch64
2514 /// %L = load i8, i8* %ptr
2515 /// %E = zext i8 %L to i32
2516 /// can be lowered into one load instruction
2517 /// ldrb w0, [x0]
2518 bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
2519 const DataLayout &DL) const {
2520 EVT VT = getValueType(DL, Ext->getType());
2521 EVT LoadVT = getValueType(DL, Load->getType());
2522
2523 // If the load has other users and the truncate is not free, the ext
2524 // probably isn't free.
2525 if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
2526 !isTruncateFree(Ext->getType(), Load->getType()))
2527 return false;
2528
2529 // Check whether the target supports casts folded into loads.
2530 unsigned LType;
2531 if (isa<ZExtInst>(Ext))
2532 LType = ISD::ZEXTLOAD;
2533 else {
2534 assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
2535 LType = ISD::SEXTLOAD;
2536 }
2537
2538 return isLoadExtLegal(LType, VT, LoadVT);
2539 }
2540
2541 /// Return true if any actual instruction that defines a value of type FromTy
2542 /// implicitly zero-extends the value to ToTy in the result register.
2543 ///
2544 /// The function should return true when it is likely that the truncate can
2545 /// be freely folded with an instruction defining a value of FromTy. If
2546 /// the defining instruction is unknown (because you're looking at a
2547 /// function argument, PHI, etc.) then the target may require an
2548 /// explicit truncate, which is not necessarily free, but this function
2549 /// does not deal with those cases.
2550 /// Targets must return false when FromTy >= ToTy.
2551 virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
2552 return false;
2553 }
2554
2555 virtual bool isZExtFree(EVT FromTy, EVT ToTy) const {
2556 return false;
2557 }
2558
Andrew Walbran16937d02019-10-22 13:54:20 +01002559 /// Return true if sign-extension from FromTy to ToTy is cheaper than
2560 /// zero-extension.
2561 virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const {
2562 return false;
2563 }
2564
2565 /// Return true if sinking I's operands to the same basic block as I is
2566 /// profitable, e.g. because the operands can be folded into a target
2567 /// instruction during instruction selection. After calling the function
2568 /// \p Ops contains the Uses to sink ordered by dominance (dominating users
2569 /// come first).
2570 virtual bool shouldSinkOperands(Instruction *I,
2571 SmallVectorImpl<Use *> &Ops) const {
2572 return false;
2573 }
2574
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002575 /// Return true if the target supplies and combines to a paired load
2576 /// two loaded values of type LoadedType next to each other in memory.
2577 /// RequiredAlignment gives the minimal alignment constraints that must be met
2578 /// to be able to select this paired load.
2579 ///
2580 /// This information is *not* used to generate actual paired loads, but it is
2581 /// used to generate a sequence of loads that is easier to combine into a
2582 /// paired load.
2583 /// For instance, something like this:
2584 /// a = load i64* addr
2585 /// b = trunc i64 a to i32
2586 /// c = lshr i64 a, 32
2587 /// d = trunc i64 c to i32
2588 /// will be optimized into:
2589 /// b = load i32* addr1
2590 /// d = load i32* addr2
2591 /// Where addr1 = addr2 +/- sizeof(i32).
2592 ///
2593 /// In other words, unless the target performs a post-isel load combining,
2594 /// this information should not be provided because it will generate more
2595 /// loads.
2596 virtual bool hasPairedLoad(EVT /*LoadedType*/,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002597 Align & /*RequiredAlignment*/) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002598 return false;
2599 }
2600
2601 /// Return true if the target has a vector blend instruction.
2602 virtual bool hasVectorBlend() const { return false; }
2603
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002604 /// Get the maximum supported factor for interleaved memory accesses.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002605 /// Default to be the minimum interleave factor: 2.
2606 virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
2607
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002608 /// Lower an interleaved load to target specific intrinsics. Return
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002609 /// true on success.
2610 ///
2611 /// \p LI is the vector load instruction.
2612 /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
2613 /// \p Indices is the corresponding indices for each shufflevector.
2614 /// \p Factor is the interleave factor.
2615 virtual bool lowerInterleavedLoad(LoadInst *LI,
2616 ArrayRef<ShuffleVectorInst *> Shuffles,
2617 ArrayRef<unsigned> Indices,
2618 unsigned Factor) const {
2619 return false;
2620 }
2621
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002622 /// Lower an interleaved store to target specific intrinsics. Return
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002623 /// true on success.
2624 ///
2625 /// \p SI is the vector store instruction.
2626 /// \p SVI is the shufflevector to RE-interleave the stored vector.
2627 /// \p Factor is the interleave factor.
2628 virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
2629 unsigned Factor) const {
2630 return false;
2631 }
2632
2633 /// Return true if zero-extending the specific node Val to type VT2 is free
2634 /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
2635 /// because it's folded such as X86 zero-extending loads).
2636 virtual bool isZExtFree(SDValue Val, EVT VT2) const {
2637 return isZExtFree(Val.getValueType(), VT2);
2638 }
2639
2640 /// Return true if an fpext operation is free (for instance, because
2641 /// single-precision floating-point numbers are implicitly extended to
2642 /// double-precision).
2643 virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
2644 assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
2645 "invalid fpext types");
2646 return false;
2647 }
2648
2649 /// Return true if an fpext operation input to an \p Opcode operation is free
2650 /// (for instance, because half-precision floating-point numbers are
2651 /// implicitly extended to float-precision) for an FMA instruction.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002652 virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
2653 EVT DestVT, EVT SrcVT) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002654 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
2655 "invalid fpext types");
2656 return isFPExtFree(DestVT, SrcVT);
2657 }
2658
2659 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
2660 /// extend node) is profitable.
2661 virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
2662
2663 /// Return true if an fneg operation is free to the point where it is never
2664 /// worthwhile to replace it with a bitwise operation.
2665 virtual bool isFNegFree(EVT VT) const {
2666 assert(VT.isFloatingPoint());
2667 return false;
2668 }
2669
2670 /// Return true if an fabs operation is free to the point where it is never
2671 /// worthwhile to replace it with a bitwise operation.
2672 virtual bool isFAbsFree(EVT VT) const {
2673 assert(VT.isFloatingPoint());
2674 return false;
2675 }
2676
2677 /// Return true if an FMA operation is faster than a pair of fmul and fadd
2678 /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
2679 /// returns true, otherwise fmuladd is expanded to fmul + fadd.
2680 ///
2681 /// NOTE: This may be called before legalization on types for which FMAs are
2682 /// not legal, but should return true if those types will eventually legalize
2683 /// to types that support FMAs. After legalization, it will only be called on
2684 /// types that support FMAs (via Legal or Custom actions)
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002685 virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
2686 EVT) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002687 return false;
2688 }
2689
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002690 /// IR version
2691 virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const {
2692 return false;
2693 }
2694
2695 /// Returns true if be combined with to form an ISD::FMAD. \p N may be an
2696 /// ISD::FADD, ISD::FSUB, or an ISD::FMUL which will be distributed into an
2697 /// fadd/fsub.
2698 virtual bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const {
2699 assert((N->getOpcode() == ISD::FADD || N->getOpcode() == ISD::FSUB ||
2700 N->getOpcode() == ISD::FMUL) &&
2701 "unexpected node in FMAD forming combine");
2702 return isOperationLegal(ISD::FMAD, N->getValueType(0));
2703 }
2704
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002705 /// Return true if it's profitable to narrow operations of type VT1 to
2706 /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
2707 /// i32 to i16.
2708 virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
2709 return false;
2710 }
2711
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002712 /// Return true if it is beneficial to convert a load of a constant to
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002713 /// just the constant itself.
2714 /// On some targets it might be more efficient to use a combination of
2715 /// arithmetic instructions to materialize the constant instead of loading it
2716 /// from a constant pool.
2717 virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
2718 Type *Ty) const {
2719 return false;
2720 }
2721
2722 /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
2723 /// from this source type with this index. This is needed because
2724 /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
2725 /// the first element, and only the target knows which lowering is cheap.
2726 virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
2727 unsigned Index) const {
2728 return false;
2729 }
2730
Andrew Walbran16937d02019-10-22 13:54:20 +01002731 /// Try to convert an extract element of a vector binary operation into an
2732 /// extract element followed by a scalar operation.
2733 virtual bool shouldScalarizeBinop(SDValue VecOp) const {
2734 return false;
2735 }
2736
Andrew Walbran3d2c1972020-04-07 12:24:26 +01002737 /// Return true if extraction of a scalar element from the given vector type
2738 /// at the given index is cheap. For example, if scalar operations occur on
2739 /// the same register file as vector operations, then an extract element may
2740 /// be a sub-register rename rather than an actual instruction.
2741 virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const {
2742 return false;
2743 }
2744
2745 /// Try to convert math with an overflow comparison into the corresponding DAG
2746 /// node operation. Targets may want to override this independently of whether
2747 /// the operation is legal/custom for the given type because it may obscure
2748 /// matching of other patterns.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002749 virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
2750 bool MathUsed) const {
Andrew Walbran3d2c1972020-04-07 12:24:26 +01002751 // TODO: The default logic is inherited from code in CodeGenPrepare.
2752 // The opcode should not make a difference by default?
2753 if (Opcode != ISD::UADDO)
2754 return false;
2755
2756 // Allow the transform as long as we have an integer type that is not
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002757 // obviously illegal and unsupported and if the math result is used
2758 // besides the overflow check. On some targets (e.g. SPARC), it is
2759 // not profitable to form on overflow op if the math result has no
2760 // concrete users.
Andrew Walbran3d2c1972020-04-07 12:24:26 +01002761 if (VT.isVector())
2762 return false;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002763 return MathUsed && (VT.isSimple() || !isOperationExpand(Opcode, VT));
Andrew Walbran3d2c1972020-04-07 12:24:26 +01002764 }
2765
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002766 // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
2767 // even if the vector itself has multiple uses.
2768 virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
2769 return false;
2770 }
2771
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002772 // Return true if CodeGenPrepare should consider splitting large offset of a
2773 // GEP to make the GEP fit into the addressing mode and can be sunk into the
2774 // same blocks of its users.
2775 virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
2776
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002777 /// Return true if creating a shift of the type by the given
2778 /// amount is not profitable.
2779 virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const {
2780 return false;
2781 }
2782
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002783 //===--------------------------------------------------------------------===//
2784 // Runtime Library hooks
2785 //
2786
2787 /// Rename the default libcall routine name for the specified libcall.
2788 void setLibcallName(RTLIB::Libcall Call, const char *Name) {
2789 LibcallRoutineNames[Call] = Name;
2790 }
2791
2792 /// Get the libcall routine name for the specified libcall.
2793 const char *getLibcallName(RTLIB::Libcall Call) const {
2794 return LibcallRoutineNames[Call];
2795 }
2796
2797 /// Override the default CondCode to be used to test the result of the
2798 /// comparison libcall against zero.
2799 void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
2800 CmpLibcallCCs[Call] = CC;
2801 }
2802
2803 /// Get the CondCode that's to be used to test the result of the comparison
2804 /// libcall against zero.
2805 ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
2806 return CmpLibcallCCs[Call];
2807 }
2808
2809 /// Set the CallingConv that should be used for the specified libcall.
2810 void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
2811 LibcallCallingConvs[Call] = CC;
2812 }
2813
2814 /// Get the CallingConv that should be used for the specified libcall.
2815 CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
2816 return LibcallCallingConvs[Call];
2817 }
2818
2819 /// Execute target specific actions to finalize target lowering.
2820 /// This is used to set extra flags in MachineFrameInformation and freezing
2821 /// the set of reserved registers.
2822 /// The default implementation just freezes the set of reserved registers.
2823 virtual void finalizeLowering(MachineFunction &MF) const;
2824
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002825 //===----------------------------------------------------------------------===//
2826 // GlobalISel Hooks
2827 //===----------------------------------------------------------------------===//
2828 /// Check whether or not \p MI needs to be moved close to its uses.
2829 virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const;
2830
2831
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002832private:
2833 const TargetMachine &TM;
2834
2835 /// Tells the code generator that the target has multiple (allocatable)
2836 /// condition registers that can be used to store the results of comparisons
2837 /// for use by selects and conditional branches. With multiple condition
2838 /// registers, the code generator will not aggressively sink comparisons into
2839 /// the blocks of their users.
2840 bool HasMultipleConditionRegisters;
2841
2842 /// Tells the code generator that the target has BitExtract instructions.
2843 /// The code generator will aggressively sink "shift"s into the blocks of
2844 /// their users if the users will generate "and" instructions which can be
2845 /// combined with "shift" to BitExtract instructions.
2846 bool HasExtractBitsInsn;
2847
2848 /// Tells the code generator to bypass slow divide or remainder
2849 /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
2850 /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
2851 /// div/rem when the operands are positive and less than 256.
2852 DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
2853
2854 /// Tells the code generator that it shouldn't generate extra flow control
2855 /// instructions and should attempt to combine flow control instructions via
2856 /// predication.
2857 bool JumpIsExpensive;
2858
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002859 /// Information about the contents of the high-bits in boolean values held in
2860 /// a type wider than i1. See getBooleanContents.
2861 BooleanContent BooleanContents;
2862
2863 /// Information about the contents of the high-bits in boolean values held in
2864 /// a type wider than i1. See getBooleanContents.
2865 BooleanContent BooleanFloatContents;
2866
2867 /// Information about the contents of the high-bits in boolean vector values
2868 /// when the element type is wider than i1. See getBooleanContents.
2869 BooleanContent BooleanVectorContents;
2870
2871 /// The target scheduling preference: shortest possible total cycles or lowest
2872 /// register usage.
2873 Sched::Preference SchedPreferenceInfo;
2874
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002875 /// The minimum alignment that any argument on the stack needs to have.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002876 Align MinStackArgumentAlignment;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002877
2878 /// The minimum function alignment (used when optimizing for size, and to
2879 /// prevent explicitly provided alignment from leading to incorrect code).
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002880 Align MinFunctionAlignment;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002881
2882 /// The preferred function alignment (used when alignment unspecified and
2883 /// optimizing for speed).
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002884 Align PrefFunctionAlignment;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002885
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002886 /// The preferred loop alignment (in log2 bot in bytes).
2887 Align PrefLoopAlignment;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002888
2889 /// Size in bits of the maximum atomics size the backend supports.
2890 /// Accesses larger than this will be expanded by AtomicExpandPass.
2891 unsigned MaxAtomicSizeInBitsSupported;
2892
2893 /// Size in bits of the minimum cmpxchg or ll/sc operation the
2894 /// backend supports.
2895 unsigned MinCmpXchgSizeInBits;
2896
2897 /// This indicates if the target supports unaligned atomic operations.
2898 bool SupportsUnalignedAtomics;
2899
2900 /// If set to a physical register, this specifies the register that
2901 /// llvm.savestack/llvm.restorestack should save and restore.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002902 Register StackPointerRegisterToSaveRestore;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002903
2904 /// This indicates the default register class to use for each ValueType the
2905 /// target supports natively.
2906 const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002907 uint16_t NumRegistersForVT[MVT::LAST_VALUETYPE];
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002908 MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
2909
2910 /// This indicates the "representative" register class to use for each
2911 /// ValueType the target supports natively. This information is used by the
2912 /// scheduler to track register pressure. By default, the representative
2913 /// register class is the largest legal super-reg register class of the
2914 /// register class of the specified type. e.g. On x86, i8, i16, and i32's
2915 /// representative class would be GR32.
2916 const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
2917
2918 /// This indicates the "cost" of the "representative" register class for each
2919 /// ValueType. The cost is used by the scheduler to approximate register
2920 /// pressure.
2921 uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
2922
2923 /// For any value types we are promoting or expanding, this contains the value
2924 /// type that we are changing to. For Expanded types, this contains one step
2925 /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
2926 /// (e.g. i64 -> i16). For types natively supported by the system, this holds
2927 /// the same type (e.g. i32 -> i32).
2928 MVT TransformToType[MVT::LAST_VALUETYPE];
2929
2930 /// For each operation and each value type, keep a LegalizeAction that
2931 /// indicates how instruction selection should deal with the operation. Most
2932 /// operations are Legal (aka, supported natively by the target), but
2933 /// operations that are not should be described. Note that operations on
2934 /// non-legal value types are not described here.
2935 LegalizeAction OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
2936
2937 /// For each load extension type and each value type, keep a LegalizeAction
2938 /// that indicates how instruction selection should deal with a load of a
2939 /// specific value type and extension type. Uses 4-bits to store the action
2940 /// for each of the 4 load ext types.
2941 uint16_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2942
2943 /// For each value type pair keep a LegalizeAction that indicates whether a
2944 /// truncating store of a specific value type and truncating type is legal.
2945 LegalizeAction TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2946
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002947 /// For each indexed mode and each value type, keep a quad of LegalizeAction
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002948 /// that indicates how instruction selection should deal with the load /
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002949 /// store / maskedload / maskedstore.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002950 ///
2951 /// The first dimension is the value_type for the reference. The second
2952 /// dimension represents the various modes for load store.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002953 uint16_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002954
2955 /// For each condition code (ISD::CondCode) keep a LegalizeAction that
2956 /// indicates how instruction selection should deal with the condition code.
2957 ///
2958 /// Because each CC action takes up 4 bits, we need to have the array size be
2959 /// large enough to fit all of the value types. This can be done by rounding
2960 /// up the MVT::LAST_VALUETYPE value to the next multiple of 8.
2961 uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 7) / 8];
2962
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002963 ValueTypeActionImpl ValueTypeActions;
2964
2965private:
2966 LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
2967
2968 /// Targets can specify ISD nodes that they would like PerformDAGCombine
2969 /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
2970 /// array.
2971 unsigned char
2972 TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
2973
2974 /// For operations that must be promoted to a specific type, this holds the
2975 /// destination type. This map should be sparse, so don't hold it as an
2976 /// array.
2977 ///
2978 /// Targets add entries to this map with AddPromotedToType(..), clients access
2979 /// this with getTypeToPromoteTo(..).
2980 std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
2981 PromoteToType;
2982
2983 /// Stores the name each libcall.
2984 const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL + 1];
2985
2986 /// The ISD::CondCode that should be used to test the result of each of the
2987 /// comparison libcall against zero.
2988 ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
2989
2990 /// Stores the CallingConv that should be used for each libcall.
2991 CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
2992
2993 /// Set default libcall names and calling conventions.
2994 void InitLibcalls(const Triple &TT);
2995
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002996 /// The bits of IndexedModeActions used to store the legalisation actions
2997 /// We store the data as | ML | MS | L | S | each taking 4 bits.
2998 enum IndexedModeActionsBits {
2999 IMAB_Store = 0,
3000 IMAB_Load = 4,
3001 IMAB_MaskedStore = 8,
3002 IMAB_MaskedLoad = 12
3003 };
3004
3005 void setIndexedModeAction(unsigned IdxMode, MVT VT, unsigned Shift,
3006 LegalizeAction Action) {
3007 assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
3008 (unsigned)Action < 0xf && "Table isn't big enough!");
3009 unsigned Ty = (unsigned)VT.SimpleTy;
3010 IndexedModeActions[Ty][IdxMode] &= ~(0xf << Shift);
3011 IndexedModeActions[Ty][IdxMode] |= ((uint16_t)Action) << Shift;
3012 }
3013
3014 LegalizeAction getIndexedModeAction(unsigned IdxMode, MVT VT,
3015 unsigned Shift) const {
3016 assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
3017 "Table isn't big enough!");
3018 unsigned Ty = (unsigned)VT.SimpleTy;
3019 return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] >> Shift) & 0xf);
3020 }
3021
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003022protected:
3023 /// Return true if the extension represented by \p I is free.
3024 /// \pre \p I is a sign, zero, or fp extension and
3025 /// is[Z|FP]ExtFree of the related types is not true.
3026 virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
3027
3028 /// Depth that GatherAllAliases should should continue looking for chain
3029 /// dependencies when trying to find a more preferable chain. As an
3030 /// approximation, this should be more than the number of consecutive stores
3031 /// expected to be merged.
3032 unsigned GatherAllAliasesMaxDepth;
3033
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003034 /// \brief Specify maximum number of store instructions per memset call.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003035 ///
3036 /// When lowering \@llvm.memset this field specifies the maximum number of
3037 /// store operations that may be substituted for the call to memset. Targets
3038 /// must set this value based on the cost threshold for that target. Targets
3039 /// should assume that the memset will be done using as many of the largest
3040 /// store operations first, followed by smaller ones, if necessary, per
3041 /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
3042 /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
3043 /// store. This only applies to setting a constant array of a constant size.
3044 unsigned MaxStoresPerMemset;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003045 /// Likewise for functions with the OptSize attribute.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003046 unsigned MaxStoresPerMemsetOptSize;
3047
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003048 /// \brief Specify maximum number of store instructions per memcpy call.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003049 ///
3050 /// When lowering \@llvm.memcpy this field specifies the maximum number of
3051 /// store operations that may be substituted for a call to memcpy. Targets
3052 /// must set this value based on the cost threshold for that target. Targets
3053 /// should assume that the memcpy will be done using as many of the largest
3054 /// store operations first, followed by smaller ones, if necessary, per
3055 /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
3056 /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
3057 /// and one 1-byte store. This only applies to copying a constant array of
3058 /// constant size.
3059 unsigned MaxStoresPerMemcpy;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003060 /// Likewise for functions with the OptSize attribute.
3061 unsigned MaxStoresPerMemcpyOptSize;
Andrew Scullcdfcccc2018-10-05 20:58:37 +01003062 /// \brief Specify max number of store instructions to glue in inlined memcpy.
3063 ///
3064 /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
3065 /// of store instructions to keep together. This helps in pairing and
3066 // vectorization later on.
3067 unsigned MaxGluedStoresPerMemcpy = 0;
3068
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003069 /// \brief Specify maximum number of load instructions per memcmp call.
3070 ///
3071 /// When lowering \@llvm.memcmp this field specifies the maximum number of
3072 /// pairs of load operations that may be substituted for a call to memcmp.
3073 /// Targets must set this value based on the cost threshold for that target.
3074 /// Targets should assume that the memcmp will be done using as many of the
3075 /// largest load operations first, followed by smaller ones, if necessary, per
3076 /// alignment restrictions. For example, loading 7 bytes on a 32-bit machine
3077 /// with 32-bit alignment would result in one 4-byte load, a one 2-byte load
3078 /// and one 1-byte load. This only applies to copying a constant array of
3079 /// constant size.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003080 unsigned MaxLoadsPerMemcmp;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003081 /// Likewise for functions with the OptSize attribute.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003082 unsigned MaxLoadsPerMemcmpOptSize;
3083
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003084 /// \brief Specify maximum number of store instructions per memmove call.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003085 ///
3086 /// When lowering \@llvm.memmove this field specifies the maximum number of
3087 /// store instructions that may be substituted for a call to memmove. Targets
3088 /// must set this value based on the cost threshold for that target. Targets
3089 /// should assume that the memmove will be done using as many of the largest
3090 /// store operations first, followed by smaller ones, if necessary, per
3091 /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
3092 /// with 8-bit alignment would result in nine 1-byte stores. This only
3093 /// applies to copying a constant array of constant size.
3094 unsigned MaxStoresPerMemmove;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003095 /// Likewise for functions with the OptSize attribute.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003096 unsigned MaxStoresPerMemmoveOptSize;
3097
3098 /// Tells the code generator that select is more expensive than a branch if
3099 /// the branch is usually predicted right.
3100 bool PredictableSelectIsExpensive;
3101
3102 /// \see enableExtLdPromotion.
3103 bool EnableExtLdPromotion;
3104
3105 /// Return true if the value types that can be represented by the specified
3106 /// register class are all legal.
3107 bool isLegalRC(const TargetRegisterInfo &TRI,
3108 const TargetRegisterClass &RC) const;
3109
3110 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
3111 /// sequence of memory operands that is recognized by PrologEpilogInserter.
3112 MachineBasicBlock *emitPatchPoint(MachineInstr &MI,
3113 MachineBasicBlock *MBB) const;
3114
3115 /// Replace/modify the XRay custom event operands with target-dependent
3116 /// details.
3117 MachineBasicBlock *emitXRayCustomEvent(MachineInstr &MI,
3118 MachineBasicBlock *MBB) const;
Andrew Scullcdfcccc2018-10-05 20:58:37 +01003119
3120 /// Replace/modify the XRay typed event operands with target-dependent
3121 /// details.
3122 MachineBasicBlock *emitXRayTypedEvent(MachineInstr &MI,
3123 MachineBasicBlock *MBB) const;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003124
3125 bool IsStrictFPEnabled;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003126};
3127
3128/// This class defines information used to lower LLVM code to legal SelectionDAG
3129/// operators that the target instruction selector can accept natively.
3130///
3131/// This class also defines callbacks that targets must implement to lower
3132/// target-specific constructs to SelectionDAG operators.
3133class TargetLowering : public TargetLoweringBase {
3134public:
3135 struct DAGCombinerInfo;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003136 struct MakeLibCallOptions;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003137
3138 TargetLowering(const TargetLowering &) = delete;
3139 TargetLowering &operator=(const TargetLowering &) = delete;
3140
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003141 explicit TargetLowering(const TargetMachine &TM);
3142
3143 bool isPositionIndependent() const;
3144
3145 virtual bool isSDNodeSourceOfDivergence(const SDNode *N,
3146 FunctionLoweringInfo *FLI,
Andrew Scull0372a572018-11-16 15:47:06 +00003147 LegacyDivergenceAnalysis *DA) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003148 return false;
3149 }
3150
3151 virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
3152 return false;
3153 }
3154
3155 /// Returns true by value, base pointer and offset pointer and addressing mode
3156 /// by reference if the node's address can be legally represented as
3157 /// pre-indexed load / store address.
3158 virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
3159 SDValue &/*Offset*/,
3160 ISD::MemIndexedMode &/*AM*/,
3161 SelectionDAG &/*DAG*/) const {
3162 return false;
3163 }
3164
3165 /// Returns true by value, base pointer and offset pointer and addressing mode
3166 /// by reference if this node can be combined with a load / store to form a
3167 /// post-indexed load / store.
3168 virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
3169 SDValue &/*Base*/,
3170 SDValue &/*Offset*/,
3171 ISD::MemIndexedMode &/*AM*/,
3172 SelectionDAG &/*DAG*/) const {
3173 return false;
3174 }
3175
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003176 /// Returns true if the specified base+offset is a legal indexed addressing
3177 /// mode for this target. \p MI is the load or store instruction that is being
3178 /// considered for transformation.
3179 virtual bool isIndexingLegal(MachineInstr &MI, Register Base, Register Offset,
3180 bool IsPre, MachineRegisterInfo &MRI) const {
3181 return false;
3182 }
3183
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003184 /// Return the entry encoding for a jump table in the current function. The
3185 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
3186 virtual unsigned getJumpTableEncoding() const;
3187
3188 virtual const MCExpr *
3189 LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
3190 const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
3191 MCContext &/*Ctx*/) const {
3192 llvm_unreachable("Need to implement this hook if target has custom JTIs");
3193 }
3194
3195 /// Returns relocation base for the given PIC jumptable.
3196 virtual SDValue getPICJumpTableRelocBase(SDValue Table,
3197 SelectionDAG &DAG) const;
3198
3199 /// This returns the relocation base for the given PIC jumptable, the same as
3200 /// getPICJumpTableRelocBase, but as an MCExpr.
3201 virtual const MCExpr *
3202 getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3203 unsigned JTI, MCContext &Ctx) const;
3204
3205 /// Return true if folding a constant offset with the given GlobalAddress is
3206 /// legal. It is frequently not legal in PIC relocation models.
3207 virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
3208
3209 bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
3210 SDValue &Chain) const;
3211
3212 void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3213 SDValue &NewRHS, ISD::CondCode &CCCode,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003214 const SDLoc &DL, const SDValue OldLHS,
3215 const SDValue OldRHS) const;
3216
3217 void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3218 SDValue &NewRHS, ISD::CondCode &CCCode,
3219 const SDLoc &DL, const SDValue OldLHS,
3220 const SDValue OldRHS, SDValue &Chain,
3221 bool IsSignaling = false) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003222
3223 /// Returns a pair of (return value, chain).
3224 /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003225 std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
3226 EVT RetVT, ArrayRef<SDValue> Ops,
3227 MakeLibCallOptions CallOptions,
3228 const SDLoc &dl,
3229 SDValue Chain = SDValue()) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003230
3231 /// Check whether parameters to a call that are passed in callee saved
3232 /// registers are the same as from the calling function. This needs to be
3233 /// checked for tail call eligibility.
3234 bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
3235 const uint32_t *CallerPreservedMask,
3236 const SmallVectorImpl<CCValAssign> &ArgLocs,
3237 const SmallVectorImpl<SDValue> &OutVals) const;
3238
3239 //===--------------------------------------------------------------------===//
3240 // TargetLowering Optimization Methods
3241 //
3242
3243 /// A convenience struct that encapsulates a DAG, and two SDValues for
3244 /// returning information from TargetLowering to its clients that want to
3245 /// combine.
3246 struct TargetLoweringOpt {
3247 SelectionDAG &DAG;
3248 bool LegalTys;
3249 bool LegalOps;
3250 SDValue Old;
3251 SDValue New;
3252
3253 explicit TargetLoweringOpt(SelectionDAG &InDAG,
3254 bool LT, bool LO) :
3255 DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
3256
3257 bool LegalTypes() const { return LegalTys; }
3258 bool LegalOperations() const { return LegalOps; }
3259
3260 bool CombineTo(SDValue O, SDValue N) {
3261 Old = O;
3262 New = N;
3263 return true;
3264 }
3265 };
3266
Andrew Walbran3d2c1972020-04-07 12:24:26 +01003267 /// Determines the optimal series of memory ops to replace the memset / memcpy.
3268 /// Return true if the number of memory ops is below the threshold (Limit).
3269 /// It returns the types of the sequence of memory ops to perform
3270 /// memset / memcpy by reference.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003271 bool findOptimalMemOpLowering(std::vector<EVT> &MemOps, unsigned Limit,
3272 const MemOp &Op, unsigned DstAS, unsigned SrcAS,
Andrew Walbran3d2c1972020-04-07 12:24:26 +01003273 const AttributeList &FuncAttributes) const;
3274
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003275 /// Check to see if the specified operand of the specified instruction is a
3276 /// constant integer. If so, check to see if there are any bits set in the
3277 /// constant that are not demanded. If so, shrink the constant and return
3278 /// true.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003279 bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
3280 const APInt &DemandedElts,
3281 TargetLoweringOpt &TLO) const;
3282
3283 /// Helper wrapper around ShrinkDemandedConstant, demanding all elements.
3284 bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003285 TargetLoweringOpt &TLO) const;
3286
3287 // Target hook to do target-specific const optimization, which is called by
3288 // ShrinkDemandedConstant. This function should return true if the target
3289 // doesn't want ShrinkDemandedConstant to further optimize the constant.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003290 virtual bool targetShrinkDemandedConstant(SDValue Op,
3291 const APInt &DemandedBits,
3292 const APInt &DemandedElts,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003293 TargetLoweringOpt &TLO) const {
3294 return false;
3295 }
3296
3297 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. This
3298 /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
3299 /// generalized for targets with other types of implicit widening casts.
3300 bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
3301 TargetLoweringOpt &TLO) const;
3302
Andrew Walbran16937d02019-10-22 13:54:20 +01003303 /// Look at Op. At this point, we know that only the DemandedBits bits of the
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003304 /// result of Op are ever used downstream. If we can use this information to
3305 /// simplify Op, create a new simplified DAG node and return true, returning
3306 /// the original and new nodes in Old and New. Otherwise, analyze the
3307 /// expression and return a mask of KnownOne and KnownZero bits for the
3308 /// expression (used to simplify the caller). The KnownZero/One bits may only
Andrew Walbran16937d02019-10-22 13:54:20 +01003309 /// be accurate for those bits in the Demanded masks.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003310 /// \p AssumeSingleUse When this parameter is true, this function will
3311 /// attempt to simplify \p Op even if there are multiple uses.
3312 /// Callers are responsible for correctly updating the DAG based on the
3313 /// results of this function, because simply replacing replacing TLO.Old
3314 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
3315 /// has multiple uses.
Andrew Walbran16937d02019-10-22 13:54:20 +01003316 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3317 const APInt &DemandedElts, KnownBits &Known,
3318 TargetLoweringOpt &TLO, unsigned Depth = 0,
3319 bool AssumeSingleUse = false) const;
3320
3321 /// Helper wrapper around SimplifyDemandedBits, demanding all elements.
3322 /// Adds Op back to the worklist upon success.
3323 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3324 KnownBits &Known, TargetLoweringOpt &TLO,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003325 unsigned Depth = 0,
3326 bool AssumeSingleUse = false) const;
3327
Andrew Scull0372a572018-11-16 15:47:06 +00003328 /// Helper wrapper around SimplifyDemandedBits.
3329 /// Adds Op back to the worklist upon success.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003330 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003331 DAGCombinerInfo &DCI) const;
3332
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003333 /// More limited version of SimplifyDemandedBits that can be used to "look
3334 /// through" ops that don't contribute to the DemandedBits/DemandedElts -
3335 /// bitwise ops etc.
3336 SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
3337 const APInt &DemandedElts,
3338 SelectionDAG &DAG,
3339 unsigned Depth) const;
3340
3341 /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
3342 /// elements.
3343 SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
3344 SelectionDAG &DAG,
3345 unsigned Depth = 0) const;
3346
3347 /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
3348 /// bits from only some vector elements.
3349 SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op,
3350 const APInt &DemandedElts,
3351 SelectionDAG &DAG,
3352 unsigned Depth = 0) const;
3353
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003354 /// Look at Vector Op. At this point, we know that only the DemandedElts
3355 /// elements of the result of Op are ever used downstream. If we can use
3356 /// this information to simplify Op, create a new simplified DAG node and
3357 /// return true, storing the original and new nodes in TLO.
3358 /// Otherwise, analyze the expression and return a mask of KnownUndef and
3359 /// KnownZero elements for the expression (used to simplify the caller).
3360 /// The KnownUndef/Zero elements may only be accurate for those bits
3361 /// in the DemandedMask.
3362 /// \p AssumeSingleUse When this parameter is true, this function will
3363 /// attempt to simplify \p Op even if there are multiple uses.
3364 /// Callers are responsible for correctly updating the DAG based on the
3365 /// results of this function, because simply replacing replacing TLO.Old
3366 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
3367 /// has multiple uses.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01003368 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003369 APInt &KnownUndef, APInt &KnownZero,
3370 TargetLoweringOpt &TLO, unsigned Depth = 0,
3371 bool AssumeSingleUse = false) const;
3372
Andrew Scull0372a572018-11-16 15:47:06 +00003373 /// Helper wrapper around SimplifyDemandedVectorElts.
3374 /// Adds Op back to the worklist upon success.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003375 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
3376 APInt &KnownUndef, APInt &KnownZero,
3377 DAGCombinerInfo &DCI) const;
3378
3379 /// Determine which of the bits specified in Mask are known to be either zero
3380 /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
3381 /// argument allows us to only collect the known bits that are shared by the
3382 /// requested vector elements.
3383 virtual void computeKnownBitsForTargetNode(const SDValue Op,
3384 KnownBits &Known,
3385 const APInt &DemandedElts,
3386 const SelectionDAG &DAG,
3387 unsigned Depth = 0) const;
3388
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003389 /// Determine which of the bits specified in Mask are known to be either zero
3390 /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
3391 /// argument allows us to only collect the known bits that are shared by the
3392 /// requested vector elements. This is for GISel.
3393 virtual void computeKnownBitsForTargetInstr(GISelKnownBits &Analysis,
3394 Register R, KnownBits &Known,
3395 const APInt &DemandedElts,
3396 const MachineRegisterInfo &MRI,
3397 unsigned Depth = 0) const;
3398
3399 /// Determine the known alignment for the pointer value \p R. This is can
3400 /// typically be inferred from the number of low known 0 bits. However, for a
3401 /// pointer with a non-integral address space, the alignment value may be
3402 /// independent from the known low bits.
3403 virtual Align computeKnownAlignForTargetInstr(GISelKnownBits &Analysis,
3404 Register R,
3405 const MachineRegisterInfo &MRI,
3406 unsigned Depth = 0) const;
3407
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003408 /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
3409 /// Default implementation computes low bits based on alignment
3410 /// information. This should preserve known bits passed into it.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003411 virtual void computeKnownBitsForFrameIndex(int FIOp,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003412 KnownBits &Known,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003413 const MachineFunction &MF) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003414
3415 /// This method can be implemented by targets that want to expose additional
3416 /// information about sign bits to the DAG Combiner. The DemandedElts
3417 /// argument allows us to only collect the minimum sign bits that are shared
3418 /// by the requested vector elements.
3419 virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
3420 const APInt &DemandedElts,
3421 const SelectionDAG &DAG,
3422 unsigned Depth = 0) const;
3423
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003424 /// This method can be implemented by targets that want to expose additional
3425 /// information about sign bits to GlobalISel combiners. The DemandedElts
3426 /// argument allows us to only collect the minimum sign bits that are shared
3427 /// by the requested vector elements.
3428 virtual unsigned computeNumSignBitsForTargetInstr(GISelKnownBits &Analysis,
3429 Register R,
3430 const APInt &DemandedElts,
3431 const MachineRegisterInfo &MRI,
3432 unsigned Depth = 0) const;
3433
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003434 /// Attempt to simplify any target nodes based on the demanded vector
3435 /// elements, returning true on success. Otherwise, analyze the expression and
3436 /// return a mask of KnownUndef and KnownZero elements for the expression
3437 /// (used to simplify the caller). The KnownUndef/Zero elements may only be
Andrew Walbran16937d02019-10-22 13:54:20 +01003438 /// accurate for those bits in the DemandedMask.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003439 virtual bool SimplifyDemandedVectorEltsForTargetNode(
3440 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
3441 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
3442
Andrew Walbran16937d02019-10-22 13:54:20 +01003443 /// Attempt to simplify any target nodes based on the demanded bits/elts,
3444 /// returning true on success. Otherwise, analyze the
3445 /// expression and return a mask of KnownOne and KnownZero bits for the
3446 /// expression (used to simplify the caller). The KnownZero/One bits may only
3447 /// be accurate for those bits in the Demanded masks.
3448 virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op,
3449 const APInt &DemandedBits,
3450 const APInt &DemandedElts,
3451 KnownBits &Known,
3452 TargetLoweringOpt &TLO,
3453 unsigned Depth = 0) const;
3454
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003455 /// More limited version of SimplifyDemandedBits that can be used to "look
3456 /// through" ops that don't contribute to the DemandedBits/DemandedElts -
3457 /// bitwise ops etc.
3458 virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
3459 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3460 SelectionDAG &DAG, unsigned Depth) const;
3461
3462 /// Tries to build a legal vector shuffle using the provided parameters
3463 /// or equivalent variations. The Mask argument maybe be modified as the
3464 /// function tries different variations.
3465 /// Returns an empty SDValue if the operation fails.
3466 SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3467 SDValue N1, MutableArrayRef<int> Mask,
3468 SelectionDAG &DAG) const;
3469
Andrew Walbran3d2c1972020-04-07 12:24:26 +01003470 /// This method returns the constant pool value that will be loaded by LD.
3471 /// NOTE: You must check for implicit extensions of the constant by LD.
3472 virtual const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const;
3473
Andrew Scullcdfcccc2018-10-05 20:58:37 +01003474 /// If \p SNaN is false, \returns true if \p Op is known to never be any
3475 /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
3476 /// NaN.
3477 virtual bool isKnownNeverNaNForTargetNode(SDValue Op,
3478 const SelectionDAG &DAG,
3479 bool SNaN = false,
3480 unsigned Depth = 0) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003481 struct DAGCombinerInfo {
3482 void *DC; // The DAG Combiner object.
3483 CombineLevel Level;
3484 bool CalledByLegalizer;
3485
3486 public:
3487 SelectionDAG &DAG;
3488
3489 DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
3490 : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
3491
3492 bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
3493 bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003494 bool isAfterLegalizeDAG() const { return Level >= AfterLegalizeDAG; }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003495 CombineLevel getDAGCombineLevel() { return Level; }
3496 bool isCalledByLegalizer() const { return CalledByLegalizer; }
3497
3498 void AddToWorklist(SDNode *N);
3499 SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
3500 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
3501 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
3502
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003503 bool recursivelyDeleteUnusedNodes(SDNode *N);
3504
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003505 void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
3506 };
3507
3508 /// Return if the N is a constant or constant vector equal to the true value
3509 /// from getBooleanContents().
3510 bool isConstTrueVal(const SDNode *N) const;
3511
3512 /// Return if the N is a constant or constant vector equal to the false value
3513 /// from getBooleanContents().
3514 bool isConstFalseVal(const SDNode *N) const;
3515
3516 /// Return if \p N is a True value when extended to \p VT.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01003517 bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003518
3519 /// Try to simplify a setcc built with the specified operands and cc. If it is
3520 /// unable to simplify it, return a null SDValue.
3521 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
3522 bool foldBooleans, DAGCombinerInfo &DCI,
3523 const SDLoc &dl) const;
3524
3525 // For targets which wrap address, unwrap for analysis.
3526 virtual SDValue unwrapAddress(SDValue N) const { return N; }
3527
3528 /// Returns true (and the GlobalValue and the offset) if the node is a
3529 /// GlobalAddress + offset.
3530 virtual bool
3531 isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
3532
3533 /// This method will be invoked for all target nodes and for any
3534 /// target-independent nodes that the target has registered with invoke it
3535 /// for.
3536 ///
3537 /// The semantics are as follows:
3538 /// Return Value:
3539 /// SDValue.Val == 0 - No change was made
3540 /// SDValue.Val == N - N was replaced, is dead, and is already handled.
3541 /// otherwise - N should be replaced by the returned Operand.
3542 ///
3543 /// In addition, methods provided by DAGCombinerInfo may be used to perform
3544 /// more complex transformations.
3545 ///
3546 virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
3547
Andrew Scull0372a572018-11-16 15:47:06 +00003548 /// Return true if it is profitable to move this shift by a constant amount
3549 /// though its operand, adjusting any immediate operands as necessary to
3550 /// preserve semantics. This transformation may not be desirable if it
3551 /// disrupts a particularly auspicious target-specific tree (e.g. bitfield
3552 /// extraction in AArch64). By default, it returns true.
3553 ///
3554 /// @param N the shift node
3555 /// @param Level the current DAGCombine legalization level.
3556 virtual bool isDesirableToCommuteWithShift(const SDNode *N,
3557 CombineLevel Level) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003558 return true;
3559 }
3560
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003561 /// Return true if the target has native support for the specified value type
3562 /// and it is 'desirable' to use the type for the given node type. e.g. On x86
3563 /// i16 is legal, but undesirable since i16 instruction encodings are longer
3564 /// and some i16 instructions are slow.
3565 virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
3566 // By default, assume all legal types are desirable.
3567 return isTypeLegal(VT);
3568 }
3569
3570 /// Return true if it is profitable for dag combiner to transform a floating
3571 /// point op of specified opcode to a equivalent op of an integer
3572 /// type. e.g. f32 load -> i32 load can be profitable on ARM.
3573 virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
3574 EVT /*VT*/) const {
3575 return false;
3576 }
3577
3578 /// This method query the target whether it is beneficial for dag combiner to
3579 /// promote the specified node. If true, it should return the desired
3580 /// promotion type by reference.
3581 virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
3582 return false;
3583 }
3584
3585 /// Return true if the target supports swifterror attribute. It optimizes
3586 /// loads and stores to reading and writing a specific register.
3587 virtual bool supportSwiftError() const {
3588 return false;
3589 }
3590
3591 /// Return true if the target supports that a subset of CSRs for the given
3592 /// machine function is handled explicitly via copies.
3593 virtual bool supportSplitCSR(MachineFunction *MF) const {
3594 return false;
3595 }
3596
3597 /// Perform necessary initialization to handle a subset of CSRs explicitly
3598 /// via copies. This function is called at the beginning of instruction
3599 /// selection.
3600 virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
3601 llvm_unreachable("Not Implemented");
3602 }
3603
3604 /// Insert explicit copies in entry and exit blocks. We copy a subset of
3605 /// CSRs to virtual registers in the entry block, and copy them back to
3606 /// physical registers in the exit blocks. This function is called at the end
3607 /// of instruction selection.
3608 virtual void insertCopiesSplitCSR(
3609 MachineBasicBlock *Entry,
3610 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
3611 llvm_unreachable("Not Implemented");
3612 }
3613
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003614 /// Return the newly negated expression if the cost is not expensive and
3615 /// set the cost in \p Cost to indicate that if it is cheaper or neutral to
3616 /// do the negation.
3617 virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
3618 bool LegalOps, bool OptForSize,
3619 NegatibleCost &Cost,
3620 unsigned Depth = 0) const;
3621
3622 /// This is the helper function to return the newly negated expression only
3623 /// when the cost is cheaper.
3624 SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG,
3625 bool LegalOps, bool OptForSize,
3626 unsigned Depth = 0) const {
3627 NegatibleCost Cost = NegatibleCost::Expensive;
3628 SDValue Neg =
3629 getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
3630 if (Neg && Cost == NegatibleCost::Cheaper)
3631 return Neg;
3632 // Remove the new created node to avoid the side effect to the DAG.
3633 if (Neg && Neg.getNode()->use_empty())
3634 DAG.RemoveDeadNode(Neg.getNode());
3635 return SDValue();
3636 }
3637
3638 /// This is the helper function to return the newly negated expression if
3639 /// the cost is not expensive.
3640 SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps,
3641 bool OptForSize, unsigned Depth = 0) const {
3642 NegatibleCost Cost = NegatibleCost::Expensive;
3643 return getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
3644 }
3645
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003646 //===--------------------------------------------------------------------===//
3647 // Lowering methods - These methods must be implemented by targets so that
3648 // the SelectionDAGBuilder code knows how to lower these.
3649 //
3650
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003651 /// Target-specific splitting of values into parts that fit a register
3652 /// storing a legal type
3653 virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL,
3654 SDValue Val, SDValue *Parts,
3655 unsigned NumParts, MVT PartVT,
3656 Optional<CallingConv::ID> CC) const {
3657 return false;
3658 }
3659
3660 /// Target-specific combining of register parts into its original value
3661 virtual SDValue
3662 joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL,
3663 const SDValue *Parts, unsigned NumParts,
3664 MVT PartVT, EVT ValueVT,
3665 Optional<CallingConv::ID> CC) const {
3666 return SDValue();
3667 }
3668
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003669 /// This hook must be implemented to lower the incoming (formal) arguments,
3670 /// described by the Ins array, into the specified DAG. The implementation
3671 /// should fill in the InVals array with legal-type argument values, and
3672 /// return the resulting token chain value.
3673 virtual SDValue LowerFormalArguments(
3674 SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
3675 const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
3676 SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
3677 llvm_unreachable("Not Implemented");
3678 }
3679
3680 /// This structure contains all information that is necessary for lowering
3681 /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
3682 /// needs to lower a call, and targets will see this struct in their LowerCall
3683 /// implementation.
3684 struct CallLoweringInfo {
3685 SDValue Chain;
3686 Type *RetTy = nullptr;
3687 bool RetSExt : 1;
3688 bool RetZExt : 1;
3689 bool IsVarArg : 1;
3690 bool IsInReg : 1;
3691 bool DoesNotReturn : 1;
3692 bool IsReturnValueUsed : 1;
3693 bool IsConvergent : 1;
3694 bool IsPatchPoint : 1;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003695 bool IsPreallocated : 1;
3696 bool NoMerge : 1;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003697
3698 // IsTailCall should be modified by implementations of
3699 // TargetLowering::LowerCall that perform tail call conversions.
3700 bool IsTailCall = false;
3701
3702 // Is Call lowering done post SelectionDAG type legalization.
3703 bool IsPostTypeLegalization = false;
3704
3705 unsigned NumFixedArgs = -1;
3706 CallingConv::ID CallConv = CallingConv::C;
3707 SDValue Callee;
3708 ArgListTy Args;
3709 SelectionDAG &DAG;
3710 SDLoc DL;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003711 const CallBase *CB = nullptr;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003712 SmallVector<ISD::OutputArg, 32> Outs;
3713 SmallVector<SDValue, 32> OutVals;
3714 SmallVector<ISD::InputArg, 32> Ins;
3715 SmallVector<SDValue, 4> InVals;
3716
3717 CallLoweringInfo(SelectionDAG &DAG)
3718 : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
3719 DoesNotReturn(false), IsReturnValueUsed(true), IsConvergent(false),
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003720 IsPatchPoint(false), IsPreallocated(false), NoMerge(false),
3721 DAG(DAG) {}
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003722
3723 CallLoweringInfo &setDebugLoc(const SDLoc &dl) {
3724 DL = dl;
3725 return *this;
3726 }
3727
3728 CallLoweringInfo &setChain(SDValue InChain) {
3729 Chain = InChain;
3730 return *this;
3731 }
3732
3733 // setCallee with target/module-specific attributes
3734 CallLoweringInfo &setLibCallee(CallingConv::ID CC, Type *ResultType,
3735 SDValue Target, ArgListTy &&ArgsList) {
3736 RetTy = ResultType;
3737 Callee = Target;
3738 CallConv = CC;
3739 NumFixedArgs = ArgsList.size();
3740 Args = std::move(ArgsList);
3741
3742 DAG.getTargetLoweringInfo().markLibCallAttributes(
3743 &(DAG.getMachineFunction()), CC, Args);
3744 return *this;
3745 }
3746
3747 CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
3748 SDValue Target, ArgListTy &&ArgsList) {
3749 RetTy = ResultType;
3750 Callee = Target;
3751 CallConv = CC;
3752 NumFixedArgs = ArgsList.size();
3753 Args = std::move(ArgsList);
3754 return *this;
3755 }
3756
3757 CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
3758 SDValue Target, ArgListTy &&ArgsList,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003759 const CallBase &Call) {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003760 RetTy = ResultType;
3761
3762 IsInReg = Call.hasRetAttr(Attribute::InReg);
3763 DoesNotReturn =
3764 Call.doesNotReturn() ||
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003765 (!isa<InvokeInst>(Call) && isa<UnreachableInst>(Call.getNextNode()));
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003766 IsVarArg = FTy->isVarArg();
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003767 IsReturnValueUsed = !Call.use_empty();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003768 RetSExt = Call.hasRetAttr(Attribute::SExt);
3769 RetZExt = Call.hasRetAttr(Attribute::ZExt);
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003770 NoMerge = Call.hasFnAttr(Attribute::NoMerge);
3771
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003772 Callee = Target;
3773
3774 CallConv = Call.getCallingConv();
3775 NumFixedArgs = FTy->getNumParams();
3776 Args = std::move(ArgsList);
3777
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003778 CB = &Call;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003779
3780 return *this;
3781 }
3782
3783 CallLoweringInfo &setInRegister(bool Value = true) {
3784 IsInReg = Value;
3785 return *this;
3786 }
3787
3788 CallLoweringInfo &setNoReturn(bool Value = true) {
3789 DoesNotReturn = Value;
3790 return *this;
3791 }
3792
3793 CallLoweringInfo &setVarArg(bool Value = true) {
3794 IsVarArg = Value;
3795 return *this;
3796 }
3797
3798 CallLoweringInfo &setTailCall(bool Value = true) {
3799 IsTailCall = Value;
3800 return *this;
3801 }
3802
3803 CallLoweringInfo &setDiscardResult(bool Value = true) {
3804 IsReturnValueUsed = !Value;
3805 return *this;
3806 }
3807
3808 CallLoweringInfo &setConvergent(bool Value = true) {
3809 IsConvergent = Value;
3810 return *this;
3811 }
3812
3813 CallLoweringInfo &setSExtResult(bool Value = true) {
3814 RetSExt = Value;
3815 return *this;
3816 }
3817
3818 CallLoweringInfo &setZExtResult(bool Value = true) {
3819 RetZExt = Value;
3820 return *this;
3821 }
3822
3823 CallLoweringInfo &setIsPatchPoint(bool Value = true) {
3824 IsPatchPoint = Value;
3825 return *this;
3826 }
3827
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003828 CallLoweringInfo &setIsPreallocated(bool Value = true) {
3829 IsPreallocated = Value;
3830 return *this;
3831 }
3832
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003833 CallLoweringInfo &setIsPostTypeLegalization(bool Value=true) {
3834 IsPostTypeLegalization = Value;
3835 return *this;
3836 }
3837
3838 ArgListTy &getArgs() {
3839 return Args;
3840 }
3841 };
3842
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003843 /// This structure is used to pass arguments to makeLibCall function.
3844 struct MakeLibCallOptions {
3845 // By passing type list before soften to makeLibCall, the target hook
3846 // shouldExtendTypeInLibCall can get the original type before soften.
3847 ArrayRef<EVT> OpsVTBeforeSoften;
3848 EVT RetVTBeforeSoften;
3849 bool IsSExt : 1;
3850 bool DoesNotReturn : 1;
3851 bool IsReturnValueUsed : 1;
3852 bool IsPostTypeLegalization : 1;
3853 bool IsSoften : 1;
3854
3855 MakeLibCallOptions()
3856 : IsSExt(false), DoesNotReturn(false), IsReturnValueUsed(true),
3857 IsPostTypeLegalization(false), IsSoften(false) {}
3858
3859 MakeLibCallOptions &setSExt(bool Value = true) {
3860 IsSExt = Value;
3861 return *this;
3862 }
3863
3864 MakeLibCallOptions &setNoReturn(bool Value = true) {
3865 DoesNotReturn = Value;
3866 return *this;
3867 }
3868
3869 MakeLibCallOptions &setDiscardResult(bool Value = true) {
3870 IsReturnValueUsed = !Value;
3871 return *this;
3872 }
3873
3874 MakeLibCallOptions &setIsPostTypeLegalization(bool Value = true) {
3875 IsPostTypeLegalization = Value;
3876 return *this;
3877 }
3878
3879 MakeLibCallOptions &setTypeListBeforeSoften(ArrayRef<EVT> OpsVT, EVT RetVT,
3880 bool Value = true) {
3881 OpsVTBeforeSoften = OpsVT;
3882 RetVTBeforeSoften = RetVT;
3883 IsSoften = Value;
3884 return *this;
3885 }
3886 };
3887
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003888 /// This function lowers an abstract call to a function into an actual call.
3889 /// This returns a pair of operands. The first element is the return value
3890 /// for the function (if RetTy is not VoidTy). The second element is the
3891 /// outgoing token chain. It calls LowerCall to do the actual lowering.
3892 std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
3893
3894 /// This hook must be implemented to lower calls into the specified
3895 /// DAG. The outgoing arguments to the call are described by the Outs array,
3896 /// and the values to be returned by the call are described by the Ins
3897 /// array. The implementation should fill in the InVals array with legal-type
3898 /// return values from the call, and return the resulting token chain value.
3899 virtual SDValue
3900 LowerCall(CallLoweringInfo &/*CLI*/,
3901 SmallVectorImpl<SDValue> &/*InVals*/) const {
3902 llvm_unreachable("Not Implemented");
3903 }
3904
3905 /// Target-specific cleanup for formal ByVal parameters.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003906 virtual void HandleByVal(CCState *, unsigned &, Align) const {}
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003907
3908 /// This hook should be implemented to check whether the return values
3909 /// described by the Outs array can fit into the return registers. If false
3910 /// is returned, an sret-demotion is performed.
3911 virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
3912 MachineFunction &/*MF*/, bool /*isVarArg*/,
3913 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
3914 LLVMContext &/*Context*/) const
3915 {
3916 // Return true by default to get preexisting behavior.
3917 return true;
3918 }
3919
3920 /// This hook must be implemented to lower outgoing return values, described
3921 /// by the Outs array, into the specified DAG. The implementation should
3922 /// return the resulting token chain value.
3923 virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
3924 bool /*isVarArg*/,
3925 const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
3926 const SmallVectorImpl<SDValue> & /*OutVals*/,
3927 const SDLoc & /*dl*/,
3928 SelectionDAG & /*DAG*/) const {
3929 llvm_unreachable("Not Implemented");
3930 }
3931
3932 /// Return true if result of the specified node is used by a return node
3933 /// only. It also compute and return the input chain for the tail call.
3934 ///
3935 /// This is used to determine whether it is possible to codegen a libcall as
3936 /// tail call at legalization time.
3937 virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
3938 return false;
3939 }
3940
3941 /// Return true if the target may be able emit the call instruction as a tail
3942 /// call. This is used by optimization passes to determine if it's profitable
3943 /// to duplicate return instructions to enable tailcall optimization.
3944 virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
3945 return false;
3946 }
3947
3948 /// Return the builtin name for the __builtin___clear_cache intrinsic
3949 /// Default is to invoke the clear cache library call
3950 virtual const char * getClearCacheBuiltinName() const {
3951 return "__clear_cache";
3952 }
3953
3954 /// Return the register ID of the name passed in. Used by named register
3955 /// global variables extension. There is no target-independent behaviour
3956 /// so the default action is to bail.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02003957 virtual Register getRegisterByName(const char* RegName, LLT Ty,
3958 const MachineFunction &MF) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003959 report_fatal_error("Named registers not implemented for this target");
3960 }
3961
3962 /// Return the type that should be used to zero or sign extend a
3963 /// zeroext/signext integer return value. FIXME: Some C calling conventions
3964 /// require the return type to be promoted, but this is not true all the time,
3965 /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
3966 /// conventions. The frontend should handle this and include all of the
3967 /// necessary information.
3968 virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
3969 ISD::NodeType /*ExtendKind*/) const {
3970 EVT MinVT = getRegisterType(Context, MVT::i32);
3971 return VT.bitsLT(MinVT) ? MinVT : VT;
3972 }
3973
3974 /// For some targets, an LLVM struct type must be broken down into multiple
3975 /// simple types, but the calling convention specifies that the entire struct
3976 /// must be passed in a block of consecutive registers.
3977 virtual bool
3978 functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
3979 bool isVarArg) const {
3980 return false;
3981 }
3982
Andrew Walbran3d2c1972020-04-07 12:24:26 +01003983 /// For most targets, an LLVM type must be broken down into multiple
3984 /// smaller types. Usually the halves are ordered according to the endianness
3985 /// but for some platform that would break. So this method will default to
3986 /// matching the endianness but can be overridden.
3987 virtual bool
3988 shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const {
3989 return DL.isLittleEndian();
3990 }
3991
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003992 /// Returns a 0 terminated array of registers that can be safely used as
3993 /// scratch registers.
3994 virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
3995 return nullptr;
3996 }
3997
3998 /// This callback is used to prepare for a volatile or atomic load.
3999 /// It takes a chain node as input and returns the chain for the load itself.
4000 ///
4001 /// Having a callback like this is necessary for targets like SystemZ,
4002 /// which allows a CPU to reuse the result of a previous load indefinitely,
4003 /// even if a cache-coherent store is performed by another CPU. The default
4004 /// implementation does nothing.
4005 virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL,
4006 SelectionDAG &DAG) const {
4007 return Chain;
4008 }
4009
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004010 /// Should SelectionDAG lower an atomic store of the given kind as a normal
4011 /// StoreSDNode (as opposed to an AtomicSDNode)? NOTE: The intention is to
4012 /// eventually migrate all targets to the using StoreSDNodes, but porting is
4013 /// being done target at a time.
4014 virtual bool lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const {
4015 assert(SI.isAtomic() && "violated precondition");
4016 return false;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004017 }
4018
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004019 /// Should SelectionDAG lower an atomic load of the given kind as a normal
4020 /// LoadSDNode (as opposed to an AtomicSDNode)? NOTE: The intention is to
4021 /// eventually migrate all targets to the using LoadSDNodes, but porting is
4022 /// being done target at a time.
4023 virtual bool lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const {
4024 assert(LI.isAtomic() && "violated precondition");
4025 return false;
4026 }
4027
4028
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004029 /// This callback is invoked by the type legalizer to legalize nodes with an
4030 /// illegal operand type but legal result types. It replaces the
4031 /// LowerOperation callback in the type Legalizer. The reason we can not do
4032 /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
4033 /// use this callback.
4034 ///
4035 /// TODO: Consider merging with ReplaceNodeResults.
4036 ///
4037 /// The target places new result values for the node in Results (their number
4038 /// and types must exactly match those of the original return values of
4039 /// the node), or leaves Results empty, which indicates that the node is not
4040 /// to be custom lowered after all.
4041 /// The default implementation calls LowerOperation.
4042 virtual void LowerOperationWrapper(SDNode *N,
4043 SmallVectorImpl<SDValue> &Results,
4044 SelectionDAG &DAG) const;
4045
4046 /// This callback is invoked for operations that are unsupported by the
4047 /// target, which are registered to use 'custom' lowering, and whose defined
4048 /// values are all legal. If the target has no operations that require custom
4049 /// lowering, it need not implement this. The default implementation of this
4050 /// aborts.
4051 virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
4052
4053 /// This callback is invoked when a node result type is illegal for the
4054 /// target, and the operation was registered to use 'custom' lowering for that
4055 /// result type. The target places new result values for the node in Results
4056 /// (their number and types must exactly match those of the original return
4057 /// values of the node), or leaves Results empty, which indicates that the
4058 /// node is not to be custom lowered after all.
4059 ///
4060 /// If the target has no operations that require custom lowering, it need not
4061 /// implement this. The default implementation aborts.
4062 virtual void ReplaceNodeResults(SDNode * /*N*/,
4063 SmallVectorImpl<SDValue> &/*Results*/,
4064 SelectionDAG &/*DAG*/) const {
4065 llvm_unreachable("ReplaceNodeResults not implemented for this target!");
4066 }
4067
4068 /// This method returns the name of a target specific DAG node.
4069 virtual const char *getTargetNodeName(unsigned Opcode) const;
4070
4071 /// This method returns a target specific FastISel object, or null if the
4072 /// target does not support "fast" ISel.
4073 virtual FastISel *createFastISel(FunctionLoweringInfo &,
4074 const TargetLibraryInfo *) const {
4075 return nullptr;
4076 }
4077
4078 bool verifyReturnAddressArgumentIsConstant(SDValue Op,
4079 SelectionDAG &DAG) const;
4080
4081 //===--------------------------------------------------------------------===//
4082 // Inline Asm Support hooks
4083 //
4084
4085 /// This hook allows the target to expand an inline asm call to be explicit
4086 /// llvm code if it wants to. This is useful for turning simple inline asms
4087 /// into LLVM intrinsics, which gives the compiler more information about the
4088 /// behavior of the code.
4089 virtual bool ExpandInlineAsm(CallInst *) const {
4090 return false;
4091 }
4092
4093 enum ConstraintType {
4094 C_Register, // Constraint represents specific register(s).
4095 C_RegisterClass, // Constraint represents any of register(s) in class.
4096 C_Memory, // Memory constraint.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004097 C_Immediate, // Requires an immediate.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004098 C_Other, // Something else.
4099 C_Unknown // Unsupported constraint.
4100 };
4101
4102 enum ConstraintWeight {
4103 // Generic weights.
4104 CW_Invalid = -1, // No match.
4105 CW_Okay = 0, // Acceptable.
4106 CW_Good = 1, // Good weight.
4107 CW_Better = 2, // Better weight.
4108 CW_Best = 3, // Best weight.
4109
4110 // Well-known weights.
4111 CW_SpecificReg = CW_Okay, // Specific register operands.
4112 CW_Register = CW_Good, // Register operands.
4113 CW_Memory = CW_Better, // Memory operands.
4114 CW_Constant = CW_Best, // Constant operand.
4115 CW_Default = CW_Okay // Default or don't know type.
4116 };
4117
4118 /// This contains information for each constraint that we are lowering.
4119 struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
4120 /// This contains the actual string for the code, like "m". TargetLowering
4121 /// picks the 'best' code from ConstraintInfo::Codes that most closely
4122 /// matches the operand.
4123 std::string ConstraintCode;
4124
4125 /// Information about the constraint code, e.g. Register, RegisterClass,
4126 /// Memory, Other, Unknown.
4127 TargetLowering::ConstraintType ConstraintType = TargetLowering::C_Unknown;
4128
4129 /// If this is the result output operand or a clobber, this is null,
4130 /// otherwise it is the incoming operand to the CallInst. This gets
4131 /// modified as the asm is processed.
4132 Value *CallOperandVal = nullptr;
4133
4134 /// The ValueType for the operand value.
4135 MVT ConstraintVT = MVT::Other;
4136
4137 /// Copy constructor for copying from a ConstraintInfo.
4138 AsmOperandInfo(InlineAsm::ConstraintInfo Info)
4139 : InlineAsm::ConstraintInfo(std::move(Info)) {}
4140
4141 /// Return true of this is an input operand that is a matching constraint
4142 /// like "4".
4143 bool isMatchingInputConstraint() const;
4144
4145 /// If this is an input matching constraint, this method returns the output
4146 /// operand it matches.
4147 unsigned getMatchedOperand() const;
4148 };
4149
4150 using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
4151
4152 /// Split up the constraint string from the inline assembly value into the
4153 /// specific constraints and their prefixes, and also tie in the associated
4154 /// operand values. If this returns an empty vector, and if the constraint
4155 /// string itself isn't empty, there was an error parsing.
4156 virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
4157 const TargetRegisterInfo *TRI,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004158 const CallBase &Call) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004159
4160 /// Examine constraint type and operand type and determine a weight value.
4161 /// The operand object must already have been set up with the operand type.
4162 virtual ConstraintWeight getMultipleConstraintMatchWeight(
4163 AsmOperandInfo &info, int maIndex) const;
4164
4165 /// Examine constraint string and operand type and determine a weight value.
4166 /// The operand object must already have been set up with the operand type.
4167 virtual ConstraintWeight getSingleConstraintMatchWeight(
4168 AsmOperandInfo &info, const char *constraint) const;
4169
4170 /// Determines the constraint code and constraint type to use for the specific
4171 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4172 /// If the actual operand being passed in is available, it can be passed in as
4173 /// Op, otherwise an empty SDValue can be passed.
4174 virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4175 SDValue Op,
4176 SelectionDAG *DAG = nullptr) const;
4177
4178 /// Given a constraint, return the type of constraint it is for this target.
4179 virtual ConstraintType getConstraintType(StringRef Constraint) const;
4180
4181 /// Given a physical register constraint (e.g. {edx}), return the register
4182 /// number and the register class for the register.
4183 ///
4184 /// Given a register class constraint, like 'r', if this corresponds directly
4185 /// to an LLVM register class, return a register of 0 and the register class
4186 /// pointer.
4187 ///
4188 /// This should only be used for C_Register constraints. On error, this
4189 /// returns a register number of 0 and a null register class pointer.
4190 virtual std::pair<unsigned, const TargetRegisterClass *>
4191 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4192 StringRef Constraint, MVT VT) const;
4193
4194 virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004195 if (ConstraintCode == "m")
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004196 return InlineAsm::Constraint_m;
4197 return InlineAsm::Constraint_Unknown;
4198 }
4199
4200 /// Try to replace an X constraint, which matches anything, with another that
4201 /// has more specific requirements based on the type of the corresponding
4202 /// operand. This returns null if there is no replacement to make.
4203 virtual const char *LowerXConstraint(EVT ConstraintVT) const;
4204
4205 /// Lower the specified operand into the Ops vector. If it is invalid, don't
4206 /// add anything to Ops.
4207 virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
4208 std::vector<SDValue> &Ops,
4209 SelectionDAG &DAG) const;
4210
Andrew Walbran16937d02019-10-22 13:54:20 +01004211 // Lower custom output constraints. If invalid, return SDValue().
Andrew Walbran3d2c1972020-04-07 12:24:26 +01004212 virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004213 const SDLoc &DL,
Andrew Walbran16937d02019-10-22 13:54:20 +01004214 const AsmOperandInfo &OpInfo,
4215 SelectionDAG &DAG) const;
4216
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004217 //===--------------------------------------------------------------------===//
4218 // Div utility functions
4219 //
Andrew Scullcdfcccc2018-10-05 20:58:37 +01004220 SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
4221 SmallVectorImpl<SDNode *> &Created) const;
4222 SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
4223 SmallVectorImpl<SDNode *> &Created) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004224
4225 /// Targets may override this function to provide custom SDIV lowering for
4226 /// power-of-2 denominators. If the target returns an empty SDValue, LLVM
4227 /// assumes SDIV is expensive and replaces it with a series of other integer
4228 /// operations.
4229 virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4230 SelectionDAG &DAG,
Andrew Scullcdfcccc2018-10-05 20:58:37 +01004231 SmallVectorImpl<SDNode *> &Created) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004232
4233 /// Indicate whether this target prefers to combine FDIVs with the same
4234 /// divisor. If the transform should never be done, return zero. If the
4235 /// transform should be done, return the minimum number of divisor uses
4236 /// that must exist.
4237 virtual unsigned combineRepeatedFPDivisors() const {
4238 return 0;
4239 }
4240
4241 /// Hooks for building estimates in place of slower divisions and square
4242 /// roots.
4243
4244 /// Return either a square root or its reciprocal estimate value for the input
4245 /// operand.
4246 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
4247 /// 'Enabled' as set by a potential default override attribute.
4248 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
4249 /// refinement iterations required to generate a sufficient (though not
4250 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
4251 /// The boolean UseOneConstNR output is used to select a Newton-Raphson
4252 /// algorithm implementation that uses either one or two constants.
4253 /// The boolean Reciprocal is used to select whether the estimate is for the
4254 /// square root of the input operand or the reciprocal of its square root.
4255 /// A target may choose to implement its own refinement within this function.
4256 /// If that's true, then return '0' as the number of RefinementSteps to avoid
4257 /// any further refinement of the estimate.
4258 /// An empty SDValue return means no estimate sequence can be created.
4259 virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
4260 int Enabled, int &RefinementSteps,
4261 bool &UseOneConstNR, bool Reciprocal) const {
4262 return SDValue();
4263 }
4264
4265 /// Return a reciprocal estimate value for the input operand.
4266 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
4267 /// 'Enabled' as set by a potential default override attribute.
4268 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
4269 /// refinement iterations required to generate a sufficient (though not
4270 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
4271 /// A target may choose to implement its own refinement within this function.
4272 /// If that's true, then return '0' as the number of RefinementSteps to avoid
4273 /// any further refinement of the estimate.
4274 /// An empty SDValue return means no estimate sequence can be created.
4275 virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
4276 int Enabled, int &RefinementSteps) const {
4277 return SDValue();
4278 }
4279
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004280 /// Return a target-dependent comparison result if the input operand is
4281 /// suitable for use with a square root estimate calculation. For example, the
4282 /// comparison may check if the operand is NAN, INF, zero, normal, etc. The
4283 /// result should be used as the condition operand for a select or branch.
4284 virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
4285 const DenormalMode &Mode) const {
4286 return SDValue();
4287 }
4288
4289 /// Return a target-dependent result if the input operand is not suitable for
4290 /// use with a square root estimate calculation.
4291 virtual SDValue getSqrtResultForDenormInput(SDValue Operand,
4292 SelectionDAG &DAG) const {
4293 return DAG.getConstantFP(0.0, SDLoc(Operand), Operand.getValueType());
4294 }
4295
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004296 //===--------------------------------------------------------------------===//
4297 // Legalization utility functions
4298 //
4299
4300 /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
4301 /// respectively, each computing an n/2-bit part of the result.
4302 /// \param Result A vector that will be filled with the parts of the result
4303 /// in little-endian order.
4304 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
4305 /// if you want to control how low bits are extracted from the LHS.
4306 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
4307 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
4308 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
4309 /// \returns true if the node has been expanded, false if it has not
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004310 bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004311 SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
4312 SelectionDAG &DAG, MulExpansionKind Kind,
4313 SDValue LL = SDValue(), SDValue LH = SDValue(),
4314 SDValue RL = SDValue(), SDValue RH = SDValue()) const;
4315
4316 /// Expand a MUL into two nodes. One that computes the high bits of
4317 /// the result and one that computes the low bits.
4318 /// \param HiLoVT The value type to use for the Lo and Hi nodes.
4319 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
4320 /// if you want to control how low bits are extracted from the LHS.
4321 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
4322 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
4323 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
4324 /// \returns true if the node has been expanded. false if it has not
4325 bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
4326 SelectionDAG &DAG, MulExpansionKind Kind,
4327 SDValue LL = SDValue(), SDValue LH = SDValue(),
4328 SDValue RL = SDValue(), SDValue RH = SDValue()) const;
4329
Andrew Walbran16937d02019-10-22 13:54:20 +01004330 /// Expand funnel shift.
4331 /// \param N Node to expand
4332 /// \param Result output after conversion
4333 /// \returns True, if the expansion was successful, false otherwise
4334 bool expandFunnelShift(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4335
4336 /// Expand rotations.
4337 /// \param N Node to expand
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004338 /// \param AllowVectorOps expand vector rotate, this should only be performed
4339 /// if the legalization is happening outside of LegalizeVectorOps
Andrew Walbran16937d02019-10-22 13:54:20 +01004340 /// \param Result output after conversion
4341 /// \returns True, if the expansion was successful, false otherwise
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004342 bool expandROT(SDNode *N, bool AllowVectorOps, SDValue &Result,
4343 SelectionDAG &DAG) const;
Andrew Walbran16937d02019-10-22 13:54:20 +01004344
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004345 /// Expand float(f32) to SINT(i64) conversion
4346 /// \param N Node to expand
4347 /// \param Result output after conversion
4348 /// \returns True, if the expansion was successful, false otherwise
4349 bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4350
Andrew Walbran16937d02019-10-22 13:54:20 +01004351 /// Expand float to UINT conversion
4352 /// \param N Node to expand
4353 /// \param Result output after conversion
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004354 /// \param Chain output chain after conversion
Andrew Walbran16937d02019-10-22 13:54:20 +01004355 /// \returns True, if the expansion was successful, false otherwise
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004356 bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain,
4357 SelectionDAG &DAG) const;
Andrew Walbran16937d02019-10-22 13:54:20 +01004358
4359 /// Expand UINT(i64) to double(f64) conversion
4360 /// \param N Node to expand
4361 /// \param Result output after conversion
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004362 /// \param Chain output chain after conversion
Andrew Walbran16937d02019-10-22 13:54:20 +01004363 /// \returns True, if the expansion was successful, false otherwise
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004364 bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain,
4365 SelectionDAG &DAG) const;
Andrew Walbran16937d02019-10-22 13:54:20 +01004366
4367 /// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
4368 SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const;
4369
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004370 /// Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
4371 /// \param N Node to expand
4372 /// \returns The expansion result
4373 SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const;
4374
Andrew Walbran16937d02019-10-22 13:54:20 +01004375 /// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes,
4376 /// vector nodes can only succeed if all operations are legal/custom.
4377 /// \param N Node to expand
4378 /// \param Result output after conversion
4379 /// \returns True, if the expansion was successful, false otherwise
4380 bool expandCTPOP(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4381
4382 /// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes,
4383 /// vector nodes can only succeed if all operations are legal/custom.
4384 /// \param N Node to expand
4385 /// \param Result output after conversion
4386 /// \returns True, if the expansion was successful, false otherwise
4387 bool expandCTLZ(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4388
4389 /// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes,
4390 /// vector nodes can only succeed if all operations are legal/custom.
4391 /// \param N Node to expand
4392 /// \param Result output after conversion
4393 /// \returns True, if the expansion was successful, false otherwise
4394 bool expandCTTZ(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4395
4396 /// Expand ABS nodes. Expands vector/scalar ABS nodes,
4397 /// vector nodes can only succeed if all operations are legal/custom.
4398 /// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size))
4399 /// \param N Node to expand
4400 /// \param Result output after conversion
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004401 /// \param IsNegative indicate negated abs
Andrew Walbran16937d02019-10-22 13:54:20 +01004402 /// \returns True, if the expansion was successful, false otherwise
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004403 bool expandABS(SDNode *N, SDValue &Result, SelectionDAG &DAG,
4404 bool IsNegative = false) const;
Andrew Walbran16937d02019-10-22 13:54:20 +01004405
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004406 /// Turn load of vector type into a load of the individual elements.
4407 /// \param LD load to expand
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004408 /// \returns BUILD_VECTOR and TokenFactor nodes.
4409 std::pair<SDValue, SDValue> scalarizeVectorLoad(LoadSDNode *LD,
4410 SelectionDAG &DAG) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004411
4412 // Turn a store of a vector type into stores of the individual elements.
4413 /// \param ST Store with a vector value type
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004414 /// \returns TokenFactor of the individual store chains.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004415 SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const;
4416
4417 /// Expands an unaligned load to 2 half-size loads for an integer, and
4418 /// possibly more for vectors.
4419 std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
4420 SelectionDAG &DAG) const;
4421
4422 /// Expands an unaligned store to 2 half-size stores for integer values, and
4423 /// possibly more for vectors.
4424 SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
4425
4426 /// Increments memory address \p Addr according to the type of the value
4427 /// \p DataVT that should be stored. If the data is stored in compressed
4428 /// form, the memory address should be incremented according to the number of
4429 /// the stored elements. This number is equal to the number of '1's bits
4430 /// in the \p Mask.
4431 /// \p DataVT is a vector type. \p Mask is a vector value.
4432 /// \p DataVT and \p Mask have the same number of vector elements.
4433 SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL,
4434 EVT DataVT, SelectionDAG &DAG,
4435 bool IsCompressedMemory) const;
4436
4437 /// Get a pointer to vector element \p Idx located in memory for a vector of
4438 /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
4439 /// bounds the returned pointer is unspecified, but will be within the vector
4440 /// bounds.
4441 SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
Andrew Scullcdfcccc2018-10-05 20:58:37 +01004442 SDValue Index) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004443
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004444 /// Method for building the DAG expansion of ISD::[US][MIN|MAX]. This
4445 /// method accepts integers as its arguments.
4446 SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const;
4447
Andrew Walbran16937d02019-10-22 13:54:20 +01004448 /// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This
4449 /// method accepts integers as its arguments.
4450 SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const;
4451
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004452 /// Method for building the DAG expansion of ISD::[US]SHLSAT. This
4453 /// method accepts integers as its arguments.
4454 SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const;
4455
4456 /// Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT]. This
4457 /// method accepts integers as its arguments.
Andrew Walbran16937d02019-10-22 13:54:20 +01004458 SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const;
4459
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004460 /// Method for building the DAG expansion of ISD::[US]DIVFIX[SAT]. This
4461 /// method accepts integers as its arguments.
4462 /// Note: This method may fail if the division could not be performed
4463 /// within the type. Clients must retry with a wider type if this happens.
4464 SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
4465 SDValue LHS, SDValue RHS,
4466 unsigned Scale, SelectionDAG &DAG) const;
4467
Andrew Walbran3d2c1972020-04-07 12:24:26 +01004468 /// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion
4469 /// always suceeds and populates the Result and Overflow arguments.
4470 void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4471 SelectionDAG &DAG) const;
4472
4473 /// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion
4474 /// always suceeds and populates the Result and Overflow arguments.
4475 void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4476 SelectionDAG &DAG) const;
4477
4478 /// Method for building the DAG expansion of ISD::[US]MULO. Returns whether
4479 /// expansion was successful and populates the Result and Overflow arguments.
4480 bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4481 SelectionDAG &DAG) const;
4482
4483 /// Expand a VECREDUCE_* into an explicit calculation. If Count is specified,
4484 /// only the first Count elements of the vector are used.
4485 SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const;
4486
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004487 /// Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
4488 SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const;
4489
4490 /// Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
4491 /// Returns true if the expansion was successful.
4492 bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const;
4493
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004494 //===--------------------------------------------------------------------===//
4495 // Instruction Emitting Hooks
4496 //
4497
4498 /// This method should be implemented by targets that mark instructions with
4499 /// the 'usesCustomInserter' flag. These instructions are special in various
4500 /// ways, which require special support to insert. The specified MachineInstr
4501 /// is created but not inserted into any basic blocks, and this method is
4502 /// called to expand it into a sequence of instructions, potentially also
4503 /// creating new basic blocks and control flow.
4504 /// As long as the returned basic block is different (i.e., we created a new
4505 /// one), the custom inserter is free to modify the rest of \p MBB.
4506 virtual MachineBasicBlock *
4507 EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
4508
4509 /// This method should be implemented by targets that mark instructions with
4510 /// the 'hasPostISelHook' flag. These instructions must be adjusted after
4511 /// instruction selection by target hooks. e.g. To fill in optional defs for
4512 /// ARM 's' setting instructions.
4513 virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
4514 SDNode *Node) const;
4515
4516 /// If this function returns true, SelectionDAGBuilder emits a
4517 /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
4518 virtual bool useLoadStackGuardNode() const {
4519 return false;
4520 }
4521
4522 virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
4523 const SDLoc &DL) const {
4524 llvm_unreachable("not implemented for this target");
4525 }
4526
4527 /// Lower TLS global address SDNode for target independent emulated TLS model.
4528 virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
4529 SelectionDAG &DAG) const;
4530
4531 /// Expands target specific indirect branch for the case of JumpTable
4532 /// expanasion.
4533 virtual SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value, SDValue Addr,
4534 SelectionDAG &DAG) const {
4535 return DAG.getNode(ISD::BRIND, dl, MVT::Other, Value, Addr);
4536 }
4537
4538 // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
4539 // If we're comparing for equality to zero and isCtlzFast is true, expose the
4540 // fact that this can be implemented as a ctlz/srl pair, so that the dag
4541 // combiner can fold the new nodes.
4542 SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const;
4543
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004544 /// Give targets the chance to reduce the number of distinct addresing modes.
4545 ISD::MemIndexType getCanonicalIndexType(ISD::MemIndexType IndexType,
4546 EVT MemVT, SDValue Offsets) const;
4547
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004548private:
Andrew Walbran16937d02019-10-22 13:54:20 +01004549 SDValue foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
4550 const SDLoc &DL, DAGCombinerInfo &DCI) const;
4551 SDValue foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
4552 const SDLoc &DL, DAGCombinerInfo &DCI) const;
Andrew Scullcdfcccc2018-10-05 20:58:37 +01004553
4554 SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
4555 SDValue N1, ISD::CondCode Cond,
4556 DAGCombinerInfo &DCI,
4557 const SDLoc &DL) const;
Andrew Walbran3d2c1972020-04-07 12:24:26 +01004558
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004559 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
4560 SDValue optimizeSetCCByHoistingAndByConstFromLogicalShift(
4561 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
4562 DAGCombinerInfo &DCI, const SDLoc &DL) const;
4563
Andrew Walbran3d2c1972020-04-07 12:24:26 +01004564 SDValue prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4565 SDValue CompTargetNode, ISD::CondCode Cond,
4566 DAGCombinerInfo &DCI, const SDLoc &DL,
4567 SmallVectorImpl<SDNode *> &Created) const;
4568 SDValue buildUREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
4569 ISD::CondCode Cond, DAGCombinerInfo &DCI,
4570 const SDLoc &DL) const;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02004571
4572 SDValue prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
4573 SDValue CompTargetNode, ISD::CondCode Cond,
4574 DAGCombinerInfo &DCI, const SDLoc &DL,
4575 SmallVectorImpl<SDNode *> &Created) const;
4576 SDValue buildSREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
4577 ISD::CondCode Cond, DAGCombinerInfo &DCI,
4578 const SDLoc &DL) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004579};
4580
4581/// Given an LLVM IR type and return type attributes, compute the return value
4582/// EVTs and flags, and optionally also the offsets, if the return value is
4583/// being lowered to memory.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01004584void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004585 SmallVectorImpl<ISD::OutputArg> &Outs,
4586 const TargetLowering &TLI, const DataLayout &DL);
4587
4588} // end namespace llvm
4589
4590#endif // LLVM_CODEGEN_TARGETLOWERING_H