blob: a5939070476e3e4f24c858e6e2d67436dbdf5145 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// This file describes how to lower LLVM code to machine code. This has two
12/// main components:
13///
14/// 1. Which ValueTypes are natively supported by the target.
15/// 2. Which operations are supported for supported ValueTypes.
16/// 3. Cost thresholds for alternative implementations of certain operations.
17///
18/// In addition it has a few other components, like information about FP
19/// immediates.
20///
21//===----------------------------------------------------------------------===//
22
23#ifndef LLVM_CODEGEN_TARGETLOWERING_H
24#define LLVM_CODEGEN_TARGETLOWERING_H
25
26#include "llvm/ADT/APInt.h"
27#include "llvm/ADT/ArrayRef.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringRef.h"
Andrew Scull0372a572018-11-16 15:47:06 +000032#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010033#include "llvm/CodeGen/DAGCombine.h"
34#include "llvm/CodeGen/ISDOpcodes.h"
35#include "llvm/CodeGen/RuntimeLibcalls.h"
36#include "llvm/CodeGen/SelectionDAG.h"
37#include "llvm/CodeGen/SelectionDAGNodes.h"
38#include "llvm/CodeGen/TargetCallingConv.h"
39#include "llvm/CodeGen/ValueTypes.h"
40#include "llvm/IR/Attributes.h"
41#include "llvm/IR/CallSite.h"
42#include "llvm/IR/CallingConv.h"
43#include "llvm/IR/DataLayout.h"
44#include "llvm/IR/DerivedTypes.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/IRBuilder.h"
47#include "llvm/IR/InlineAsm.h"
48#include "llvm/IR/Instruction.h"
49#include "llvm/IR/Instructions.h"
50#include "llvm/IR/Type.h"
51#include "llvm/MC/MCRegisterInfo.h"
52#include "llvm/Support/AtomicOrdering.h"
53#include "llvm/Support/Casting.h"
54#include "llvm/Support/ErrorHandling.h"
55#include "llvm/Support/MachineValueType.h"
56#include "llvm/Target/TargetMachine.h"
57#include <algorithm>
58#include <cassert>
59#include <climits>
60#include <cstdint>
61#include <iterator>
62#include <map>
63#include <string>
64#include <utility>
65#include <vector>
66
67namespace llvm {
68
69class BranchProbability;
70class CCState;
71class CCValAssign;
72class Constant;
73class FastISel;
74class FunctionLoweringInfo;
75class GlobalValue;
76class IntrinsicInst;
77struct KnownBits;
78class LLVMContext;
79class MachineBasicBlock;
80class MachineFunction;
81class MachineInstr;
82class MachineJumpTableInfo;
83class MachineLoop;
84class MachineRegisterInfo;
85class MCContext;
86class MCExpr;
87class Module;
88class TargetRegisterClass;
89class TargetLibraryInfo;
90class TargetRegisterInfo;
91class Value;
92
93namespace Sched {
94
95 enum Preference {
96 None, // No preference
97 Source, // Follow source order.
98 RegPressure, // Scheduling for lowest register pressure.
99 Hybrid, // Scheduling for both latency and register pressure.
100 ILP, // Scheduling for ILP in low register pressure mode.
101 VLIW // Scheduling for VLIW targets.
102 };
103
104} // end namespace Sched
105
106/// This base class for TargetLowering contains the SelectionDAG-independent
107/// parts that can be used from the rest of CodeGen.
108class TargetLoweringBase {
109public:
110 /// This enum indicates whether operations are valid for a target, and if not,
111 /// what action should be used to make them valid.
112 enum LegalizeAction : uint8_t {
113 Legal, // The target natively supports this operation.
114 Promote, // This operation should be executed in a larger type.
115 Expand, // Try to expand this to other ops, otherwise use a libcall.
116 LibCall, // Don't try to expand this to other ops, always use a libcall.
117 Custom // Use the LowerOperation hook to implement custom lowering.
118 };
119
120 /// This enum indicates whether a types are legal for a target, and if not,
121 /// what action should be used to make them valid.
122 enum LegalizeTypeAction : uint8_t {
123 TypeLegal, // The target natively supports this type.
124 TypePromoteInteger, // Replace this integer with a larger one.
125 TypeExpandInteger, // Split this integer into two of half the size.
126 TypeSoftenFloat, // Convert this float to a same size integer type,
127 // if an operation is not supported in target HW.
128 TypeExpandFloat, // Split this float into two of half the size.
129 TypeScalarizeVector, // Replace this one-element vector with its element.
130 TypeSplitVector, // Split this vector into two of half the size.
131 TypeWidenVector, // This vector should be widened into a larger vector.
132 TypePromoteFloat // Replace this float with a larger one.
133 };
134
135 /// LegalizeKind holds the legalization kind that needs to happen to EVT
136 /// in order to type-legalize it.
137 using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
138
139 /// Enum that describes how the target represents true/false values.
140 enum BooleanContent {
141 UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage.
142 ZeroOrOneBooleanContent, // All bits zero except for bit 0.
143 ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
144 };
145
146 /// Enum that describes what type of support for selects the target has.
147 enum SelectSupportKind {
148 ScalarValSelect, // The target supports scalar selects (ex: cmov).
149 ScalarCondVectorVal, // The target supports selects with a scalar condition
150 // and vector values (ex: cmov).
151 VectorMaskSelect // The target supports vector selects with a vector
152 // mask (ex: x86 blends).
153 };
154
155 /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
156 /// to, if at all. Exists because different targets have different levels of
157 /// support for these atomic instructions, and also have different options
158 /// w.r.t. what they should expand to.
159 enum class AtomicExpansionKind {
160 None, // Don't expand the instruction.
161 LLSC, // Expand the instruction into loadlinked/storeconditional; used
162 // by ARM/AArch64.
163 LLOnly, // Expand the (load) instruction into just a load-linked, which has
164 // greater atomic guarantees than a normal load.
165 CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
Andrew Scull0372a572018-11-16 15:47:06 +0000166 MaskedIntrinsic, // Use a target-specific intrinsic for the LL/SC loop.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100167 };
168
169 /// Enum that specifies when a multiplication should be expanded.
170 enum class MulExpansionKind {
171 Always, // Always expand the instruction.
172 OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
173 // or custom.
174 };
175
176 class ArgListEntry {
177 public:
178 Value *Val = nullptr;
179 SDValue Node = SDValue();
180 Type *Ty = nullptr;
181 bool IsSExt : 1;
182 bool IsZExt : 1;
183 bool IsInReg : 1;
184 bool IsSRet : 1;
185 bool IsNest : 1;
186 bool IsByVal : 1;
187 bool IsInAlloca : 1;
188 bool IsReturned : 1;
189 bool IsSwiftSelf : 1;
190 bool IsSwiftError : 1;
191 uint16_t Alignment = 0;
192
193 ArgListEntry()
194 : IsSExt(false), IsZExt(false), IsInReg(false), IsSRet(false),
195 IsNest(false), IsByVal(false), IsInAlloca(false), IsReturned(false),
196 IsSwiftSelf(false), IsSwiftError(false) {}
197
198 void setAttributes(ImmutableCallSite *CS, unsigned ArgIdx);
199 };
200 using ArgListTy = std::vector<ArgListEntry>;
201
202 virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
203 ArgListTy &Args) const {};
204
205 static ISD::NodeType getExtendForContent(BooleanContent Content) {
206 switch (Content) {
207 case UndefinedBooleanContent:
208 // Extend by adding rubbish bits.
209 return ISD::ANY_EXTEND;
210 case ZeroOrOneBooleanContent:
211 // Extend by adding zero bits.
212 return ISD::ZERO_EXTEND;
213 case ZeroOrNegativeOneBooleanContent:
214 // Extend by copying the sign bit.
215 return ISD::SIGN_EXTEND;
216 }
217 llvm_unreachable("Invalid content kind");
218 }
219
220 /// NOTE: The TargetMachine owns TLOF.
221 explicit TargetLoweringBase(const TargetMachine &TM);
222 TargetLoweringBase(const TargetLoweringBase &) = delete;
223 TargetLoweringBase &operator=(const TargetLoweringBase &) = delete;
224 virtual ~TargetLoweringBase() = default;
225
226protected:
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100227 /// Initialize all of the actions to default values.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100228 void initActions();
229
230public:
231 const TargetMachine &getTargetMachine() const { return TM; }
232
233 virtual bool useSoftFloat() const { return false; }
234
235 /// Return the pointer type for the given address space, defaults to
236 /// the pointer type from the data layout.
237 /// FIXME: The default needs to be removed once all the code is updated.
238 MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
239 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
240 }
241
242 /// Return the type for frame index, which is determined by
243 /// the alloca address space specified through the data layout.
244 MVT getFrameIndexTy(const DataLayout &DL) const {
245 return getPointerTy(DL, DL.getAllocaAddrSpace());
246 }
247
248 /// Return the type for operands of fence.
249 /// TODO: Let fence operands be of i32 type and remove this.
250 virtual MVT getFenceOperandTy(const DataLayout &DL) const {
251 return getPointerTy(DL);
252 }
253
254 /// EVT is not used in-tree, but is used by out-of-tree target.
255 /// A documentation for this function would be nice...
256 virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
257
258 EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
259 bool LegalTypes = true) const;
260
261 /// Returns the type to be used for the index operand of:
262 /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
263 /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
264 virtual MVT getVectorIdxTy(const DataLayout &DL) const {
265 return getPointerTy(DL);
266 }
267
268 virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
269 return true;
270 }
271
272 /// Return true if multiple condition registers are available.
273 bool hasMultipleConditionRegisters() const {
274 return HasMultipleConditionRegisters;
275 }
276
277 /// Return true if the target has BitExtract instructions.
278 bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
279
280 /// Return the preferred vector type legalization action.
281 virtual TargetLoweringBase::LegalizeTypeAction
282 getPreferredVectorAction(EVT VT) const {
283 // The default action for one element vectors is to scalarize
284 if (VT.getVectorNumElements() == 1)
285 return TypeScalarizeVector;
286 // The default action for other vectors is to promote
287 return TypePromoteInteger;
288 }
289
290 // There are two general methods for expanding a BUILD_VECTOR node:
291 // 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
292 // them together.
293 // 2. Build the vector on the stack and then load it.
294 // If this function returns true, then method (1) will be used, subject to
295 // the constraint that all of the necessary shuffles are legal (as determined
296 // by isShuffleMaskLegal). If this function returns false, then method (2) is
297 // always used. The vector type, and the number of defined values, are
298 // provided.
299 virtual bool
300 shouldExpandBuildVectorWithShuffles(EVT /* VT */,
301 unsigned DefinedValues) const {
302 return DefinedValues < 3;
303 }
304
305 /// Return true if integer divide is usually cheaper than a sequence of
306 /// several shifts, adds, and multiplies for this target.
307 /// The definition of "cheaper" may depend on whether we're optimizing
308 /// for speed or for size.
309 virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
310
311 /// Return true if the target can handle a standalone remainder operation.
312 virtual bool hasStandaloneRem(EVT VT) const {
313 return true;
314 }
315
316 /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
317 virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
318 // Default behavior is to replace SQRT(X) with X*RSQRT(X).
319 return false;
320 }
321
322 /// Reciprocal estimate status values used by the functions below.
323 enum ReciprocalEstimate : int {
324 Unspecified = -1,
325 Disabled = 0,
326 Enabled = 1
327 };
328
329 /// Return a ReciprocalEstimate enum value for a square root of the given type
330 /// based on the function's attributes. If the operation is not overridden by
331 /// the function's attributes, "Unspecified" is returned and target defaults
332 /// are expected to be used for instruction selection.
333 int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const;
334
335 /// Return a ReciprocalEstimate enum value for a division of the given type
336 /// based on the function's attributes. If the operation is not overridden by
337 /// the function's attributes, "Unspecified" is returned and target defaults
338 /// are expected to be used for instruction selection.
339 int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const;
340
341 /// Return the refinement step count for a square root of the given type based
342 /// on the function's attributes. If the operation is not overridden by
343 /// the function's attributes, "Unspecified" is returned and target defaults
344 /// are expected to be used for instruction selection.
345 int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
346
347 /// Return the refinement step count for a division of the given type based
348 /// on the function's attributes. If the operation is not overridden by
349 /// the function's attributes, "Unspecified" is returned and target defaults
350 /// are expected to be used for instruction selection.
351 int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
352
353 /// Returns true if target has indicated at least one type should be bypassed.
354 bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
355
356 /// Returns map of slow types for division or remainder with corresponding
357 /// fast types
358 const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
359 return BypassSlowDivWidths;
360 }
361
362 /// Return true if Flow Control is an expensive operation that should be
363 /// avoided.
364 bool isJumpExpensive() const { return JumpIsExpensive; }
365
366 /// Return true if selects are only cheaper than branches if the branch is
367 /// unlikely to be predicted right.
368 bool isPredictableSelectExpensive() const {
369 return PredictableSelectIsExpensive;
370 }
371
372 /// If a branch or a select condition is skewed in one direction by more than
373 /// this factor, it is very likely to be predicted correctly.
374 virtual BranchProbability getPredictableBranchThreshold() const;
375
376 /// Return true if the following transform is beneficial:
377 /// fold (conv (load x)) -> (load (conv*)x)
378 /// On architectures that don't natively support some vector loads
379 /// efficiently, casting the load to a smaller vector of larger types and
380 /// loading is more efficient, however, this can be undone by optimizations in
381 /// dag combiner.
382 virtual bool isLoadBitCastBeneficial(EVT LoadVT,
383 EVT BitcastVT) const {
384 // Don't do if we could do an indexed load on the original type, but not on
385 // the new one.
386 if (!LoadVT.isSimple() || !BitcastVT.isSimple())
387 return true;
388
389 MVT LoadMVT = LoadVT.getSimpleVT();
390
391 // Don't bother doing this if it's just going to be promoted again later, as
392 // doing so might interfere with other combines.
393 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
394 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
395 return false;
396
397 return true;
398 }
399
400 /// Return true if the following transform is beneficial:
401 /// (store (y (conv x)), y*)) -> (store x, (x*))
402 virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT) const {
403 // Default to the same logic as loads.
404 return isLoadBitCastBeneficial(StoreVT, BitcastVT);
405 }
406
407 /// Return true if it is expected to be cheaper to do a store of a non-zero
408 /// vector constant with the given size and type for the address space than to
409 /// store the individual scalar element constants.
410 virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
411 unsigned NumElem,
412 unsigned AddrSpace) const {
413 return false;
414 }
415
416 /// Allow store merging after legalization in addition to before legalization.
417 /// This may catch stores that do not exist earlier (eg, stores created from
418 /// intrinsics).
419 virtual bool mergeStoresAfterLegalization() const { return true; }
420
421 /// Returns if it's reasonable to merge stores to MemVT size.
422 virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
423 const SelectionDAG &DAG) const {
424 return true;
425 }
426
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100427 /// Return true if it is cheap to speculate a call to intrinsic cttz.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100428 virtual bool isCheapToSpeculateCttz() const {
429 return false;
430 }
431
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100432 /// Return true if it is cheap to speculate a call to intrinsic ctlz.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100433 virtual bool isCheapToSpeculateCtlz() const {
434 return false;
435 }
436
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100437 /// Return true if ctlz instruction is fast.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100438 virtual bool isCtlzFast() const {
439 return false;
440 }
441
442 /// Return true if it is safe to transform an integer-domain bitwise operation
443 /// into the equivalent floating-point operation. This should be set to true
444 /// if the target has IEEE-754-compliant fabs/fneg operations for the input
445 /// type.
446 virtual bool hasBitPreservingFPLogic(EVT VT) const {
447 return false;
448 }
449
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100450 /// Return true if it is cheaper to split the store of a merged int val
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100451 /// from a pair of smaller values into multiple stores.
452 virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
453 return false;
454 }
455
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100456 /// Return if the target supports combining a
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100457 /// chain like:
458 /// \code
459 /// %andResult = and %val1, #mask
460 /// %icmpResult = icmp %andResult, 0
461 /// \endcode
462 /// into a single machine instruction of a form like:
463 /// \code
464 /// cc = test %register, #mask
465 /// \endcode
466 virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
467 return false;
468 }
469
470 /// Use bitwise logic to make pairs of compares more efficient. For example:
471 /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
472 /// This should be true when it takes more than one instruction to lower
473 /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
474 /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
475 virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
476 return false;
477 }
478
479 /// Return the preferred operand type if the target has a quick way to compare
480 /// integer values of the given size. Assume that any legal integer type can
481 /// be compared efficiently. Targets may override this to allow illegal wide
482 /// types to return a vector type if there is support to compare that type.
483 virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
484 MVT VT = MVT::getIntegerVT(NumBits);
485 return isTypeLegal(VT) ? VT : MVT::INVALID_SIMPLE_VALUE_TYPE;
486 }
487
488 /// Return true if the target should transform:
489 /// (X & Y) == Y ---> (~X & Y) == 0
490 /// (X & Y) != Y ---> (~X & Y) != 0
491 ///
492 /// This may be profitable if the target has a bitwise and-not operation that
493 /// sets comparison flags. A target may want to limit the transformation based
494 /// on the type of Y or if Y is a constant.
495 ///
496 /// Note that the transform will not occur if Y is known to be a power-of-2
497 /// because a mask and compare of a single bit can be handled by inverting the
498 /// predicate, for example:
499 /// (X & 8) == 8 ---> (X & 8) != 0
500 virtual bool hasAndNotCompare(SDValue Y) const {
501 return false;
502 }
503
504 /// Return true if the target has a bitwise and-not operation:
505 /// X = ~A & B
506 /// This can be used to simplify select or other instructions.
507 virtual bool hasAndNot(SDValue X) const {
508 // If the target has the more complex version of this operation, assume that
509 // it has this operation too.
510 return hasAndNotCompare(X);
511 }
512
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100513 /// There are two ways to clear extreme bits (either low or high):
514 /// Mask: x & (-1 << y) (the instcombine canonical form)
515 /// Shifts: x >> y << y
516 /// Return true if the variant with 2 shifts is preferred.
517 /// Return false if there is no preference.
518 virtual bool preferShiftsToClearExtremeBits(SDValue X) const {
519 // By default, let's assume that no one prefers shifts.
520 return false;
521 }
522
523 /// Should we tranform the IR-optimal check for whether given truncation
524 /// down into KeptBits would be truncating or not:
525 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
526 /// Into it's more traditional form:
527 /// ((%x << C) a>> C) dstcond %x
528 /// Return true if we should transform.
529 /// Return false if there is no preference.
530 virtual bool shouldTransformSignedTruncationCheck(EVT XVT,
531 unsigned KeptBits) const {
532 // By default, let's assume that no one prefers shifts.
533 return false;
534 }
535
536 /// Return true if the target wants to use the optimization that
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100537 /// turns ext(promotableInst1(...(promotableInstN(load)))) into
538 /// promotedInst1(...(promotedInstN(ext(load)))).
539 bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
540
541 /// Return true if the target can combine store(extractelement VectorTy,
542 /// Idx).
543 /// \p Cost[out] gives the cost of that transformation when this is true.
544 virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
545 unsigned &Cost) const {
546 return false;
547 }
548
Andrew Scull0372a572018-11-16 15:47:06 +0000549 /// Return true if inserting a scalar into a variable element of an undef
550 /// vector is more efficiently handled by splatting the scalar instead.
551 virtual bool shouldSplatInsEltVarIndex(EVT) const {
552 return false;
553 }
554
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100555 /// Return true if target supports floating point exceptions.
556 bool hasFloatingPointExceptions() const {
557 return HasFloatingPointExceptions;
558 }
559
560 /// Return true if target always beneficiates from combining into FMA for a
561 /// given value type. This must typically return false on targets where FMA
562 /// takes more cycles to execute than FADD.
563 virtual bool enableAggressiveFMAFusion(EVT VT) const {
564 return false;
565 }
566
567 /// Return the ValueType of the result of SETCC operations.
568 virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
569 EVT VT) const;
570
571 /// Return the ValueType for comparison libcalls. Comparions libcalls include
572 /// floating point comparion calls, and Ordered/Unordered check calls on
573 /// floating point numbers.
574 virtual
575 MVT::SimpleValueType getCmpLibcallReturnType() const;
576
577 /// For targets without i1 registers, this gives the nature of the high-bits
578 /// of boolean values held in types wider than i1.
579 ///
580 /// "Boolean values" are special true/false values produced by nodes like
581 /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
582 /// Not to be confused with general values promoted from i1. Some cpus
583 /// distinguish between vectors of boolean and scalars; the isVec parameter
584 /// selects between the two kinds. For example on X86 a scalar boolean should
585 /// be zero extended from i1, while the elements of a vector of booleans
586 /// should be sign extended from i1.
587 ///
588 /// Some cpus also treat floating point types the same way as they treat
589 /// vectors instead of the way they treat scalars.
590 BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
591 if (isVec)
592 return BooleanVectorContents;
593 return isFloat ? BooleanFloatContents : BooleanContents;
594 }
595
596 BooleanContent getBooleanContents(EVT Type) const {
597 return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
598 }
599
600 /// Return target scheduling preference.
601 Sched::Preference getSchedulingPreference() const {
602 return SchedPreferenceInfo;
603 }
604
605 /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
606 /// for different nodes. This function returns the preference (or none) for
607 /// the given node.
608 virtual Sched::Preference getSchedulingPreference(SDNode *) const {
609 return Sched::None;
610 }
611
612 /// Return the register class that should be used for the specified value
613 /// type.
614 virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
615 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
616 assert(RC && "This value type is not natively supported!");
617 return RC;
618 }
619
620 /// Return the 'representative' register class for the specified value
621 /// type.
622 ///
623 /// The 'representative' register class is the largest legal super-reg
624 /// register class for the register class of the value type. For example, on
625 /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
626 /// register class is GR64 on x86_64.
627 virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
628 const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
629 return RC;
630 }
631
632 /// Return the cost of the 'representative' register class for the specified
633 /// value type.
634 virtual uint8_t getRepRegClassCostFor(MVT VT) const {
635 return RepRegClassCostForVT[VT.SimpleTy];
636 }
637
638 /// Return true if the target has native support for the specified value type.
639 /// This means that it has a register that directly holds it without
640 /// promotions or expansions.
641 bool isTypeLegal(EVT VT) const {
642 assert(!VT.isSimple() ||
643 (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
644 return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
645 }
646
647 class ValueTypeActionImpl {
648 /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
649 /// that indicates how instruction selection should deal with the type.
650 LegalizeTypeAction ValueTypeActions[MVT::LAST_VALUETYPE];
651
652 public:
653 ValueTypeActionImpl() {
654 std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
655 TypeLegal);
656 }
657
658 LegalizeTypeAction getTypeAction(MVT VT) const {
659 return ValueTypeActions[VT.SimpleTy];
660 }
661
662 void setTypeAction(MVT VT, LegalizeTypeAction Action) {
663 ValueTypeActions[VT.SimpleTy] = Action;
664 }
665 };
666
667 const ValueTypeActionImpl &getValueTypeActions() const {
668 return ValueTypeActions;
669 }
670
671 /// Return how we should legalize values of this type, either it is already
672 /// legal (return 'Legal') or we need to promote it to a larger type (return
673 /// 'Promote'), or we need to expand it into multiple registers of smaller
674 /// integer type (return 'Expand'). 'Custom' is not an option.
675 LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
676 return getTypeConversion(Context, VT).first;
677 }
678 LegalizeTypeAction getTypeAction(MVT VT) const {
679 return ValueTypeActions.getTypeAction(VT);
680 }
681
682 /// For types supported by the target, this is an identity function. For
683 /// types that must be promoted to larger types, this returns the larger type
684 /// to promote to. For integer types that are larger than the largest integer
685 /// register, this contains one step in the expansion to get to the smaller
686 /// register. For illegal floating point types, this returns the integer type
687 /// to transform to.
688 EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
689 return getTypeConversion(Context, VT).second;
690 }
691
692 /// For types supported by the target, this is an identity function. For
693 /// types that must be expanded (i.e. integer types that are larger than the
694 /// largest integer register or illegal floating point types), this returns
695 /// the largest legal type it will be expanded to.
696 EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
697 assert(!VT.isVector());
698 while (true) {
699 switch (getTypeAction(Context, VT)) {
700 case TypeLegal:
701 return VT;
702 case TypeExpandInteger:
703 VT = getTypeToTransformTo(Context, VT);
704 break;
705 default:
706 llvm_unreachable("Type is not legal nor is it to be expanded!");
707 }
708 }
709 }
710
711 /// Vector types are broken down into some number of legal first class types.
712 /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
713 /// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64
714 /// turns into 4 EVT::i32 values with both PPC and X86.
715 ///
716 /// This method returns the number of registers needed, and the VT for each
717 /// register. It also returns the VT and quantity of the intermediate values
718 /// before they are promoted/expanded.
719 unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
720 EVT &IntermediateVT,
721 unsigned &NumIntermediates,
722 MVT &RegisterVT) const;
723
724 /// Certain targets such as MIPS require that some types such as vectors are
725 /// always broken down into scalars in some contexts. This occurs even if the
726 /// vector type is legal.
727 virtual unsigned getVectorTypeBreakdownForCallingConv(
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100728 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100729 unsigned &NumIntermediates, MVT &RegisterVT) const {
730 return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
731 RegisterVT);
732 }
733
734 struct IntrinsicInfo {
735 unsigned opc = 0; // target opcode
736 EVT memVT; // memory VT
737
738 // value representing memory location
739 PointerUnion<const Value *, const PseudoSourceValue *> ptrVal;
740
741 int offset = 0; // offset off of ptrVal
742 unsigned size = 0; // the size of the memory location
743 // (taken from memVT if zero)
744 unsigned align = 1; // alignment
745
746 MachineMemOperand::Flags flags = MachineMemOperand::MONone;
747 IntrinsicInfo() = default;
748 };
749
750 /// Given an intrinsic, checks if on the target the intrinsic will need to map
751 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
752 /// true and store the intrinsic information into the IntrinsicInfo that was
753 /// passed to the function.
754 virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
755 MachineFunction &,
756 unsigned /*Intrinsic*/) const {
757 return false;
758 }
759
760 /// Returns true if the target can instruction select the specified FP
761 /// immediate natively. If false, the legalizer will materialize the FP
762 /// immediate as a load from a constant pool.
763 virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
764 return false;
765 }
766
767 /// Targets can use this to indicate that they only support *some*
768 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
769 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
770 /// legal.
771 virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
772 return true;
773 }
774
775 /// Returns true if the operation can trap for the value type.
776 ///
777 /// VT must be a legal type. By default, we optimistically assume most
778 /// operations don't trap except for integer divide and remainder.
779 virtual bool canOpTrap(unsigned Op, EVT VT) const;
780
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100781 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
782 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
783 /// constant pool entry.
784 virtual bool isVectorClearMaskLegal(ArrayRef<int> /*Mask*/,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100785 EVT /*VT*/) const {
786 return false;
787 }
788
789 /// Return how this operation should be treated: either it is legal, needs to
790 /// be promoted to a larger size, needs to be expanded to some other code
791 /// sequence, or the target has a custom expander for it.
792 LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
793 if (VT.isExtended()) return Expand;
794 // If a target-specific SDNode requires legalization, require the target
795 // to provide custom legalization for it.
796 if (Op >= array_lengthof(OpActions[0])) return Custom;
797 return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
798 }
799
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100800 LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const {
801 unsigned EqOpc;
802 switch (Op) {
803 default: llvm_unreachable("Unexpected FP pseudo-opcode");
804 case ISD::STRICT_FADD: EqOpc = ISD::FADD; break;
805 case ISD::STRICT_FSUB: EqOpc = ISD::FSUB; break;
806 case ISD::STRICT_FMUL: EqOpc = ISD::FMUL; break;
807 case ISD::STRICT_FDIV: EqOpc = ISD::FDIV; break;
Andrew Scull0372a572018-11-16 15:47:06 +0000808 case ISD::STRICT_FREM: EqOpc = ISD::FREM; break;
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100809 case ISD::STRICT_FSQRT: EqOpc = ISD::FSQRT; break;
810 case ISD::STRICT_FPOW: EqOpc = ISD::FPOW; break;
811 case ISD::STRICT_FPOWI: EqOpc = ISD::FPOWI; break;
812 case ISD::STRICT_FMA: EqOpc = ISD::FMA; break;
813 case ISD::STRICT_FSIN: EqOpc = ISD::FSIN; break;
814 case ISD::STRICT_FCOS: EqOpc = ISD::FCOS; break;
815 case ISD::STRICT_FEXP: EqOpc = ISD::FEXP; break;
816 case ISD::STRICT_FEXP2: EqOpc = ISD::FEXP2; break;
817 case ISD::STRICT_FLOG: EqOpc = ISD::FLOG; break;
818 case ISD::STRICT_FLOG10: EqOpc = ISD::FLOG10; break;
819 case ISD::STRICT_FLOG2: EqOpc = ISD::FLOG2; break;
820 case ISD::STRICT_FRINT: EqOpc = ISD::FRINT; break;
821 case ISD::STRICT_FNEARBYINT: EqOpc = ISD::FNEARBYINT; break;
822 }
823
824 auto Action = getOperationAction(EqOpc, VT);
825
826 // We don't currently handle Custom or Promote for strict FP pseudo-ops.
827 // For now, we just expand for those cases.
828 if (Action != Legal)
829 Action = Expand;
830
831 return Action;
832 }
833
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100834 /// Return true if the specified operation is legal on this target or can be
835 /// made legal with custom lowering. This is used to help guide high-level
836 /// lowering decisions.
837 bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
838 return (VT == MVT::Other || isTypeLegal(VT)) &&
839 (getOperationAction(Op, VT) == Legal ||
840 getOperationAction(Op, VT) == Custom);
841 }
842
843 /// Return true if the specified operation is legal on this target or can be
844 /// made legal using promotion. This is used to help guide high-level lowering
845 /// decisions.
846 bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
847 return (VT == MVT::Other || isTypeLegal(VT)) &&
848 (getOperationAction(Op, VT) == Legal ||
849 getOperationAction(Op, VT) == Promote);
850 }
851
852 /// Return true if the specified operation is legal on this target or can be
853 /// made legal with custom lowering or using promotion. This is used to help
854 /// guide high-level lowering decisions.
855 bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT) const {
856 return (VT == MVT::Other || isTypeLegal(VT)) &&
857 (getOperationAction(Op, VT) == Legal ||
858 getOperationAction(Op, VT) == Custom ||
859 getOperationAction(Op, VT) == Promote);
860 }
861
862 /// Return true if the operation uses custom lowering, regardless of whether
863 /// the type is legal or not.
864 bool isOperationCustom(unsigned Op, EVT VT) const {
865 return getOperationAction(Op, VT) == Custom;
866 }
867
868 /// Return true if lowering to a jump table is allowed.
869 virtual bool areJTsAllowed(const Function *Fn) const {
870 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
871 return false;
872
873 return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
874 isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
875 }
876
877 /// Check whether the range [Low,High] fits in a machine word.
878 bool rangeFitsInWord(const APInt &Low, const APInt &High,
879 const DataLayout &DL) const {
880 // FIXME: Using the pointer type doesn't seem ideal.
881 uint64_t BW = DL.getIndexSizeInBits(0u);
882 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
883 return Range <= BW;
884 }
885
886 /// Return true if lowering to a jump table is suitable for a set of case
887 /// clusters which may contain \p NumCases cases, \p Range range of values.
888 /// FIXME: This function check the maximum table size and density, but the
889 /// minimum size is not checked. It would be nice if the minimum size is
890 /// also combined within this function. Currently, the minimum size check is
891 /// performed in findJumpTable() in SelectionDAGBuiler and
892 /// getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
893 virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
894 uint64_t Range) const {
895 const bool OptForSize = SI->getParent()->getParent()->optForSize();
896 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
897 const unsigned MaxJumpTableSize =
898 OptForSize || getMaximumJumpTableSize() == 0
899 ? UINT_MAX
900 : getMaximumJumpTableSize();
901 // Check whether a range of clusters is dense enough for a jump table.
902 if (Range <= MaxJumpTableSize &&
903 (NumCases * 100 >= Range * MinDensity)) {
904 return true;
905 }
906 return false;
907 }
908
909 /// Return true if lowering to a bit test is suitable for a set of case
910 /// clusters which contains \p NumDests unique destinations, \p Low and
911 /// \p High as its lowest and highest case values, and expects \p NumCmps
912 /// case value comparisons. Check if the number of destinations, comparison
913 /// metric, and range are all suitable.
914 bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
915 const APInt &Low, const APInt &High,
916 const DataLayout &DL) const {
917 // FIXME: I don't think NumCmps is the correct metric: a single case and a
918 // range of cases both require only one branch to lower. Just looking at the
919 // number of clusters and destinations should be enough to decide whether to
920 // build bit tests.
921
922 // To lower a range with bit tests, the range must fit the bitwidth of a
923 // machine word.
924 if (!rangeFitsInWord(Low, High, DL))
925 return false;
926
927 // Decide whether it's profitable to lower this range with bit tests. Each
928 // destination requires a bit test and branch, and there is an overall range
929 // check branch. For a small number of clusters, separate comparisons might
930 // be cheaper, and for many destinations, splitting the range might be
931 // better.
932 return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
933 (NumDests == 3 && NumCmps >= 6);
934 }
935
936 /// Return true if the specified operation is illegal on this target or
937 /// unlikely to be made legal with custom lowering. This is used to help guide
938 /// high-level lowering decisions.
939 bool isOperationExpand(unsigned Op, EVT VT) const {
940 return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
941 }
942
943 /// Return true if the specified operation is legal on this target.
944 bool isOperationLegal(unsigned Op, EVT VT) const {
945 return (VT == MVT::Other || isTypeLegal(VT)) &&
946 getOperationAction(Op, VT) == Legal;
947 }
948
949 /// Return how this load with extension should be treated: either it is legal,
950 /// needs to be promoted to a larger size, needs to be expanded to some other
951 /// code sequence, or the target has a custom expander for it.
952 LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
953 EVT MemVT) const {
954 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
955 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
956 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
957 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
958 MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
959 unsigned Shift = 4 * ExtType;
960 return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
961 }
962
963 /// Return true if the specified load with extension is legal on this target.
964 bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
965 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
966 }
967
968 /// Return true if the specified load with extension is legal or custom
969 /// on this target.
970 bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
971 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
972 getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
973 }
974
975 /// Return how this store with truncation should be treated: either it is
976 /// legal, needs to be promoted to a larger size, needs to be expanded to some
977 /// other code sequence, or the target has a custom expander for it.
978 LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
979 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
980 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
981 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
982 assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
983 "Table isn't big enough!");
984 return TruncStoreActions[ValI][MemI];
985 }
986
987 /// Return true if the specified store with truncation is legal on this
988 /// target.
989 bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
990 return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
991 }
992
993 /// Return true if the specified store with truncation has solution on this
994 /// target.
995 bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
996 return isTypeLegal(ValVT) &&
997 (getTruncStoreAction(ValVT, MemVT) == Legal ||
998 getTruncStoreAction(ValVT, MemVT) == Custom);
999 }
1000
1001 /// Return how the indexed load should be treated: either it is legal, needs
1002 /// to be promoted to a larger size, needs to be expanded to some other code
1003 /// sequence, or the target has a custom expander for it.
1004 LegalizeAction
1005 getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
1006 assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
1007 "Table isn't big enough!");
1008 unsigned Ty = (unsigned)VT.SimpleTy;
1009 return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
1010 }
1011
1012 /// Return true if the specified indexed load is legal on this target.
1013 bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
1014 return VT.isSimple() &&
1015 (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1016 getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1017 }
1018
1019 /// Return how the indexed store should be treated: either it is legal, needs
1020 /// to be promoted to a larger size, needs to be expanded to some other code
1021 /// sequence, or the target has a custom expander for it.
1022 LegalizeAction
1023 getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
1024 assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
1025 "Table isn't big enough!");
1026 unsigned Ty = (unsigned)VT.SimpleTy;
1027 return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
1028 }
1029
1030 /// Return true if the specified indexed load is legal on this target.
1031 bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
1032 return VT.isSimple() &&
1033 (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1034 getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1035 }
1036
1037 /// Return how the condition code should be treated: either it is legal, needs
1038 /// to be expanded to some other code sequence, or the target has a custom
1039 /// expander for it.
1040 LegalizeAction
1041 getCondCodeAction(ISD::CondCode CC, MVT VT) const {
1042 assert((unsigned)CC < array_lengthof(CondCodeActions) &&
1043 ((unsigned)VT.SimpleTy >> 3) < array_lengthof(CondCodeActions[0]) &&
1044 "Table isn't big enough!");
1045 // See setCondCodeAction for how this is encoded.
1046 uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
1047 uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
1048 LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
1049 assert(Action != Promote && "Can't promote condition code!");
1050 return Action;
1051 }
1052
1053 /// Return true if the specified condition code is legal on this target.
1054 bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
1055 return getCondCodeAction(CC, VT) == Legal;
1056 }
1057
1058 /// Return true if the specified condition code is legal or custom on this
1059 /// target.
1060 bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const {
1061 return getCondCodeAction(CC, VT) == Legal ||
1062 getCondCodeAction(CC, VT) == Custom;
1063 }
1064
1065 /// If the action for this operation is to promote, this method returns the
1066 /// ValueType to promote to.
1067 MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
1068 assert(getOperationAction(Op, VT) == Promote &&
1069 "This operation isn't promoted!");
1070
1071 // See if this has an explicit type specified.
1072 std::map<std::pair<unsigned, MVT::SimpleValueType>,
1073 MVT::SimpleValueType>::const_iterator PTTI =
1074 PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
1075 if (PTTI != PromoteToType.end()) return PTTI->second;
1076
1077 assert((VT.isInteger() || VT.isFloatingPoint()) &&
1078 "Cannot autopromote this type, add it with AddPromotedToType.");
1079
1080 MVT NVT = VT;
1081 do {
1082 NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
1083 assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
1084 "Didn't find type to promote to!");
1085 } while (!isTypeLegal(NVT) ||
1086 getOperationAction(Op, NVT) == Promote);
1087 return NVT;
1088 }
1089
1090 /// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM
1091 /// operations except for the pointer size. If AllowUnknown is true, this
1092 /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
1093 /// otherwise it will assert.
1094 EVT getValueType(const DataLayout &DL, Type *Ty,
1095 bool AllowUnknown = false) const {
1096 // Lower scalar pointers to native pointer types.
1097 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
1098 return getPointerTy(DL, PTy->getAddressSpace());
1099
1100 if (Ty->isVectorTy()) {
1101 VectorType *VTy = cast<VectorType>(Ty);
1102 Type *Elm = VTy->getElementType();
1103 // Lower vectors of pointers to native pointer types.
1104 if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
1105 EVT PointerTy(getPointerTy(DL, PT->getAddressSpace()));
1106 Elm = PointerTy.getTypeForEVT(Ty->getContext());
1107 }
1108
1109 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
1110 VTy->getNumElements());
1111 }
1112 return EVT::getEVT(Ty, AllowUnknown);
1113 }
1114
1115 /// Return the MVT corresponding to this LLVM type. See getValueType.
1116 MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
1117 bool AllowUnknown = false) const {
1118 return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
1119 }
1120
1121 /// Return the desired alignment for ByVal or InAlloca aggregate function
1122 /// arguments in the caller parameter area. This is the actual alignment, not
1123 /// its logarithm.
1124 virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
1125
1126 /// Return the type of registers that this ValueType will eventually require.
1127 MVT getRegisterType(MVT VT) const {
1128 assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
1129 return RegisterTypeForVT[VT.SimpleTy];
1130 }
1131
1132 /// Return the type of registers that this ValueType will eventually require.
1133 MVT getRegisterType(LLVMContext &Context, EVT VT) const {
1134 if (VT.isSimple()) {
1135 assert((unsigned)VT.getSimpleVT().SimpleTy <
1136 array_lengthof(RegisterTypeForVT));
1137 return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
1138 }
1139 if (VT.isVector()) {
1140 EVT VT1;
1141 MVT RegisterVT;
1142 unsigned NumIntermediates;
1143 (void)getVectorTypeBreakdown(Context, VT, VT1,
1144 NumIntermediates, RegisterVT);
1145 return RegisterVT;
1146 }
1147 if (VT.isInteger()) {
1148 return getRegisterType(Context, getTypeToTransformTo(Context, VT));
1149 }
1150 llvm_unreachable("Unsupported extended type!");
1151 }
1152
1153 /// Return the number of registers that this ValueType will eventually
1154 /// require.
1155 ///
1156 /// This is one for any types promoted to live in larger registers, but may be
1157 /// more than one for types (like i64) that are split into pieces. For types
1158 /// like i140, which are first promoted then expanded, it is the number of
1159 /// registers needed to hold all the bits of the original type. For an i140
1160 /// on a 32 bit machine this means 5 registers.
1161 unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
1162 if (VT.isSimple()) {
1163 assert((unsigned)VT.getSimpleVT().SimpleTy <
1164 array_lengthof(NumRegistersForVT));
1165 return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
1166 }
1167 if (VT.isVector()) {
1168 EVT VT1;
1169 MVT VT2;
1170 unsigned NumIntermediates;
1171 return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
1172 }
1173 if (VT.isInteger()) {
1174 unsigned BitWidth = VT.getSizeInBits();
1175 unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
1176 return (BitWidth + RegWidth - 1) / RegWidth;
1177 }
1178 llvm_unreachable("Unsupported extended type!");
1179 }
1180
1181 /// Certain combinations of ABIs, Targets and features require that types
1182 /// are legal for some operations and not for other operations.
1183 /// For MIPS all vector types must be passed through the integer register set.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001184 virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context,
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001185 CallingConv::ID CC, EVT VT) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001186 return getRegisterType(Context, VT);
1187 }
1188
1189 /// Certain targets require unusual breakdowns of certain types. For MIPS,
1190 /// this occurs when a vector type is used, as vector are passed through the
1191 /// integer register set.
1192 virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context,
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001193 CallingConv::ID CC,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001194 EVT VT) const {
1195 return getNumRegisters(Context, VT);
1196 }
1197
1198 /// Certain targets have context senstive alignment requirements, where one
1199 /// type has the alignment requirement of another type.
1200 virtual unsigned getABIAlignmentForCallingConv(Type *ArgTy,
1201 DataLayout DL) const {
1202 return DL.getABITypeAlignment(ArgTy);
1203 }
1204
1205 /// If true, then instruction selection should seek to shrink the FP constant
1206 /// of the specified type to a smaller type in order to save space and / or
1207 /// reduce runtime.
1208 virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
1209
1210 // Return true if it is profitable to reduce the given load node to a smaller
1211 // type.
1212 //
1213 // e.g. (i16 (trunc (i32 (load x))) -> i16 load x should be performed
1214 virtual bool shouldReduceLoadWidth(SDNode *Load,
1215 ISD::LoadExtType ExtTy,
1216 EVT NewVT) const {
1217 return true;
1218 }
1219
1220 /// When splitting a value of the specified type into parts, does the Lo
1221 /// or Hi part come first? This usually follows the endianness, except
1222 /// for ppcf128, where the Hi part always comes first.
1223 bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
1224 return DL.isBigEndian() || VT == MVT::ppcf128;
1225 }
1226
1227 /// If true, the target has custom DAG combine transformations that it can
1228 /// perform for the specified node.
1229 bool hasTargetDAGCombine(ISD::NodeType NT) const {
1230 assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1231 return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
1232 }
1233
1234 unsigned getGatherAllAliasesMaxDepth() const {
1235 return GatherAllAliasesMaxDepth;
1236 }
1237
1238 /// Returns the size of the platform's va_list object.
1239 virtual unsigned getVaListSizeInBits(const DataLayout &DL) const {
1240 return getPointerTy(DL).getSizeInBits();
1241 }
1242
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001243 /// Get maximum # of store operations permitted for llvm.memset
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001244 ///
1245 /// This function returns the maximum number of store operations permitted
1246 /// to replace a call to llvm.memset. The value is set by the target at the
1247 /// performance threshold for such a replacement. If OptSize is true,
1248 /// return the limit for functions that have OptSize attribute.
1249 unsigned getMaxStoresPerMemset(bool OptSize) const {
1250 return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
1251 }
1252
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001253 /// Get maximum # of store operations permitted for llvm.memcpy
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001254 ///
1255 /// This function returns the maximum number of store operations permitted
1256 /// to replace a call to llvm.memcpy. The value is set by the target at the
1257 /// performance threshold for such a replacement. If OptSize is true,
1258 /// return the limit for functions that have OptSize attribute.
1259 unsigned getMaxStoresPerMemcpy(bool OptSize) const {
1260 return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
1261 }
1262
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001263 /// \brief Get maximum # of store operations to be glued together
1264 ///
1265 /// This function returns the maximum number of store operations permitted
1266 /// to glue together during lowering of llvm.memcpy. The value is set by
1267 // the target at the performance threshold for such a replacement.
1268 virtual unsigned getMaxGluedStoresPerMemcpy() const {
1269 return MaxGluedStoresPerMemcpy;
1270 }
1271
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001272 /// Get maximum # of load operations permitted for memcmp
1273 ///
1274 /// This function returns the maximum number of load operations permitted
1275 /// to replace a call to memcmp. The value is set by the target at the
1276 /// performance threshold for such a replacement. If OptSize is true,
1277 /// return the limit for functions that have OptSize attribute.
1278 unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
1279 return OptSize ? MaxLoadsPerMemcmpOptSize : MaxLoadsPerMemcmp;
1280 }
1281
1282 /// For memcmp expansion when the memcmp result is only compared equal or
1283 /// not-equal to 0, allow up to this number of load pairs per block. As an
1284 /// example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
1285 /// a0 = load2bytes &a[0]
1286 /// b0 = load2bytes &b[0]
1287 /// a2 = load1byte &a[2]
1288 /// b2 = load1byte &b[2]
1289 /// r = cmp eq (a0 ^ b0 | a2 ^ b2), 0
1290 virtual unsigned getMemcmpEqZeroLoadsPerBlock() const {
1291 return 1;
1292 }
1293
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001294 /// Get maximum # of store operations permitted for llvm.memmove
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001295 ///
1296 /// This function returns the maximum number of store operations permitted
1297 /// to replace a call to llvm.memmove. The value is set by the target at the
1298 /// performance threshold for such a replacement. If OptSize is true,
1299 /// return the limit for functions that have OptSize attribute.
1300 unsigned getMaxStoresPerMemmove(bool OptSize) const {
1301 return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
1302 }
1303
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001304 /// Determine if the target supports unaligned memory accesses.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001305 ///
1306 /// This function returns true if the target allows unaligned memory accesses
1307 /// of the specified type in the given address space. If true, it also returns
1308 /// whether the unaligned memory access is "fast" in the last argument by
1309 /// reference. This is used, for example, in situations where an array
1310 /// copy/move/set is converted to a sequence of store operations. Its use
1311 /// helps to ensure that such replacements don't generate code that causes an
1312 /// alignment error (trap) on the target machine.
1313 virtual bool allowsMisalignedMemoryAccesses(EVT,
1314 unsigned AddrSpace = 0,
1315 unsigned Align = 1,
1316 bool * /*Fast*/ = nullptr) const {
1317 return false;
1318 }
1319
1320 /// Return true if the target supports a memory access of this type for the
1321 /// given address space and alignment. If the access is allowed, the optional
1322 /// final parameter returns if the access is also fast (as defined by the
1323 /// target).
1324 bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1325 unsigned AddrSpace = 0, unsigned Alignment = 1,
1326 bool *Fast = nullptr) const;
1327
1328 /// Returns the target specific optimal type for load and store operations as
1329 /// a result of memset, memcpy, and memmove lowering.
1330 ///
1331 /// If DstAlign is zero that means it's safe to destination alignment can
1332 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
1333 /// a need to check it against alignment requirement, probably because the
1334 /// source does not need to be loaded. If 'IsMemset' is true, that means it's
1335 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
1336 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
1337 /// does not need to be loaded. It returns EVT::Other if the type should be
1338 /// determined using generic target-independent logic.
1339 virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
1340 unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
1341 bool /*IsMemset*/,
1342 bool /*ZeroMemset*/,
1343 bool /*MemcpyStrSrc*/,
1344 MachineFunction &/*MF*/) const {
1345 return MVT::Other;
1346 }
1347
1348 /// Returns true if it's safe to use load / store of the specified type to
1349 /// expand memcpy / memset inline.
1350 ///
1351 /// This is mostly true for all types except for some special cases. For
1352 /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
1353 /// fstpl which also does type conversion. Note the specified type doesn't
1354 /// have to be legal as the hook is used before type legalization.
1355 virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
1356
1357 /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
1358 bool usesUnderscoreSetJmp() const {
1359 return UseUnderscoreSetJmp;
1360 }
1361
1362 /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
1363 bool usesUnderscoreLongJmp() const {
1364 return UseUnderscoreLongJmp;
1365 }
1366
1367 /// Return lower limit for number of blocks in a jump table.
1368 virtual unsigned getMinimumJumpTableEntries() const;
1369
1370 /// Return lower limit of the density in a jump table.
1371 unsigned getMinimumJumpTableDensity(bool OptForSize) const;
1372
1373 /// Return upper limit for number of entries in a jump table.
1374 /// Zero if no limit.
1375 unsigned getMaximumJumpTableSize() const;
1376
1377 virtual bool isJumpTableRelative() const {
1378 return TM.isPositionIndependent();
1379 }
1380
1381 /// If a physical register, this specifies the register that
1382 /// llvm.savestack/llvm.restorestack should save and restore.
1383 unsigned getStackPointerRegisterToSaveRestore() const {
1384 return StackPointerRegisterToSaveRestore;
1385 }
1386
1387 /// If a physical register, this returns the register that receives the
1388 /// exception address on entry to an EH pad.
1389 virtual unsigned
1390 getExceptionPointerRegister(const Constant *PersonalityFn) const {
1391 // 0 is guaranteed to be the NoRegister value on all targets
1392 return 0;
1393 }
1394
1395 /// If a physical register, this returns the register that receives the
1396 /// exception typeid on entry to a landing pad.
1397 virtual unsigned
1398 getExceptionSelectorRegister(const Constant *PersonalityFn) const {
1399 // 0 is guaranteed to be the NoRegister value on all targets
1400 return 0;
1401 }
1402
1403 virtual bool needsFixedCatchObjects() const {
1404 report_fatal_error("Funclet EH is not implemented for this target");
1405 }
1406
1407 /// Returns the target's jmp_buf size in bytes (if never set, the default is
1408 /// 200)
1409 unsigned getJumpBufSize() const {
1410 return JumpBufSize;
1411 }
1412
1413 /// Returns the target's jmp_buf alignment in bytes (if never set, the default
1414 /// is 0)
1415 unsigned getJumpBufAlignment() const {
1416 return JumpBufAlignment;
1417 }
1418
1419 /// Return the minimum stack alignment of an argument.
1420 unsigned getMinStackArgumentAlignment() const {
1421 return MinStackArgumentAlignment;
1422 }
1423
1424 /// Return the minimum function alignment.
1425 unsigned getMinFunctionAlignment() const {
1426 return MinFunctionAlignment;
1427 }
1428
1429 /// Return the preferred function alignment.
1430 unsigned getPrefFunctionAlignment() const {
1431 return PrefFunctionAlignment;
1432 }
1433
1434 /// Return the preferred loop alignment.
1435 virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
1436 return PrefLoopAlignment;
1437 }
1438
Andrew Scull0372a572018-11-16 15:47:06 +00001439 /// Should loops be aligned even when the function is marked OptSize (but not
1440 /// MinSize).
1441 virtual bool alignLoopsWithOptSize() const {
1442 return false;
1443 }
1444
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001445 /// If the target has a standard location for the stack protector guard,
1446 /// returns the address of that location. Otherwise, returns nullptr.
1447 /// DEPRECATED: please override useLoadStackGuardNode and customize
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001448 /// LOAD_STACK_GUARD, or customize \@llvm.stackguard().
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001449 virtual Value *getIRStackGuard(IRBuilder<> &IRB) const;
1450
1451 /// Inserts necessary declarations for SSP (stack protection) purpose.
1452 /// Should be used only when getIRStackGuard returns nullptr.
1453 virtual void insertSSPDeclarations(Module &M) const;
1454
1455 /// Return the variable that's previously inserted by insertSSPDeclarations,
1456 /// if any, otherwise return nullptr. Should be used only when
1457 /// getIRStackGuard returns nullptr.
1458 virtual Value *getSDagStackGuard(const Module &M) const;
1459
1460 /// If this function returns true, stack protection checks should XOR the
1461 /// frame pointer (or whichever pointer is used to address locals) into the
1462 /// stack guard value before checking it. getIRStackGuard must return nullptr
1463 /// if this returns true.
1464 virtual bool useStackGuardXorFP() const { return false; }
1465
1466 /// If the target has a standard stack protection check function that
1467 /// performs validation and error handling, returns the function. Otherwise,
1468 /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
1469 /// Should be used only when getIRStackGuard returns nullptr.
1470 virtual Value *getSSPStackGuardCheck(const Module &M) const;
1471
1472protected:
1473 Value *getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1474 bool UseTLS) const;
1475
1476public:
1477 /// Returns the target-specific address of the unsafe stack pointer.
1478 virtual Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const;
1479
1480 /// Returns the name of the symbol used to emit stack probes or the empty
1481 /// string if not applicable.
1482 virtual StringRef getStackProbeSymbolName(MachineFunction &MF) const {
1483 return "";
1484 }
1485
1486 /// Returns true if a cast between SrcAS and DestAS is a noop.
1487 virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
1488 return false;
1489 }
1490
1491 /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
1492 /// are happy to sink it into basic blocks.
1493 virtual bool isCheapAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
1494 return isNoopAddrSpaceCast(SrcAS, DestAS);
1495 }
1496
1497 /// Return true if the pointer arguments to CI should be aligned by aligning
1498 /// the object whose address is being passed. If so then MinSize is set to the
1499 /// minimum size the object must be to be aligned and PrefAlign is set to the
1500 /// preferred alignment.
1501 virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
1502 unsigned & /*PrefAlign*/) const {
1503 return false;
1504 }
1505
1506 //===--------------------------------------------------------------------===//
1507 /// \name Helpers for TargetTransformInfo implementations
1508 /// @{
1509
1510 /// Get the ISD node that corresponds to the Instruction class opcode.
1511 int InstructionOpcodeToISD(unsigned Opcode) const;
1512
1513 /// Estimate the cost of type-legalization and the legalized type.
1514 std::pair<int, MVT> getTypeLegalizationCost(const DataLayout &DL,
1515 Type *Ty) const;
1516
1517 /// @}
1518
1519 //===--------------------------------------------------------------------===//
1520 /// \name Helpers for atomic expansion.
1521 /// @{
1522
1523 /// Returns the maximum atomic operation size (in bits) supported by
1524 /// the backend. Atomic operations greater than this size (as well
1525 /// as ones that are not naturally aligned), will be expanded by
1526 /// AtomicExpandPass into an __atomic_* library call.
1527 unsigned getMaxAtomicSizeInBitsSupported() const {
1528 return MaxAtomicSizeInBitsSupported;
1529 }
1530
1531 /// Returns the size of the smallest cmpxchg or ll/sc instruction
1532 /// the backend supports. Any smaller operations are widened in
1533 /// AtomicExpandPass.
1534 ///
1535 /// Note that *unlike* operations above the maximum size, atomic ops
1536 /// are still natively supported below the minimum; they just
1537 /// require a more complex expansion.
1538 unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
1539
1540 /// Whether the target supports unaligned atomic operations.
1541 bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
1542
1543 /// Whether AtomicExpandPass should automatically insert fences and reduce
1544 /// ordering for this atomic. This should be true for most architectures with
1545 /// weak memory ordering. Defaults to false.
1546 virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
1547 return false;
1548 }
1549
1550 /// Perform a load-linked operation on Addr, returning a "Value *" with the
1551 /// corresponding pointee type. This may entail some non-trivial operations to
1552 /// truncate or reconstruct types that will be illegal in the backend. See
1553 /// ARMISelLowering for an example implementation.
1554 virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
1555 AtomicOrdering Ord) const {
1556 llvm_unreachable("Load linked unimplemented on this target");
1557 }
1558
1559 /// Perform a store-conditional operation to Addr. Return the status of the
1560 /// store. This should be 0 if the store succeeded, non-zero otherwise.
1561 virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
1562 Value *Addr, AtomicOrdering Ord) const {
1563 llvm_unreachable("Store conditional unimplemented on this target");
1564 }
1565
Andrew Scull0372a572018-11-16 15:47:06 +00001566 /// Perform a masked atomicrmw using a target-specific intrinsic. This
1567 /// represents the core LL/SC loop which will be lowered at a late stage by
1568 /// the backend.
1569 virtual Value *emitMaskedAtomicRMWIntrinsic(IRBuilder<> &Builder,
1570 AtomicRMWInst *AI,
1571 Value *AlignedAddr, Value *Incr,
1572 Value *Mask, Value *ShiftAmt,
1573 AtomicOrdering Ord) const {
1574 llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
1575 }
1576
1577 /// Perform a masked cmpxchg using a target-specific intrinsic. This
1578 /// represents the core LL/SC loop which will be lowered at a late stage by
1579 /// the backend.
1580 virtual Value *emitMaskedAtomicCmpXchgIntrinsic(
1581 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
1582 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
1583 llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
1584 }
1585
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001586 /// Inserts in the IR a target-specific intrinsic specifying a fence.
1587 /// It is called by AtomicExpandPass before expanding an
1588 /// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
1589 /// if shouldInsertFencesForAtomic returns true.
1590 ///
1591 /// Inst is the original atomic instruction, prior to other expansions that
1592 /// may be performed.
1593 ///
1594 /// This function should either return a nullptr, or a pointer to an IR-level
1595 /// Instruction*. Even complex fence sequences can be represented by a
1596 /// single Instruction* through an intrinsic to be lowered later.
1597 /// Backends should override this method to produce target-specific intrinsic
1598 /// for their fences.
1599 /// FIXME: Please note that the default implementation here in terms of
1600 /// IR-level fences exists for historical/compatibility reasons and is
1601 /// *unsound* ! Fences cannot, in general, be used to restore sequential
1602 /// consistency. For example, consider the following example:
1603 /// atomic<int> x = y = 0;
1604 /// int r1, r2, r3, r4;
1605 /// Thread 0:
1606 /// x.store(1);
1607 /// Thread 1:
1608 /// y.store(1);
1609 /// Thread 2:
1610 /// r1 = x.load();
1611 /// r2 = y.load();
1612 /// Thread 3:
1613 /// r3 = y.load();
1614 /// r4 = x.load();
1615 /// r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
1616 /// seq_cst. But if they are lowered to monotonic accesses, no amount of
1617 /// IR-level fences can prevent it.
1618 /// @{
1619 virtual Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
1620 AtomicOrdering Ord) const {
1621 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
1622 return Builder.CreateFence(Ord);
1623 else
1624 return nullptr;
1625 }
1626
1627 virtual Instruction *emitTrailingFence(IRBuilder<> &Builder,
1628 Instruction *Inst,
1629 AtomicOrdering Ord) const {
1630 if (isAcquireOrStronger(Ord))
1631 return Builder.CreateFence(Ord);
1632 else
1633 return nullptr;
1634 }
1635 /// @}
1636
1637 // Emits code that executes when the comparison result in the ll/sc
1638 // expansion of a cmpxchg instruction is such that the store-conditional will
1639 // not execute. This makes it possible to balance out the load-linked with
1640 // a dedicated instruction, if desired.
1641 // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
1642 // be unnecessarily held, except if clrex, inserted by this hook, is executed.
1643 virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {}
1644
1645 /// Returns true if the given (atomic) store should be expanded by the
1646 /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
1647 virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
1648 return false;
1649 }
1650
1651 /// Returns true if arguments should be sign-extended in lib calls.
1652 virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
1653 return IsSigned;
1654 }
1655
1656 /// Returns how the given (atomic) load should be expanded by the
1657 /// IR-level AtomicExpand pass.
1658 virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
1659 return AtomicExpansionKind::None;
1660 }
1661
Andrew Scull0372a572018-11-16 15:47:06 +00001662 /// Returns how the given atomic cmpxchg should be expanded by the IR-level
1663 /// AtomicExpand pass.
1664 virtual AtomicExpansionKind
1665 shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
1666 return AtomicExpansionKind::None;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001667 }
1668
1669 /// Returns how the IR-level AtomicExpand pass should expand the given
1670 /// AtomicRMW, if at all. Default is to never expand.
1671 virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *) const {
1672 return AtomicExpansionKind::None;
1673 }
1674
1675 /// On some platforms, an AtomicRMW that never actually modifies the value
1676 /// (such as fetch_add of 0) can be turned into a fence followed by an
1677 /// atomic load. This may sound useless, but it makes it possible for the
1678 /// processor to keep the cacheline shared, dramatically improving
1679 /// performance. And such idempotent RMWs are useful for implementing some
1680 /// kinds of locks, see for example (justification + benchmarks):
1681 /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
1682 /// This method tries doing that transformation, returning the atomic load if
1683 /// it succeeds, and nullptr otherwise.
1684 /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
1685 /// another round of expansion.
1686 virtual LoadInst *
1687 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
1688 return nullptr;
1689 }
1690
1691 /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
1692 /// SIGN_EXTEND, or ANY_EXTEND).
1693 virtual ISD::NodeType getExtendForAtomicOps() const {
1694 return ISD::ZERO_EXTEND;
1695 }
1696
1697 /// @}
1698
1699 /// Returns true if we should normalize
1700 /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
1701 /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
1702 /// that it saves us from materializing N0 and N1 in an integer register.
1703 /// Targets that are able to perform and/or on flags should return false here.
1704 virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
1705 EVT VT) const {
1706 // If a target has multiple condition registers, then it likely has logical
1707 // operations on those registers.
1708 if (hasMultipleConditionRegisters())
1709 return false;
1710 // Only do the transform if the value won't be split into multiple
1711 // registers.
1712 LegalizeTypeAction Action = getTypeAction(Context, VT);
1713 return Action != TypeExpandInteger && Action != TypeExpandFloat &&
1714 Action != TypeSplitVector;
1715 }
1716
1717 /// Return true if a select of constants (select Cond, C1, C2) should be
1718 /// transformed into simple math ops with the condition value. For example:
1719 /// select Cond, C1, C1-1 --> add (zext Cond), C1-1
1720 virtual bool convertSelectOfConstantsToMath(EVT VT) const {
1721 return false;
1722 }
1723
Andrew Scull0372a572018-11-16 15:47:06 +00001724 /// Return true if it is profitable to transform an integer
1725 /// multiplication-by-constant into simpler operations like shifts and adds.
1726 /// This may be true if the target does not directly support the
1727 /// multiplication operation for the specified type or the sequence of simpler
1728 /// ops is faster than the multiply.
1729 virtual bool decomposeMulByConstant(EVT VT, SDValue C) const {
1730 return false;
1731 }
1732
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001733 //===--------------------------------------------------------------------===//
1734 // TargetLowering Configuration Methods - These methods should be invoked by
1735 // the derived class constructor to configure this object for the target.
1736 //
1737protected:
1738 /// Specify how the target extends the result of integer and floating point
1739 /// boolean values from i1 to a wider type. See getBooleanContents.
1740 void setBooleanContents(BooleanContent Ty) {
1741 BooleanContents = Ty;
1742 BooleanFloatContents = Ty;
1743 }
1744
1745 /// Specify how the target extends the result of integer and floating point
1746 /// boolean values from i1 to a wider type. See getBooleanContents.
1747 void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
1748 BooleanContents = IntTy;
1749 BooleanFloatContents = FloatTy;
1750 }
1751
1752 /// Specify how the target extends the result of a vector boolean value from a
1753 /// vector of i1 to a wider type. See getBooleanContents.
1754 void setBooleanVectorContents(BooleanContent Ty) {
1755 BooleanVectorContents = Ty;
1756 }
1757
1758 /// Specify the target scheduling preference.
1759 void setSchedulingPreference(Sched::Preference Pref) {
1760 SchedPreferenceInfo = Pref;
1761 }
1762
1763 /// Indicate whether this target prefers to use _setjmp to implement
1764 /// llvm.setjmp or the version without _. Defaults to false.
1765 void setUseUnderscoreSetJmp(bool Val) {
1766 UseUnderscoreSetJmp = Val;
1767 }
1768
1769 /// Indicate whether this target prefers to use _longjmp to implement
1770 /// llvm.longjmp or the version without _. Defaults to false.
1771 void setUseUnderscoreLongJmp(bool Val) {
1772 UseUnderscoreLongJmp = Val;
1773 }
1774
1775 /// Indicate the minimum number of blocks to generate jump tables.
1776 void setMinimumJumpTableEntries(unsigned Val);
1777
1778 /// Indicate the maximum number of entries in jump tables.
1779 /// Set to zero to generate unlimited jump tables.
1780 void setMaximumJumpTableSize(unsigned);
1781
1782 /// If set to a physical register, this specifies the register that
1783 /// llvm.savestack/llvm.restorestack should save and restore.
1784 void setStackPointerRegisterToSaveRestore(unsigned R) {
1785 StackPointerRegisterToSaveRestore = R;
1786 }
1787
1788 /// Tells the code generator that the target has multiple (allocatable)
1789 /// condition registers that can be used to store the results of comparisons
1790 /// for use by selects and conditional branches. With multiple condition
1791 /// registers, the code generator will not aggressively sink comparisons into
1792 /// the blocks of their users.
1793 void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
1794 HasMultipleConditionRegisters = hasManyRegs;
1795 }
1796
1797 /// Tells the code generator that the target has BitExtract instructions.
1798 /// The code generator will aggressively sink "shift"s into the blocks of
1799 /// their users if the users will generate "and" instructions which can be
1800 /// combined with "shift" to BitExtract instructions.
1801 void setHasExtractBitsInsn(bool hasExtractInsn = true) {
1802 HasExtractBitsInsn = hasExtractInsn;
1803 }
1804
1805 /// Tells the code generator not to expand logic operations on comparison
1806 /// predicates into separate sequences that increase the amount of flow
1807 /// control.
1808 void setJumpIsExpensive(bool isExpensive = true);
1809
1810 /// Tells the code generator that this target supports floating point
1811 /// exceptions and cares about preserving floating point exception behavior.
1812 void setHasFloatingPointExceptions(bool FPExceptions = true) {
1813 HasFloatingPointExceptions = FPExceptions;
1814 }
1815
1816 /// Tells the code generator which bitwidths to bypass.
1817 void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
1818 BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
1819 }
1820
1821 /// Add the specified register class as an available regclass for the
1822 /// specified value type. This indicates the selector can handle values of
1823 /// that class natively.
1824 void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
1825 assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
1826 RegClassForVT[VT.SimpleTy] = RC;
1827 }
1828
1829 /// Return the largest legal super-reg register class of the register class
1830 /// for the specified type and its associated "cost".
1831 virtual std::pair<const TargetRegisterClass *, uint8_t>
1832 findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
1833
1834 /// Once all of the register classes are added, this allows us to compute
1835 /// derived properties we expose.
1836 void computeRegisterProperties(const TargetRegisterInfo *TRI);
1837
1838 /// Indicate that the specified operation does not work with the specified
1839 /// type and indicate what to do about it. Note that VT may refer to either
1840 /// the type of a result or that of an operand of Op.
1841 void setOperationAction(unsigned Op, MVT VT,
1842 LegalizeAction Action) {
1843 assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1844 OpActions[(unsigned)VT.SimpleTy][Op] = Action;
1845 }
1846
1847 /// Indicate that the specified load with extension does not work with the
1848 /// specified type and indicate what to do about it.
1849 void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
1850 LegalizeAction Action) {
1851 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
1852 MemVT.isValid() && "Table isn't big enough!");
1853 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
1854 unsigned Shift = 4 * ExtType;
1855 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
1856 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
1857 }
1858
1859 /// Indicate that the specified truncating store does not work with the
1860 /// specified type and indicate what to do about it.
1861 void setTruncStoreAction(MVT ValVT, MVT MemVT,
1862 LegalizeAction Action) {
1863 assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
1864 TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
1865 }
1866
1867 /// Indicate that the specified indexed load does or does not work with the
1868 /// specified type and indicate what to do abort it.
1869 ///
1870 /// NOTE: All indexed mode loads are initialized to Expand in
1871 /// TargetLowering.cpp
1872 void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1873 LegalizeAction Action) {
1874 assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
1875 (unsigned)Action < 0xf && "Table isn't big enough!");
1876 // Load action are kept in the upper half.
1877 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1878 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1879 }
1880
1881 /// Indicate that the specified indexed store does or does not work with the
1882 /// specified type and indicate what to do about it.
1883 ///
1884 /// NOTE: All indexed mode stores are initialized to Expand in
1885 /// TargetLowering.cpp
1886 void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1887 LegalizeAction Action) {
1888 assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
1889 (unsigned)Action < 0xf && "Table isn't big enough!");
1890 // Store action are kept in the lower half.
1891 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1892 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1893 }
1894
1895 /// Indicate that the specified condition code is or isn't supported on the
1896 /// target and indicate what to do about it.
1897 void setCondCodeAction(ISD::CondCode CC, MVT VT,
1898 LegalizeAction Action) {
1899 assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
1900 "Table isn't big enough!");
1901 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
1902 /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit
1903 /// value and the upper 29 bits index into the second dimension of the array
1904 /// to select what 32-bit value to use.
1905 uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
1906 CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
1907 CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
1908 }
1909
1910 /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
1911 /// to trying a larger integer/fp until it can find one that works. If that
1912 /// default is insufficient, this method can be used by the target to override
1913 /// the default.
1914 void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1915 PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1916 }
1917
1918 /// Convenience method to set an operation to Promote and specify the type
1919 /// in a single call.
1920 void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1921 setOperationAction(Opc, OrigVT, Promote);
1922 AddPromotedToType(Opc, OrigVT, DestVT);
1923 }
1924
1925 /// Targets should invoke this method for each target independent node that
1926 /// they want to provide a custom DAG combiner for by implementing the
1927 /// PerformDAGCombine virtual method.
1928 void setTargetDAGCombine(ISD::NodeType NT) {
1929 assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1930 TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1931 }
1932
1933 /// Set the target's required jmp_buf buffer size (in bytes); default is 200
1934 void setJumpBufSize(unsigned Size) {
1935 JumpBufSize = Size;
1936 }
1937
1938 /// Set the target's required jmp_buf buffer alignment (in bytes); default is
1939 /// 0
1940 void setJumpBufAlignment(unsigned Align) {
1941 JumpBufAlignment = Align;
1942 }
1943
1944 /// Set the target's minimum function alignment (in log2(bytes))
1945 void setMinFunctionAlignment(unsigned Align) {
1946 MinFunctionAlignment = Align;
1947 }
1948
1949 /// Set the target's preferred function alignment. This should be set if
1950 /// there is a performance benefit to higher-than-minimum alignment (in
1951 /// log2(bytes))
1952 void setPrefFunctionAlignment(unsigned Align) {
1953 PrefFunctionAlignment = Align;
1954 }
1955
1956 /// Set the target's preferred loop alignment. Default alignment is zero, it
1957 /// means the target does not care about loop alignment. The alignment is
1958 /// specified in log2(bytes). The target may also override
1959 /// getPrefLoopAlignment to provide per-loop values.
1960 void setPrefLoopAlignment(unsigned Align) {
1961 PrefLoopAlignment = Align;
1962 }
1963
1964 /// Set the minimum stack alignment of an argument (in log2(bytes)).
1965 void setMinStackArgumentAlignment(unsigned Align) {
1966 MinStackArgumentAlignment = Align;
1967 }
1968
1969 /// Set the maximum atomic operation size supported by the
1970 /// backend. Atomic operations greater than this size (as well as
1971 /// ones that are not naturally aligned), will be expanded by
1972 /// AtomicExpandPass into an __atomic_* library call.
1973 void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
1974 MaxAtomicSizeInBitsSupported = SizeInBits;
1975 }
1976
1977 /// Sets the minimum cmpxchg or ll/sc size supported by the backend.
1978 void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
1979 MinCmpXchgSizeInBits = SizeInBits;
1980 }
1981
1982 /// Sets whether unaligned atomic operations are supported.
1983 void setSupportsUnalignedAtomics(bool UnalignedSupported) {
1984 SupportsUnalignedAtomics = UnalignedSupported;
1985 }
1986
1987public:
1988 //===--------------------------------------------------------------------===//
1989 // Addressing mode description hooks (used by LSR etc).
1990 //
1991
1992 /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
1993 /// instructions reading the address. This allows as much computation as
1994 /// possible to be done in the address mode for that operand. This hook lets
1995 /// targets also pass back when this should be done on intrinsics which
1996 /// load/store.
1997 virtual bool getAddrModeArguments(IntrinsicInst * /*I*/,
1998 SmallVectorImpl<Value*> &/*Ops*/,
1999 Type *&/*AccessTy*/) const {
2000 return false;
2001 }
2002
2003 /// This represents an addressing mode of:
2004 /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
2005 /// If BaseGV is null, there is no BaseGV.
2006 /// If BaseOffs is zero, there is no base offset.
2007 /// If HasBaseReg is false, there is no base register.
2008 /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
2009 /// no scale.
2010 struct AddrMode {
2011 GlobalValue *BaseGV = nullptr;
2012 int64_t BaseOffs = 0;
2013 bool HasBaseReg = false;
2014 int64_t Scale = 0;
2015 AddrMode() = default;
2016 };
2017
2018 /// Return true if the addressing mode represented by AM is legal for this
2019 /// target, for a load/store of the specified type.
2020 ///
2021 /// The type may be VoidTy, in which case only return true if the addressing
2022 /// mode is legal for a load/store of any legal type. TODO: Handle
2023 /// pre/postinc as well.
2024 ///
2025 /// If the address space cannot be determined, it will be -1.
2026 ///
2027 /// TODO: Remove default argument
2028 virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
2029 Type *Ty, unsigned AddrSpace,
2030 Instruction *I = nullptr) const;
2031
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002032 /// Return the cost of the scaling factor used in the addressing mode
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002033 /// represented by AM for this target, for a load/store of the specified type.
2034 ///
2035 /// If the AM is supported, the return value must be >= 0.
2036 /// If the AM is not supported, it returns a negative value.
2037 /// TODO: Handle pre/postinc as well.
2038 /// TODO: Remove default argument
2039 virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM,
2040 Type *Ty, unsigned AS = 0) const {
2041 // Default: assume that any scaling factor used in a legal AM is free.
2042 if (isLegalAddressingMode(DL, AM, Ty, AS))
2043 return 0;
2044 return -1;
2045 }
2046
2047 /// Return true if the specified immediate is legal icmp immediate, that is
2048 /// the target has icmp instructions which can compare a register against the
2049 /// immediate without having to materialize the immediate into a register.
2050 virtual bool isLegalICmpImmediate(int64_t) const {
2051 return true;
2052 }
2053
2054 /// Return true if the specified immediate is legal add immediate, that is the
2055 /// target has add instructions which can add a register with the immediate
2056 /// without having to materialize the immediate into a register.
2057 virtual bool isLegalAddImmediate(int64_t) const {
2058 return true;
2059 }
2060
2061 /// Return true if it's significantly cheaper to shift a vector by a uniform
2062 /// scalar than by an amount which will vary across each lane. On x86, for
2063 /// example, there is a "psllw" instruction for the former case, but no simple
2064 /// instruction for a general "a << b" operation on vectors.
2065 virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
2066 return false;
2067 }
2068
2069 /// Returns true if the opcode is a commutative binary operation.
2070 virtual bool isCommutativeBinOp(unsigned Opcode) const {
2071 // FIXME: This should get its info from the td file.
2072 switch (Opcode) {
2073 case ISD::ADD:
2074 case ISD::SMIN:
2075 case ISD::SMAX:
2076 case ISD::UMIN:
2077 case ISD::UMAX:
2078 case ISD::MUL:
2079 case ISD::MULHU:
2080 case ISD::MULHS:
2081 case ISD::SMUL_LOHI:
2082 case ISD::UMUL_LOHI:
2083 case ISD::FADD:
2084 case ISD::FMUL:
2085 case ISD::AND:
2086 case ISD::OR:
2087 case ISD::XOR:
2088 case ISD::SADDO:
2089 case ISD::UADDO:
2090 case ISD::ADDC:
2091 case ISD::ADDE:
2092 case ISD::FMINNUM:
2093 case ISD::FMAXNUM:
2094 case ISD::FMINNAN:
2095 case ISD::FMAXNAN:
2096 return true;
2097 default: return false;
2098 }
2099 }
2100
2101 /// Return true if it's free to truncate a value of type FromTy to type
2102 /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
2103 /// by referencing its sub-register AX.
2104 /// Targets must return false when FromTy <= ToTy.
2105 virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
2106 return false;
2107 }
2108
2109 /// Return true if a truncation from FromTy to ToTy is permitted when deciding
2110 /// whether a call is in tail position. Typically this means that both results
2111 /// would be assigned to the same register or stack slot, but it could mean
2112 /// the target performs adequate checks of its own before proceeding with the
2113 /// tail call. Targets must return false when FromTy <= ToTy.
2114 virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
2115 return false;
2116 }
2117
2118 virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const {
2119 return false;
2120 }
2121
2122 virtual bool isProfitableToHoist(Instruction *I) const { return true; }
2123
2124 /// Return true if the extension represented by \p I is free.
2125 /// Unlikely the is[Z|FP]ExtFree family which is based on types,
2126 /// this method can use the context provided by \p I to decide
2127 /// whether or not \p I is free.
2128 /// This method extends the behavior of the is[Z|FP]ExtFree family.
2129 /// In other words, if is[Z|FP]Free returns true, then this method
2130 /// returns true as well. The converse is not true.
2131 /// The target can perform the adequate checks by overriding isExtFreeImpl.
2132 /// \pre \p I must be a sign, zero, or fp extension.
2133 bool isExtFree(const Instruction *I) const {
2134 switch (I->getOpcode()) {
2135 case Instruction::FPExt:
2136 if (isFPExtFree(EVT::getEVT(I->getType()),
2137 EVT::getEVT(I->getOperand(0)->getType())))
2138 return true;
2139 break;
2140 case Instruction::ZExt:
2141 if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
2142 return true;
2143 break;
2144 case Instruction::SExt:
2145 break;
2146 default:
2147 llvm_unreachable("Instruction is not an extension");
2148 }
2149 return isExtFreeImpl(I);
2150 }
2151
2152 /// Return true if \p Load and \p Ext can form an ExtLoad.
2153 /// For example, in AArch64
2154 /// %L = load i8, i8* %ptr
2155 /// %E = zext i8 %L to i32
2156 /// can be lowered into one load instruction
2157 /// ldrb w0, [x0]
2158 bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
2159 const DataLayout &DL) const {
2160 EVT VT = getValueType(DL, Ext->getType());
2161 EVT LoadVT = getValueType(DL, Load->getType());
2162
2163 // If the load has other users and the truncate is not free, the ext
2164 // probably isn't free.
2165 if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
2166 !isTruncateFree(Ext->getType(), Load->getType()))
2167 return false;
2168
2169 // Check whether the target supports casts folded into loads.
2170 unsigned LType;
2171 if (isa<ZExtInst>(Ext))
2172 LType = ISD::ZEXTLOAD;
2173 else {
2174 assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
2175 LType = ISD::SEXTLOAD;
2176 }
2177
2178 return isLoadExtLegal(LType, VT, LoadVT);
2179 }
2180
2181 /// Return true if any actual instruction that defines a value of type FromTy
2182 /// implicitly zero-extends the value to ToTy in the result register.
2183 ///
2184 /// The function should return true when it is likely that the truncate can
2185 /// be freely folded with an instruction defining a value of FromTy. If
2186 /// the defining instruction is unknown (because you're looking at a
2187 /// function argument, PHI, etc.) then the target may require an
2188 /// explicit truncate, which is not necessarily free, but this function
2189 /// does not deal with those cases.
2190 /// Targets must return false when FromTy >= ToTy.
2191 virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
2192 return false;
2193 }
2194
2195 virtual bool isZExtFree(EVT FromTy, EVT ToTy) const {
2196 return false;
2197 }
2198
2199 /// Return true if the target supplies and combines to a paired load
2200 /// two loaded values of type LoadedType next to each other in memory.
2201 /// RequiredAlignment gives the minimal alignment constraints that must be met
2202 /// to be able to select this paired load.
2203 ///
2204 /// This information is *not* used to generate actual paired loads, but it is
2205 /// used to generate a sequence of loads that is easier to combine into a
2206 /// paired load.
2207 /// For instance, something like this:
2208 /// a = load i64* addr
2209 /// b = trunc i64 a to i32
2210 /// c = lshr i64 a, 32
2211 /// d = trunc i64 c to i32
2212 /// will be optimized into:
2213 /// b = load i32* addr1
2214 /// d = load i32* addr2
2215 /// Where addr1 = addr2 +/- sizeof(i32).
2216 ///
2217 /// In other words, unless the target performs a post-isel load combining,
2218 /// this information should not be provided because it will generate more
2219 /// loads.
2220 virtual bool hasPairedLoad(EVT /*LoadedType*/,
2221 unsigned & /*RequiredAlignment*/) const {
2222 return false;
2223 }
2224
2225 /// Return true if the target has a vector blend instruction.
2226 virtual bool hasVectorBlend() const { return false; }
2227
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002228 /// Get the maximum supported factor for interleaved memory accesses.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002229 /// Default to be the minimum interleave factor: 2.
2230 virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
2231
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002232 /// Lower an interleaved load to target specific intrinsics. Return
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002233 /// true on success.
2234 ///
2235 /// \p LI is the vector load instruction.
2236 /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
2237 /// \p Indices is the corresponding indices for each shufflevector.
2238 /// \p Factor is the interleave factor.
2239 virtual bool lowerInterleavedLoad(LoadInst *LI,
2240 ArrayRef<ShuffleVectorInst *> Shuffles,
2241 ArrayRef<unsigned> Indices,
2242 unsigned Factor) const {
2243 return false;
2244 }
2245
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002246 /// Lower an interleaved store to target specific intrinsics. Return
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002247 /// true on success.
2248 ///
2249 /// \p SI is the vector store instruction.
2250 /// \p SVI is the shufflevector to RE-interleave the stored vector.
2251 /// \p Factor is the interleave factor.
2252 virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
2253 unsigned Factor) const {
2254 return false;
2255 }
2256
2257 /// Return true if zero-extending the specific node Val to type VT2 is free
2258 /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
2259 /// because it's folded such as X86 zero-extending loads).
2260 virtual bool isZExtFree(SDValue Val, EVT VT2) const {
2261 return isZExtFree(Val.getValueType(), VT2);
2262 }
2263
2264 /// Return true if an fpext operation is free (for instance, because
2265 /// single-precision floating-point numbers are implicitly extended to
2266 /// double-precision).
2267 virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
2268 assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
2269 "invalid fpext types");
2270 return false;
2271 }
2272
2273 /// Return true if an fpext operation input to an \p Opcode operation is free
2274 /// (for instance, because half-precision floating-point numbers are
2275 /// implicitly extended to float-precision) for an FMA instruction.
2276 virtual bool isFPExtFoldable(unsigned Opcode, EVT DestVT, EVT SrcVT) const {
2277 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
2278 "invalid fpext types");
2279 return isFPExtFree(DestVT, SrcVT);
2280 }
2281
2282 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
2283 /// extend node) is profitable.
2284 virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
2285
2286 /// Return true if an fneg operation is free to the point where it is never
2287 /// worthwhile to replace it with a bitwise operation.
2288 virtual bool isFNegFree(EVT VT) const {
2289 assert(VT.isFloatingPoint());
2290 return false;
2291 }
2292
2293 /// Return true if an fabs operation is free to the point where it is never
2294 /// worthwhile to replace it with a bitwise operation.
2295 virtual bool isFAbsFree(EVT VT) const {
2296 assert(VT.isFloatingPoint());
2297 return false;
2298 }
2299
2300 /// Return true if an FMA operation is faster than a pair of fmul and fadd
2301 /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
2302 /// returns true, otherwise fmuladd is expanded to fmul + fadd.
2303 ///
2304 /// NOTE: This may be called before legalization on types for which FMAs are
2305 /// not legal, but should return true if those types will eventually legalize
2306 /// to types that support FMAs. After legalization, it will only be called on
2307 /// types that support FMAs (via Legal or Custom actions)
2308 virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
2309 return false;
2310 }
2311
2312 /// Return true if it's profitable to narrow operations of type VT1 to
2313 /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
2314 /// i32 to i16.
2315 virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
2316 return false;
2317 }
2318
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002319 /// Return true if it is beneficial to convert a load of a constant to
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002320 /// just the constant itself.
2321 /// On some targets it might be more efficient to use a combination of
2322 /// arithmetic instructions to materialize the constant instead of loading it
2323 /// from a constant pool.
2324 virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
2325 Type *Ty) const {
2326 return false;
2327 }
2328
2329 /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
2330 /// from this source type with this index. This is needed because
2331 /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
2332 /// the first element, and only the target knows which lowering is cheap.
2333 virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
2334 unsigned Index) const {
2335 return false;
2336 }
2337
2338 // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
2339 // even if the vector itself has multiple uses.
2340 virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
2341 return false;
2342 }
2343
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002344 // Return true if CodeGenPrepare should consider splitting large offset of a
2345 // GEP to make the GEP fit into the addressing mode and can be sunk into the
2346 // same blocks of its users.
2347 virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
2348
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002349 //===--------------------------------------------------------------------===//
2350 // Runtime Library hooks
2351 //
2352
2353 /// Rename the default libcall routine name for the specified libcall.
2354 void setLibcallName(RTLIB::Libcall Call, const char *Name) {
2355 LibcallRoutineNames[Call] = Name;
2356 }
2357
2358 /// Get the libcall routine name for the specified libcall.
2359 const char *getLibcallName(RTLIB::Libcall Call) const {
2360 return LibcallRoutineNames[Call];
2361 }
2362
2363 /// Override the default CondCode to be used to test the result of the
2364 /// comparison libcall against zero.
2365 void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
2366 CmpLibcallCCs[Call] = CC;
2367 }
2368
2369 /// Get the CondCode that's to be used to test the result of the comparison
2370 /// libcall against zero.
2371 ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
2372 return CmpLibcallCCs[Call];
2373 }
2374
2375 /// Set the CallingConv that should be used for the specified libcall.
2376 void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
2377 LibcallCallingConvs[Call] = CC;
2378 }
2379
2380 /// Get the CallingConv that should be used for the specified libcall.
2381 CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
2382 return LibcallCallingConvs[Call];
2383 }
2384
2385 /// Execute target specific actions to finalize target lowering.
2386 /// This is used to set extra flags in MachineFrameInformation and freezing
2387 /// the set of reserved registers.
2388 /// The default implementation just freezes the set of reserved registers.
2389 virtual void finalizeLowering(MachineFunction &MF) const;
2390
2391private:
2392 const TargetMachine &TM;
2393
2394 /// Tells the code generator that the target has multiple (allocatable)
2395 /// condition registers that can be used to store the results of comparisons
2396 /// for use by selects and conditional branches. With multiple condition
2397 /// registers, the code generator will not aggressively sink comparisons into
2398 /// the blocks of their users.
2399 bool HasMultipleConditionRegisters;
2400
2401 /// Tells the code generator that the target has BitExtract instructions.
2402 /// The code generator will aggressively sink "shift"s into the blocks of
2403 /// their users if the users will generate "and" instructions which can be
2404 /// combined with "shift" to BitExtract instructions.
2405 bool HasExtractBitsInsn;
2406
2407 /// Tells the code generator to bypass slow divide or remainder
2408 /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
2409 /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
2410 /// div/rem when the operands are positive and less than 256.
2411 DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
2412
2413 /// Tells the code generator that it shouldn't generate extra flow control
2414 /// instructions and should attempt to combine flow control instructions via
2415 /// predication.
2416 bool JumpIsExpensive;
2417
2418 /// Whether the target supports or cares about preserving floating point
2419 /// exception behavior.
2420 bool HasFloatingPointExceptions;
2421
2422 /// This target prefers to use _setjmp to implement llvm.setjmp.
2423 ///
2424 /// Defaults to false.
2425 bool UseUnderscoreSetJmp;
2426
2427 /// This target prefers to use _longjmp to implement llvm.longjmp.
2428 ///
2429 /// Defaults to false.
2430 bool UseUnderscoreLongJmp;
2431
2432 /// Information about the contents of the high-bits in boolean values held in
2433 /// a type wider than i1. See getBooleanContents.
2434 BooleanContent BooleanContents;
2435
2436 /// Information about the contents of the high-bits in boolean values held in
2437 /// a type wider than i1. See getBooleanContents.
2438 BooleanContent BooleanFloatContents;
2439
2440 /// Information about the contents of the high-bits in boolean vector values
2441 /// when the element type is wider than i1. See getBooleanContents.
2442 BooleanContent BooleanVectorContents;
2443
2444 /// The target scheduling preference: shortest possible total cycles or lowest
2445 /// register usage.
2446 Sched::Preference SchedPreferenceInfo;
2447
2448 /// The size, in bytes, of the target's jmp_buf buffers
2449 unsigned JumpBufSize;
2450
2451 /// The alignment, in bytes, of the target's jmp_buf buffers
2452 unsigned JumpBufAlignment;
2453
2454 /// The minimum alignment that any argument on the stack needs to have.
2455 unsigned MinStackArgumentAlignment;
2456
2457 /// The minimum function alignment (used when optimizing for size, and to
2458 /// prevent explicitly provided alignment from leading to incorrect code).
2459 unsigned MinFunctionAlignment;
2460
2461 /// The preferred function alignment (used when alignment unspecified and
2462 /// optimizing for speed).
2463 unsigned PrefFunctionAlignment;
2464
2465 /// The preferred loop alignment.
2466 unsigned PrefLoopAlignment;
2467
2468 /// Size in bits of the maximum atomics size the backend supports.
2469 /// Accesses larger than this will be expanded by AtomicExpandPass.
2470 unsigned MaxAtomicSizeInBitsSupported;
2471
2472 /// Size in bits of the minimum cmpxchg or ll/sc operation the
2473 /// backend supports.
2474 unsigned MinCmpXchgSizeInBits;
2475
2476 /// This indicates if the target supports unaligned atomic operations.
2477 bool SupportsUnalignedAtomics;
2478
2479 /// If set to a physical register, this specifies the register that
2480 /// llvm.savestack/llvm.restorestack should save and restore.
2481 unsigned StackPointerRegisterToSaveRestore;
2482
2483 /// This indicates the default register class to use for each ValueType the
2484 /// target supports natively.
2485 const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
2486 unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
2487 MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
2488
2489 /// This indicates the "representative" register class to use for each
2490 /// ValueType the target supports natively. This information is used by the
2491 /// scheduler to track register pressure. By default, the representative
2492 /// register class is the largest legal super-reg register class of the
2493 /// register class of the specified type. e.g. On x86, i8, i16, and i32's
2494 /// representative class would be GR32.
2495 const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
2496
2497 /// This indicates the "cost" of the "representative" register class for each
2498 /// ValueType. The cost is used by the scheduler to approximate register
2499 /// pressure.
2500 uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
2501
2502 /// For any value types we are promoting or expanding, this contains the value
2503 /// type that we are changing to. For Expanded types, this contains one step
2504 /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
2505 /// (e.g. i64 -> i16). For types natively supported by the system, this holds
2506 /// the same type (e.g. i32 -> i32).
2507 MVT TransformToType[MVT::LAST_VALUETYPE];
2508
2509 /// For each operation and each value type, keep a LegalizeAction that
2510 /// indicates how instruction selection should deal with the operation. Most
2511 /// operations are Legal (aka, supported natively by the target), but
2512 /// operations that are not should be described. Note that operations on
2513 /// non-legal value types are not described here.
2514 LegalizeAction OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
2515
2516 /// For each load extension type and each value type, keep a LegalizeAction
2517 /// that indicates how instruction selection should deal with a load of a
2518 /// specific value type and extension type. Uses 4-bits to store the action
2519 /// for each of the 4 load ext types.
2520 uint16_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2521
2522 /// For each value type pair keep a LegalizeAction that indicates whether a
2523 /// truncating store of a specific value type and truncating type is legal.
2524 LegalizeAction TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2525
2526 /// For each indexed mode and each value type, keep a pair of LegalizeAction
2527 /// that indicates how instruction selection should deal with the load /
2528 /// store.
2529 ///
2530 /// The first dimension is the value_type for the reference. The second
2531 /// dimension represents the various modes for load store.
2532 uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
2533
2534 /// For each condition code (ISD::CondCode) keep a LegalizeAction that
2535 /// indicates how instruction selection should deal with the condition code.
2536 ///
2537 /// Because each CC action takes up 4 bits, we need to have the array size be
2538 /// large enough to fit all of the value types. This can be done by rounding
2539 /// up the MVT::LAST_VALUETYPE value to the next multiple of 8.
2540 uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 7) / 8];
2541
2542protected:
2543 ValueTypeActionImpl ValueTypeActions;
2544
2545private:
2546 LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
2547
2548 /// Targets can specify ISD nodes that they would like PerformDAGCombine
2549 /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
2550 /// array.
2551 unsigned char
2552 TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
2553
2554 /// For operations that must be promoted to a specific type, this holds the
2555 /// destination type. This map should be sparse, so don't hold it as an
2556 /// array.
2557 ///
2558 /// Targets add entries to this map with AddPromotedToType(..), clients access
2559 /// this with getTypeToPromoteTo(..).
2560 std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
2561 PromoteToType;
2562
2563 /// Stores the name each libcall.
2564 const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL + 1];
2565
2566 /// The ISD::CondCode that should be used to test the result of each of the
2567 /// comparison libcall against zero.
2568 ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
2569
2570 /// Stores the CallingConv that should be used for each libcall.
2571 CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
2572
2573 /// Set default libcall names and calling conventions.
2574 void InitLibcalls(const Triple &TT);
2575
2576protected:
2577 /// Return true if the extension represented by \p I is free.
2578 /// \pre \p I is a sign, zero, or fp extension and
2579 /// is[Z|FP]ExtFree of the related types is not true.
2580 virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
2581
2582 /// Depth that GatherAllAliases should should continue looking for chain
2583 /// dependencies when trying to find a more preferable chain. As an
2584 /// approximation, this should be more than the number of consecutive stores
2585 /// expected to be merged.
2586 unsigned GatherAllAliasesMaxDepth;
2587
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002588 /// Specify maximum number of store instructions per memset call.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002589 ///
2590 /// When lowering \@llvm.memset this field specifies the maximum number of
2591 /// store operations that may be substituted for the call to memset. Targets
2592 /// must set this value based on the cost threshold for that target. Targets
2593 /// should assume that the memset will be done using as many of the largest
2594 /// store operations first, followed by smaller ones, if necessary, per
2595 /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
2596 /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
2597 /// store. This only applies to setting a constant array of a constant size.
2598 unsigned MaxStoresPerMemset;
2599
2600 /// Maximum number of stores operations that may be substituted for the call
2601 /// to memset, used for functions with OptSize attribute.
2602 unsigned MaxStoresPerMemsetOptSize;
2603
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002604 /// Specify maximum bytes of store instructions per memcpy call.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002605 ///
2606 /// When lowering \@llvm.memcpy this field specifies the maximum number of
2607 /// store operations that may be substituted for a call to memcpy. Targets
2608 /// must set this value based on the cost threshold for that target. Targets
2609 /// should assume that the memcpy will be done using as many of the largest
2610 /// store operations first, followed by smaller ones, if necessary, per
2611 /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
2612 /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
2613 /// and one 1-byte store. This only applies to copying a constant array of
2614 /// constant size.
2615 unsigned MaxStoresPerMemcpy;
2616
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002617
2618 /// \brief Specify max number of store instructions to glue in inlined memcpy.
2619 ///
2620 /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
2621 /// of store instructions to keep together. This helps in pairing and
2622 // vectorization later on.
2623 unsigned MaxGluedStoresPerMemcpy = 0;
2624
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002625 /// Maximum number of store operations that may be substituted for a call to
2626 /// memcpy, used for functions with OptSize attribute.
2627 unsigned MaxStoresPerMemcpyOptSize;
2628 unsigned MaxLoadsPerMemcmp;
2629 unsigned MaxLoadsPerMemcmpOptSize;
2630
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002631 /// Specify maximum bytes of store instructions per memmove call.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002632 ///
2633 /// When lowering \@llvm.memmove this field specifies the maximum number of
2634 /// store instructions that may be substituted for a call to memmove. Targets
2635 /// must set this value based on the cost threshold for that target. Targets
2636 /// should assume that the memmove will be done using as many of the largest
2637 /// store operations first, followed by smaller ones, if necessary, per
2638 /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2639 /// with 8-bit alignment would result in nine 1-byte stores. This only
2640 /// applies to copying a constant array of constant size.
2641 unsigned MaxStoresPerMemmove;
2642
2643 /// Maximum number of store instructions that may be substituted for a call to
2644 /// memmove, used for functions with OptSize attribute.
2645 unsigned MaxStoresPerMemmoveOptSize;
2646
2647 /// Tells the code generator that select is more expensive than a branch if
2648 /// the branch is usually predicted right.
2649 bool PredictableSelectIsExpensive;
2650
2651 /// \see enableExtLdPromotion.
2652 bool EnableExtLdPromotion;
2653
2654 /// Return true if the value types that can be represented by the specified
2655 /// register class are all legal.
2656 bool isLegalRC(const TargetRegisterInfo &TRI,
2657 const TargetRegisterClass &RC) const;
2658
2659 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
2660 /// sequence of memory operands that is recognized by PrologEpilogInserter.
2661 MachineBasicBlock *emitPatchPoint(MachineInstr &MI,
2662 MachineBasicBlock *MBB) const;
2663
2664 /// Replace/modify the XRay custom event operands with target-dependent
2665 /// details.
2666 MachineBasicBlock *emitXRayCustomEvent(MachineInstr &MI,
2667 MachineBasicBlock *MBB) const;
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002668
2669 /// Replace/modify the XRay typed event operands with target-dependent
2670 /// details.
2671 MachineBasicBlock *emitXRayTypedEvent(MachineInstr &MI,
2672 MachineBasicBlock *MBB) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002673};
2674
2675/// This class defines information used to lower LLVM code to legal SelectionDAG
2676/// operators that the target instruction selector can accept natively.
2677///
2678/// This class also defines callbacks that targets must implement to lower
2679/// target-specific constructs to SelectionDAG operators.
2680class TargetLowering : public TargetLoweringBase {
2681public:
2682 struct DAGCombinerInfo;
2683
2684 TargetLowering(const TargetLowering &) = delete;
2685 TargetLowering &operator=(const TargetLowering &) = delete;
2686
2687 /// NOTE: The TargetMachine owns TLOF.
2688 explicit TargetLowering(const TargetMachine &TM);
2689
2690 bool isPositionIndependent() const;
2691
2692 virtual bool isSDNodeSourceOfDivergence(const SDNode *N,
2693 FunctionLoweringInfo *FLI,
Andrew Scull0372a572018-11-16 15:47:06 +00002694 LegacyDivergenceAnalysis *DA) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002695 return false;
2696 }
2697
2698 virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
2699 return false;
2700 }
2701
2702 /// Returns true by value, base pointer and offset pointer and addressing mode
2703 /// by reference if the node's address can be legally represented as
2704 /// pre-indexed load / store address.
2705 virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
2706 SDValue &/*Offset*/,
2707 ISD::MemIndexedMode &/*AM*/,
2708 SelectionDAG &/*DAG*/) const {
2709 return false;
2710 }
2711
2712 /// Returns true by value, base pointer and offset pointer and addressing mode
2713 /// by reference if this node can be combined with a load / store to form a
2714 /// post-indexed load / store.
2715 virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
2716 SDValue &/*Base*/,
2717 SDValue &/*Offset*/,
2718 ISD::MemIndexedMode &/*AM*/,
2719 SelectionDAG &/*DAG*/) const {
2720 return false;
2721 }
2722
2723 /// Return the entry encoding for a jump table in the current function. The
2724 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
2725 virtual unsigned getJumpTableEncoding() const;
2726
2727 virtual const MCExpr *
2728 LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
2729 const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
2730 MCContext &/*Ctx*/) const {
2731 llvm_unreachable("Need to implement this hook if target has custom JTIs");
2732 }
2733
2734 /// Returns relocation base for the given PIC jumptable.
2735 virtual SDValue getPICJumpTableRelocBase(SDValue Table,
2736 SelectionDAG &DAG) const;
2737
2738 /// This returns the relocation base for the given PIC jumptable, the same as
2739 /// getPICJumpTableRelocBase, but as an MCExpr.
2740 virtual const MCExpr *
2741 getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2742 unsigned JTI, MCContext &Ctx) const;
2743
2744 /// Return true if folding a constant offset with the given GlobalAddress is
2745 /// legal. It is frequently not legal in PIC relocation models.
2746 virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
2747
2748 bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
2749 SDValue &Chain) const;
2750
2751 void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
2752 SDValue &NewRHS, ISD::CondCode &CCCode,
2753 const SDLoc &DL) const;
2754
2755 /// Returns a pair of (return value, chain).
2756 /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
2757 std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
2758 EVT RetVT, ArrayRef<SDValue> Ops,
2759 bool isSigned, const SDLoc &dl,
2760 bool doesNotReturn = false,
2761 bool isReturnValueUsed = true) const;
2762
2763 /// Check whether parameters to a call that are passed in callee saved
2764 /// registers are the same as from the calling function. This needs to be
2765 /// checked for tail call eligibility.
2766 bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
2767 const uint32_t *CallerPreservedMask,
2768 const SmallVectorImpl<CCValAssign> &ArgLocs,
2769 const SmallVectorImpl<SDValue> &OutVals) const;
2770
2771 //===--------------------------------------------------------------------===//
2772 // TargetLowering Optimization Methods
2773 //
2774
2775 /// A convenience struct that encapsulates a DAG, and two SDValues for
2776 /// returning information from TargetLowering to its clients that want to
2777 /// combine.
2778 struct TargetLoweringOpt {
2779 SelectionDAG &DAG;
2780 bool LegalTys;
2781 bool LegalOps;
2782 SDValue Old;
2783 SDValue New;
2784
2785 explicit TargetLoweringOpt(SelectionDAG &InDAG,
2786 bool LT, bool LO) :
2787 DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
2788
2789 bool LegalTypes() const { return LegalTys; }
2790 bool LegalOperations() const { return LegalOps; }
2791
2792 bool CombineTo(SDValue O, SDValue N) {
2793 Old = O;
2794 New = N;
2795 return true;
2796 }
2797 };
2798
2799 /// Check to see if the specified operand of the specified instruction is a
2800 /// constant integer. If so, check to see if there are any bits set in the
2801 /// constant that are not demanded. If so, shrink the constant and return
2802 /// true.
2803 bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
2804 TargetLoweringOpt &TLO) const;
2805
2806 // Target hook to do target-specific const optimization, which is called by
2807 // ShrinkDemandedConstant. This function should return true if the target
2808 // doesn't want ShrinkDemandedConstant to further optimize the constant.
2809 virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
2810 TargetLoweringOpt &TLO) const {
2811 return false;
2812 }
2813
2814 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. This
2815 /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
2816 /// generalized for targets with other types of implicit widening casts.
2817 bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
2818 TargetLoweringOpt &TLO) const;
2819
2820 /// Helper for SimplifyDemandedBits that can simplify an operation with
2821 /// multiple uses. This function simplifies operand \p OpIdx of \p User and
2822 /// then updates \p User with the simplified version. No other uses of
2823 /// \p OpIdx are updated. If \p User is the only user of \p OpIdx, this
2824 /// function behaves exactly like function SimplifyDemandedBits declared
2825 /// below except that it also updates the DAG by calling
2826 /// DCI.CommitTargetLoweringOpt.
2827 bool SimplifyDemandedBits(SDNode *User, unsigned OpIdx, const APInt &Demanded,
2828 DAGCombinerInfo &DCI, TargetLoweringOpt &TLO) const;
2829
2830 /// Look at Op. At this point, we know that only the DemandedMask bits of the
2831 /// result of Op are ever used downstream. If we can use this information to
2832 /// simplify Op, create a new simplified DAG node and return true, returning
2833 /// the original and new nodes in Old and New. Otherwise, analyze the
2834 /// expression and return a mask of KnownOne and KnownZero bits for the
2835 /// expression (used to simplify the caller). The KnownZero/One bits may only
2836 /// be accurate for those bits in the DemandedMask.
2837 /// \p AssumeSingleUse When this parameter is true, this function will
2838 /// attempt to simplify \p Op even if there are multiple uses.
2839 /// Callers are responsible for correctly updating the DAG based on the
2840 /// results of this function, because simply replacing replacing TLO.Old
2841 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
2842 /// has multiple uses.
2843 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
2844 KnownBits &Known,
2845 TargetLoweringOpt &TLO,
2846 unsigned Depth = 0,
2847 bool AssumeSingleUse = false) const;
2848
Andrew Scull0372a572018-11-16 15:47:06 +00002849 /// Helper wrapper around SimplifyDemandedBits.
2850 /// Adds Op back to the worklist upon success.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002851 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
2852 DAGCombinerInfo &DCI) const;
2853
2854 /// Look at Vector Op. At this point, we know that only the DemandedElts
2855 /// elements of the result of Op are ever used downstream. If we can use
2856 /// this information to simplify Op, create a new simplified DAG node and
2857 /// return true, storing the original and new nodes in TLO.
2858 /// Otherwise, analyze the expression and return a mask of KnownUndef and
2859 /// KnownZero elements for the expression (used to simplify the caller).
2860 /// The KnownUndef/Zero elements may only be accurate for those bits
2861 /// in the DemandedMask.
2862 /// \p AssumeSingleUse When this parameter is true, this function will
2863 /// attempt to simplify \p Op even if there are multiple uses.
2864 /// Callers are responsible for correctly updating the DAG based on the
2865 /// results of this function, because simply replacing replacing TLO.Old
2866 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
2867 /// has multiple uses.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002868 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002869 APInt &KnownUndef, APInt &KnownZero,
2870 TargetLoweringOpt &TLO, unsigned Depth = 0,
2871 bool AssumeSingleUse = false) const;
2872
Andrew Scull0372a572018-11-16 15:47:06 +00002873 /// Helper wrapper around SimplifyDemandedVectorElts.
2874 /// Adds Op back to the worklist upon success.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002875 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
2876 APInt &KnownUndef, APInt &KnownZero,
2877 DAGCombinerInfo &DCI) const;
2878
2879 /// Determine which of the bits specified in Mask are known to be either zero
2880 /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
2881 /// argument allows us to only collect the known bits that are shared by the
2882 /// requested vector elements.
2883 virtual void computeKnownBitsForTargetNode(const SDValue Op,
2884 KnownBits &Known,
2885 const APInt &DemandedElts,
2886 const SelectionDAG &DAG,
2887 unsigned Depth = 0) const;
2888
2889 /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
2890 /// Default implementation computes low bits based on alignment
2891 /// information. This should preserve known bits passed into it.
2892 virtual void computeKnownBitsForFrameIndex(const SDValue FIOp,
2893 KnownBits &Known,
2894 const APInt &DemandedElts,
2895 const SelectionDAG &DAG,
2896 unsigned Depth = 0) const;
2897
2898 /// This method can be implemented by targets that want to expose additional
2899 /// information about sign bits to the DAG Combiner. The DemandedElts
2900 /// argument allows us to only collect the minimum sign bits that are shared
2901 /// by the requested vector elements.
2902 virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
2903 const APInt &DemandedElts,
2904 const SelectionDAG &DAG,
2905 unsigned Depth = 0) const;
2906
2907 /// Attempt to simplify any target nodes based on the demanded vector
2908 /// elements, returning true on success. Otherwise, analyze the expression and
2909 /// return a mask of KnownUndef and KnownZero elements for the expression
2910 /// (used to simplify the caller). The KnownUndef/Zero elements may only be
2911 /// accurate for those bits in the DemandedMask
2912 virtual bool SimplifyDemandedVectorEltsForTargetNode(
2913 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
2914 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
2915
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002916 /// If \p SNaN is false, \returns true if \p Op is known to never be any
2917 /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
2918 /// NaN.
2919 virtual bool isKnownNeverNaNForTargetNode(SDValue Op,
2920 const SelectionDAG &DAG,
2921 bool SNaN = false,
2922 unsigned Depth = 0) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002923 struct DAGCombinerInfo {
2924 void *DC; // The DAG Combiner object.
2925 CombineLevel Level;
2926 bool CalledByLegalizer;
2927
2928 public:
2929 SelectionDAG &DAG;
2930
2931 DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
2932 : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
2933
2934 bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
2935 bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
2936 bool isAfterLegalizeDAG() const {
2937 return Level == AfterLegalizeDAG;
2938 }
2939 CombineLevel getDAGCombineLevel() { return Level; }
2940 bool isCalledByLegalizer() const { return CalledByLegalizer; }
2941
2942 void AddToWorklist(SDNode *N);
2943 SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
2944 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
2945 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
2946
2947 void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
2948 };
2949
2950 /// Return if the N is a constant or constant vector equal to the true value
2951 /// from getBooleanContents().
2952 bool isConstTrueVal(const SDNode *N) const;
2953
2954 /// Return if the N is a constant or constant vector equal to the false value
2955 /// from getBooleanContents().
2956 bool isConstFalseVal(const SDNode *N) const;
2957
2958 /// Return if \p N is a True value when extended to \p VT.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002959 bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002960
2961 /// Try to simplify a setcc built with the specified operands and cc. If it is
2962 /// unable to simplify it, return a null SDValue.
2963 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
2964 bool foldBooleans, DAGCombinerInfo &DCI,
2965 const SDLoc &dl) const;
2966
2967 // For targets which wrap address, unwrap for analysis.
2968 virtual SDValue unwrapAddress(SDValue N) const { return N; }
2969
2970 /// Returns true (and the GlobalValue and the offset) if the node is a
2971 /// GlobalAddress + offset.
2972 virtual bool
2973 isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
2974
2975 /// This method will be invoked for all target nodes and for any
2976 /// target-independent nodes that the target has registered with invoke it
2977 /// for.
2978 ///
2979 /// The semantics are as follows:
2980 /// Return Value:
2981 /// SDValue.Val == 0 - No change was made
2982 /// SDValue.Val == N - N was replaced, is dead, and is already handled.
2983 /// otherwise - N should be replaced by the returned Operand.
2984 ///
2985 /// In addition, methods provided by DAGCombinerInfo may be used to perform
2986 /// more complex transformations.
2987 ///
2988 virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
2989
Andrew Scull0372a572018-11-16 15:47:06 +00002990 /// Return true if it is profitable to move this shift by a constant amount
2991 /// though its operand, adjusting any immediate operands as necessary to
2992 /// preserve semantics. This transformation may not be desirable if it
2993 /// disrupts a particularly auspicious target-specific tree (e.g. bitfield
2994 /// extraction in AArch64). By default, it returns true.
2995 ///
2996 /// @param N the shift node
2997 /// @param Level the current DAGCombine legalization level.
2998 virtual bool isDesirableToCommuteWithShift(const SDNode *N,
2999 CombineLevel Level) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003000 return true;
3001 }
3002
3003 // Return true if it is profitable to combine a BUILD_VECTOR with a stride-pattern
3004 // to a shuffle and a truncate.
3005 // Example of such a combine:
3006 // v4i32 build_vector((extract_elt V, 1),
3007 // (extract_elt V, 3),
3008 // (extract_elt V, 5),
3009 // (extract_elt V, 7))
3010 // -->
3011 // v4i32 truncate (bitcast (shuffle<1,u,3,u,5,u,7,u> V, u) to v4i64)
3012 virtual bool isDesirableToCombineBuildVectorToShuffleTruncate(
3013 ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const {
3014 return false;
3015 }
3016
3017 /// Return true if the target has native support for the specified value type
3018 /// and it is 'desirable' to use the type for the given node type. e.g. On x86
3019 /// i16 is legal, but undesirable since i16 instruction encodings are longer
3020 /// and some i16 instructions are slow.
3021 virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
3022 // By default, assume all legal types are desirable.
3023 return isTypeLegal(VT);
3024 }
3025
3026 /// Return true if it is profitable for dag combiner to transform a floating
3027 /// point op of specified opcode to a equivalent op of an integer
3028 /// type. e.g. f32 load -> i32 load can be profitable on ARM.
3029 virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
3030 EVT /*VT*/) const {
3031 return false;
3032 }
3033
3034 /// This method query the target whether it is beneficial for dag combiner to
3035 /// promote the specified node. If true, it should return the desired
3036 /// promotion type by reference.
3037 virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
3038 return false;
3039 }
3040
3041 /// Return true if the target supports swifterror attribute. It optimizes
3042 /// loads and stores to reading and writing a specific register.
3043 virtual bool supportSwiftError() const {
3044 return false;
3045 }
3046
3047 /// Return true if the target supports that a subset of CSRs for the given
3048 /// machine function is handled explicitly via copies.
3049 virtual bool supportSplitCSR(MachineFunction *MF) const {
3050 return false;
3051 }
3052
3053 /// Perform necessary initialization to handle a subset of CSRs explicitly
3054 /// via copies. This function is called at the beginning of instruction
3055 /// selection.
3056 virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
3057 llvm_unreachable("Not Implemented");
3058 }
3059
3060 /// Insert explicit copies in entry and exit blocks. We copy a subset of
3061 /// CSRs to virtual registers in the entry block, and copy them back to
3062 /// physical registers in the exit blocks. This function is called at the end
3063 /// of instruction selection.
3064 virtual void insertCopiesSplitCSR(
3065 MachineBasicBlock *Entry,
3066 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
3067 llvm_unreachable("Not Implemented");
3068 }
3069
3070 //===--------------------------------------------------------------------===//
3071 // Lowering methods - These methods must be implemented by targets so that
3072 // the SelectionDAGBuilder code knows how to lower these.
3073 //
3074
3075 /// This hook must be implemented to lower the incoming (formal) arguments,
3076 /// described by the Ins array, into the specified DAG. The implementation
3077 /// should fill in the InVals array with legal-type argument values, and
3078 /// return the resulting token chain value.
3079 virtual SDValue LowerFormalArguments(
3080 SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
3081 const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
3082 SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
3083 llvm_unreachable("Not Implemented");
3084 }
3085
3086 /// This structure contains all information that is necessary for lowering
3087 /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
3088 /// needs to lower a call, and targets will see this struct in their LowerCall
3089 /// implementation.
3090 struct CallLoweringInfo {
3091 SDValue Chain;
3092 Type *RetTy = nullptr;
3093 bool RetSExt : 1;
3094 bool RetZExt : 1;
3095 bool IsVarArg : 1;
3096 bool IsInReg : 1;
3097 bool DoesNotReturn : 1;
3098 bool IsReturnValueUsed : 1;
3099 bool IsConvergent : 1;
3100 bool IsPatchPoint : 1;
3101
3102 // IsTailCall should be modified by implementations of
3103 // TargetLowering::LowerCall that perform tail call conversions.
3104 bool IsTailCall = false;
3105
3106 // Is Call lowering done post SelectionDAG type legalization.
3107 bool IsPostTypeLegalization = false;
3108
3109 unsigned NumFixedArgs = -1;
3110 CallingConv::ID CallConv = CallingConv::C;
3111 SDValue Callee;
3112 ArgListTy Args;
3113 SelectionDAG &DAG;
3114 SDLoc DL;
3115 ImmutableCallSite CS;
3116 SmallVector<ISD::OutputArg, 32> Outs;
3117 SmallVector<SDValue, 32> OutVals;
3118 SmallVector<ISD::InputArg, 32> Ins;
3119 SmallVector<SDValue, 4> InVals;
3120
3121 CallLoweringInfo(SelectionDAG &DAG)
3122 : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
3123 DoesNotReturn(false), IsReturnValueUsed(true), IsConvergent(false),
3124 IsPatchPoint(false), DAG(DAG) {}
3125
3126 CallLoweringInfo &setDebugLoc(const SDLoc &dl) {
3127 DL = dl;
3128 return *this;
3129 }
3130
3131 CallLoweringInfo &setChain(SDValue InChain) {
3132 Chain = InChain;
3133 return *this;
3134 }
3135
3136 // setCallee with target/module-specific attributes
3137 CallLoweringInfo &setLibCallee(CallingConv::ID CC, Type *ResultType,
3138 SDValue Target, ArgListTy &&ArgsList) {
3139 RetTy = ResultType;
3140 Callee = Target;
3141 CallConv = CC;
3142 NumFixedArgs = ArgsList.size();
3143 Args = std::move(ArgsList);
3144
3145 DAG.getTargetLoweringInfo().markLibCallAttributes(
3146 &(DAG.getMachineFunction()), CC, Args);
3147 return *this;
3148 }
3149
3150 CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
3151 SDValue Target, ArgListTy &&ArgsList) {
3152 RetTy = ResultType;
3153 Callee = Target;
3154 CallConv = CC;
3155 NumFixedArgs = ArgsList.size();
3156 Args = std::move(ArgsList);
3157 return *this;
3158 }
3159
3160 CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
3161 SDValue Target, ArgListTy &&ArgsList,
3162 ImmutableCallSite Call) {
3163 RetTy = ResultType;
3164
3165 IsInReg = Call.hasRetAttr(Attribute::InReg);
3166 DoesNotReturn =
3167 Call.doesNotReturn() ||
3168 (!Call.isInvoke() &&
3169 isa<UnreachableInst>(Call.getInstruction()->getNextNode()));
3170 IsVarArg = FTy->isVarArg();
3171 IsReturnValueUsed = !Call.getInstruction()->use_empty();
3172 RetSExt = Call.hasRetAttr(Attribute::SExt);
3173 RetZExt = Call.hasRetAttr(Attribute::ZExt);
3174
3175 Callee = Target;
3176
3177 CallConv = Call.getCallingConv();
3178 NumFixedArgs = FTy->getNumParams();
3179 Args = std::move(ArgsList);
3180
3181 CS = Call;
3182
3183 return *this;
3184 }
3185
3186 CallLoweringInfo &setInRegister(bool Value = true) {
3187 IsInReg = Value;
3188 return *this;
3189 }
3190
3191 CallLoweringInfo &setNoReturn(bool Value = true) {
3192 DoesNotReturn = Value;
3193 return *this;
3194 }
3195
3196 CallLoweringInfo &setVarArg(bool Value = true) {
3197 IsVarArg = Value;
3198 return *this;
3199 }
3200
3201 CallLoweringInfo &setTailCall(bool Value = true) {
3202 IsTailCall = Value;
3203 return *this;
3204 }
3205
3206 CallLoweringInfo &setDiscardResult(bool Value = true) {
3207 IsReturnValueUsed = !Value;
3208 return *this;
3209 }
3210
3211 CallLoweringInfo &setConvergent(bool Value = true) {
3212 IsConvergent = Value;
3213 return *this;
3214 }
3215
3216 CallLoweringInfo &setSExtResult(bool Value = true) {
3217 RetSExt = Value;
3218 return *this;
3219 }
3220
3221 CallLoweringInfo &setZExtResult(bool Value = true) {
3222 RetZExt = Value;
3223 return *this;
3224 }
3225
3226 CallLoweringInfo &setIsPatchPoint(bool Value = true) {
3227 IsPatchPoint = Value;
3228 return *this;
3229 }
3230
3231 CallLoweringInfo &setIsPostTypeLegalization(bool Value=true) {
3232 IsPostTypeLegalization = Value;
3233 return *this;
3234 }
3235
3236 ArgListTy &getArgs() {
3237 return Args;
3238 }
3239 };
3240
3241 /// This function lowers an abstract call to a function into an actual call.
3242 /// This returns a pair of operands. The first element is the return value
3243 /// for the function (if RetTy is not VoidTy). The second element is the
3244 /// outgoing token chain. It calls LowerCall to do the actual lowering.
3245 std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
3246
3247 /// This hook must be implemented to lower calls into the specified
3248 /// DAG. The outgoing arguments to the call are described by the Outs array,
3249 /// and the values to be returned by the call are described by the Ins
3250 /// array. The implementation should fill in the InVals array with legal-type
3251 /// return values from the call, and return the resulting token chain value.
3252 virtual SDValue
3253 LowerCall(CallLoweringInfo &/*CLI*/,
3254 SmallVectorImpl<SDValue> &/*InVals*/) const {
3255 llvm_unreachable("Not Implemented");
3256 }
3257
3258 /// Target-specific cleanup for formal ByVal parameters.
3259 virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
3260
3261 /// This hook should be implemented to check whether the return values
3262 /// described by the Outs array can fit into the return registers. If false
3263 /// is returned, an sret-demotion is performed.
3264 virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
3265 MachineFunction &/*MF*/, bool /*isVarArg*/,
3266 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
3267 LLVMContext &/*Context*/) const
3268 {
3269 // Return true by default to get preexisting behavior.
3270 return true;
3271 }
3272
3273 /// This hook must be implemented to lower outgoing return values, described
3274 /// by the Outs array, into the specified DAG. The implementation should
3275 /// return the resulting token chain value.
3276 virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
3277 bool /*isVarArg*/,
3278 const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
3279 const SmallVectorImpl<SDValue> & /*OutVals*/,
3280 const SDLoc & /*dl*/,
3281 SelectionDAG & /*DAG*/) const {
3282 llvm_unreachable("Not Implemented");
3283 }
3284
3285 /// Return true if result of the specified node is used by a return node
3286 /// only. It also compute and return the input chain for the tail call.
3287 ///
3288 /// This is used to determine whether it is possible to codegen a libcall as
3289 /// tail call at legalization time.
3290 virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
3291 return false;
3292 }
3293
3294 /// Return true if the target may be able emit the call instruction as a tail
3295 /// call. This is used by optimization passes to determine if it's profitable
3296 /// to duplicate return instructions to enable tailcall optimization.
3297 virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
3298 return false;
3299 }
3300
3301 /// Return the builtin name for the __builtin___clear_cache intrinsic
3302 /// Default is to invoke the clear cache library call
3303 virtual const char * getClearCacheBuiltinName() const {
3304 return "__clear_cache";
3305 }
3306
3307 /// Return the register ID of the name passed in. Used by named register
3308 /// global variables extension. There is no target-independent behaviour
3309 /// so the default action is to bail.
3310 virtual unsigned getRegisterByName(const char* RegName, EVT VT,
3311 SelectionDAG &DAG) const {
3312 report_fatal_error("Named registers not implemented for this target");
3313 }
3314
3315 /// Return the type that should be used to zero or sign extend a
3316 /// zeroext/signext integer return value. FIXME: Some C calling conventions
3317 /// require the return type to be promoted, but this is not true all the time,
3318 /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
3319 /// conventions. The frontend should handle this and include all of the
3320 /// necessary information.
3321 virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
3322 ISD::NodeType /*ExtendKind*/) const {
3323 EVT MinVT = getRegisterType(Context, MVT::i32);
3324 return VT.bitsLT(MinVT) ? MinVT : VT;
3325 }
3326
3327 /// For some targets, an LLVM struct type must be broken down into multiple
3328 /// simple types, but the calling convention specifies that the entire struct
3329 /// must be passed in a block of consecutive registers.
3330 virtual bool
3331 functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
3332 bool isVarArg) const {
3333 return false;
3334 }
3335
3336 /// Returns a 0 terminated array of registers that can be safely used as
3337 /// scratch registers.
3338 virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
3339 return nullptr;
3340 }
3341
3342 /// This callback is used to prepare for a volatile or atomic load.
3343 /// It takes a chain node as input and returns the chain for the load itself.
3344 ///
3345 /// Having a callback like this is necessary for targets like SystemZ,
3346 /// which allows a CPU to reuse the result of a previous load indefinitely,
3347 /// even if a cache-coherent store is performed by another CPU. The default
3348 /// implementation does nothing.
3349 virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL,
3350 SelectionDAG &DAG) const {
3351 return Chain;
3352 }
3353
3354 /// This callback is used to inspect load/store instructions and add
3355 /// target-specific MachineMemOperand flags to them. The default
3356 /// implementation does nothing.
3357 virtual MachineMemOperand::Flags getMMOFlags(const Instruction &I) const {
3358 return MachineMemOperand::MONone;
3359 }
3360
3361 /// This callback is invoked by the type legalizer to legalize nodes with an
3362 /// illegal operand type but legal result types. It replaces the
3363 /// LowerOperation callback in the type Legalizer. The reason we can not do
3364 /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
3365 /// use this callback.
3366 ///
3367 /// TODO: Consider merging with ReplaceNodeResults.
3368 ///
3369 /// The target places new result values for the node in Results (their number
3370 /// and types must exactly match those of the original return values of
3371 /// the node), or leaves Results empty, which indicates that the node is not
3372 /// to be custom lowered after all.
3373 /// The default implementation calls LowerOperation.
3374 virtual void LowerOperationWrapper(SDNode *N,
3375 SmallVectorImpl<SDValue> &Results,
3376 SelectionDAG &DAG) const;
3377
3378 /// This callback is invoked for operations that are unsupported by the
3379 /// target, which are registered to use 'custom' lowering, and whose defined
3380 /// values are all legal. If the target has no operations that require custom
3381 /// lowering, it need not implement this. The default implementation of this
3382 /// aborts.
3383 virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
3384
3385 /// This callback is invoked when a node result type is illegal for the
3386 /// target, and the operation was registered to use 'custom' lowering for that
3387 /// result type. The target places new result values for the node in Results
3388 /// (their number and types must exactly match those of the original return
3389 /// values of the node), or leaves Results empty, which indicates that the
3390 /// node is not to be custom lowered after all.
3391 ///
3392 /// If the target has no operations that require custom lowering, it need not
3393 /// implement this. The default implementation aborts.
3394 virtual void ReplaceNodeResults(SDNode * /*N*/,
3395 SmallVectorImpl<SDValue> &/*Results*/,
3396 SelectionDAG &/*DAG*/) const {
3397 llvm_unreachable("ReplaceNodeResults not implemented for this target!");
3398 }
3399
3400 /// This method returns the name of a target specific DAG node.
3401 virtual const char *getTargetNodeName(unsigned Opcode) const;
3402
3403 /// This method returns a target specific FastISel object, or null if the
3404 /// target does not support "fast" ISel.
3405 virtual FastISel *createFastISel(FunctionLoweringInfo &,
3406 const TargetLibraryInfo *) const {
3407 return nullptr;
3408 }
3409
3410 bool verifyReturnAddressArgumentIsConstant(SDValue Op,
3411 SelectionDAG &DAG) const;
3412
3413 //===--------------------------------------------------------------------===//
3414 // Inline Asm Support hooks
3415 //
3416
3417 /// This hook allows the target to expand an inline asm call to be explicit
3418 /// llvm code if it wants to. This is useful for turning simple inline asms
3419 /// into LLVM intrinsics, which gives the compiler more information about the
3420 /// behavior of the code.
3421 virtual bool ExpandInlineAsm(CallInst *) const {
3422 return false;
3423 }
3424
3425 enum ConstraintType {
3426 C_Register, // Constraint represents specific register(s).
3427 C_RegisterClass, // Constraint represents any of register(s) in class.
3428 C_Memory, // Memory constraint.
3429 C_Other, // Something else.
3430 C_Unknown // Unsupported constraint.
3431 };
3432
3433 enum ConstraintWeight {
3434 // Generic weights.
3435 CW_Invalid = -1, // No match.
3436 CW_Okay = 0, // Acceptable.
3437 CW_Good = 1, // Good weight.
3438 CW_Better = 2, // Better weight.
3439 CW_Best = 3, // Best weight.
3440
3441 // Well-known weights.
3442 CW_SpecificReg = CW_Okay, // Specific register operands.
3443 CW_Register = CW_Good, // Register operands.
3444 CW_Memory = CW_Better, // Memory operands.
3445 CW_Constant = CW_Best, // Constant operand.
3446 CW_Default = CW_Okay // Default or don't know type.
3447 };
3448
3449 /// This contains information for each constraint that we are lowering.
3450 struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3451 /// This contains the actual string for the code, like "m". TargetLowering
3452 /// picks the 'best' code from ConstraintInfo::Codes that most closely
3453 /// matches the operand.
3454 std::string ConstraintCode;
3455
3456 /// Information about the constraint code, e.g. Register, RegisterClass,
3457 /// Memory, Other, Unknown.
3458 TargetLowering::ConstraintType ConstraintType = TargetLowering::C_Unknown;
3459
3460 /// If this is the result output operand or a clobber, this is null,
3461 /// otherwise it is the incoming operand to the CallInst. This gets
3462 /// modified as the asm is processed.
3463 Value *CallOperandVal = nullptr;
3464
3465 /// The ValueType for the operand value.
3466 MVT ConstraintVT = MVT::Other;
3467
3468 /// Copy constructor for copying from a ConstraintInfo.
3469 AsmOperandInfo(InlineAsm::ConstraintInfo Info)
3470 : InlineAsm::ConstraintInfo(std::move(Info)) {}
3471
3472 /// Return true of this is an input operand that is a matching constraint
3473 /// like "4".
3474 bool isMatchingInputConstraint() const;
3475
3476 /// If this is an input matching constraint, this method returns the output
3477 /// operand it matches.
3478 unsigned getMatchedOperand() const;
3479 };
3480
3481 using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
3482
3483 /// Split up the constraint string from the inline assembly value into the
3484 /// specific constraints and their prefixes, and also tie in the associated
3485 /// operand values. If this returns an empty vector, and if the constraint
3486 /// string itself isn't empty, there was an error parsing.
3487 virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
3488 const TargetRegisterInfo *TRI,
3489 ImmutableCallSite CS) const;
3490
3491 /// Examine constraint type and operand type and determine a weight value.
3492 /// The operand object must already have been set up with the operand type.
3493 virtual ConstraintWeight getMultipleConstraintMatchWeight(
3494 AsmOperandInfo &info, int maIndex) const;
3495
3496 /// Examine constraint string and operand type and determine a weight value.
3497 /// The operand object must already have been set up with the operand type.
3498 virtual ConstraintWeight getSingleConstraintMatchWeight(
3499 AsmOperandInfo &info, const char *constraint) const;
3500
3501 /// Determines the constraint code and constraint type to use for the specific
3502 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
3503 /// If the actual operand being passed in is available, it can be passed in as
3504 /// Op, otherwise an empty SDValue can be passed.
3505 virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3506 SDValue Op,
3507 SelectionDAG *DAG = nullptr) const;
3508
3509 /// Given a constraint, return the type of constraint it is for this target.
3510 virtual ConstraintType getConstraintType(StringRef Constraint) const;
3511
3512 /// Given a physical register constraint (e.g. {edx}), return the register
3513 /// number and the register class for the register.
3514 ///
3515 /// Given a register class constraint, like 'r', if this corresponds directly
3516 /// to an LLVM register class, return a register of 0 and the register class
3517 /// pointer.
3518 ///
3519 /// This should only be used for C_Register constraints. On error, this
3520 /// returns a register number of 0 and a null register class pointer.
3521 virtual std::pair<unsigned, const TargetRegisterClass *>
3522 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3523 StringRef Constraint, MVT VT) const;
3524
3525 virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
3526 if (ConstraintCode == "i")
3527 return InlineAsm::Constraint_i;
3528 else if (ConstraintCode == "m")
3529 return InlineAsm::Constraint_m;
3530 return InlineAsm::Constraint_Unknown;
3531 }
3532
3533 /// Try to replace an X constraint, which matches anything, with another that
3534 /// has more specific requirements based on the type of the corresponding
3535 /// operand. This returns null if there is no replacement to make.
3536 virtual const char *LowerXConstraint(EVT ConstraintVT) const;
3537
3538 /// Lower the specified operand into the Ops vector. If it is invalid, don't
3539 /// add anything to Ops.
3540 virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
3541 std::vector<SDValue> &Ops,
3542 SelectionDAG &DAG) const;
3543
3544 //===--------------------------------------------------------------------===//
3545 // Div utility functions
3546 //
Andrew Scullcdfcccc2018-10-05 20:58:37 +01003547 SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3548 SmallVectorImpl<SDNode *> &Created) const;
3549 SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3550 SmallVectorImpl<SDNode *> &Created) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003551
3552 /// Targets may override this function to provide custom SDIV lowering for
3553 /// power-of-2 denominators. If the target returns an empty SDValue, LLVM
3554 /// assumes SDIV is expensive and replaces it with a series of other integer
3555 /// operations.
3556 virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
3557 SelectionDAG &DAG,
Andrew Scullcdfcccc2018-10-05 20:58:37 +01003558 SmallVectorImpl<SDNode *> &Created) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003559
3560 /// Indicate whether this target prefers to combine FDIVs with the same
3561 /// divisor. If the transform should never be done, return zero. If the
3562 /// transform should be done, return the minimum number of divisor uses
3563 /// that must exist.
3564 virtual unsigned combineRepeatedFPDivisors() const {
3565 return 0;
3566 }
3567
3568 /// Hooks for building estimates in place of slower divisions and square
3569 /// roots.
3570
3571 /// Return either a square root or its reciprocal estimate value for the input
3572 /// operand.
3573 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
3574 /// 'Enabled' as set by a potential default override attribute.
3575 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
3576 /// refinement iterations required to generate a sufficient (though not
3577 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
3578 /// The boolean UseOneConstNR output is used to select a Newton-Raphson
3579 /// algorithm implementation that uses either one or two constants.
3580 /// The boolean Reciprocal is used to select whether the estimate is for the
3581 /// square root of the input operand or the reciprocal of its square root.
3582 /// A target may choose to implement its own refinement within this function.
3583 /// If that's true, then return '0' as the number of RefinementSteps to avoid
3584 /// any further refinement of the estimate.
3585 /// An empty SDValue return means no estimate sequence can be created.
3586 virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
3587 int Enabled, int &RefinementSteps,
3588 bool &UseOneConstNR, bool Reciprocal) const {
3589 return SDValue();
3590 }
3591
3592 /// Return a reciprocal estimate value for the input operand.
3593 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
3594 /// 'Enabled' as set by a potential default override attribute.
3595 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
3596 /// refinement iterations required to generate a sufficient (though not
3597 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
3598 /// A target may choose to implement its own refinement within this function.
3599 /// If that's true, then return '0' as the number of RefinementSteps to avoid
3600 /// any further refinement of the estimate.
3601 /// An empty SDValue return means no estimate sequence can be created.
3602 virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
3603 int Enabled, int &RefinementSteps) const {
3604 return SDValue();
3605 }
3606
3607 //===--------------------------------------------------------------------===//
3608 // Legalization utility functions
3609 //
3610
3611 /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
3612 /// respectively, each computing an n/2-bit part of the result.
3613 /// \param Result A vector that will be filled with the parts of the result
3614 /// in little-endian order.
3615 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
3616 /// if you want to control how low bits are extracted from the LHS.
3617 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
3618 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
3619 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
3620 /// \returns true if the node has been expanded, false if it has not
3621 bool expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, SDValue LHS,
3622 SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
3623 SelectionDAG &DAG, MulExpansionKind Kind,
3624 SDValue LL = SDValue(), SDValue LH = SDValue(),
3625 SDValue RL = SDValue(), SDValue RH = SDValue()) const;
3626
3627 /// Expand a MUL into two nodes. One that computes the high bits of
3628 /// the result and one that computes the low bits.
3629 /// \param HiLoVT The value type to use for the Lo and Hi nodes.
3630 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
3631 /// if you want to control how low bits are extracted from the LHS.
3632 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
3633 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
3634 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
3635 /// \returns true if the node has been expanded. false if it has not
3636 bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
3637 SelectionDAG &DAG, MulExpansionKind Kind,
3638 SDValue LL = SDValue(), SDValue LH = SDValue(),
3639 SDValue RL = SDValue(), SDValue RH = SDValue()) const;
3640
3641 /// Expand float(f32) to SINT(i64) conversion
3642 /// \param N Node to expand
3643 /// \param Result output after conversion
3644 /// \returns True, if the expansion was successful, false otherwise
3645 bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
3646
3647 /// Turn load of vector type into a load of the individual elements.
3648 /// \param LD load to expand
3649 /// \returns MERGE_VALUEs of the scalar loads with their chains.
3650 SDValue scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const;
3651
3652 // Turn a store of a vector type into stores of the individual elements.
3653 /// \param ST Store with a vector value type
3654 /// \returns MERGE_VALUs of the individual store chains.
3655 SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const;
3656
3657 /// Expands an unaligned load to 2 half-size loads for an integer, and
3658 /// possibly more for vectors.
3659 std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
3660 SelectionDAG &DAG) const;
3661
3662 /// Expands an unaligned store to 2 half-size stores for integer values, and
3663 /// possibly more for vectors.
3664 SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
3665
3666 /// Increments memory address \p Addr according to the type of the value
3667 /// \p DataVT that should be stored. If the data is stored in compressed
3668 /// form, the memory address should be incremented according to the number of
3669 /// the stored elements. This number is equal to the number of '1's bits
3670 /// in the \p Mask.
3671 /// \p DataVT is a vector type. \p Mask is a vector value.
3672 /// \p DataVT and \p Mask have the same number of vector elements.
3673 SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL,
3674 EVT DataVT, SelectionDAG &DAG,
3675 bool IsCompressedMemory) const;
3676
3677 /// Get a pointer to vector element \p Idx located in memory for a vector of
3678 /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
3679 /// bounds the returned pointer is unspecified, but will be within the vector
3680 /// bounds.
3681 SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
Andrew Scullcdfcccc2018-10-05 20:58:37 +01003682 SDValue Index) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003683
3684 //===--------------------------------------------------------------------===//
3685 // Instruction Emitting Hooks
3686 //
3687
3688 /// This method should be implemented by targets that mark instructions with
3689 /// the 'usesCustomInserter' flag. These instructions are special in various
3690 /// ways, which require special support to insert. The specified MachineInstr
3691 /// is created but not inserted into any basic blocks, and this method is
3692 /// called to expand it into a sequence of instructions, potentially also
3693 /// creating new basic blocks and control flow.
3694 /// As long as the returned basic block is different (i.e., we created a new
3695 /// one), the custom inserter is free to modify the rest of \p MBB.
3696 virtual MachineBasicBlock *
3697 EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
3698
3699 /// This method should be implemented by targets that mark instructions with
3700 /// the 'hasPostISelHook' flag. These instructions must be adjusted after
3701 /// instruction selection by target hooks. e.g. To fill in optional defs for
3702 /// ARM 's' setting instructions.
3703 virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
3704 SDNode *Node) const;
3705
3706 /// If this function returns true, SelectionDAGBuilder emits a
3707 /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
3708 virtual bool useLoadStackGuardNode() const {
3709 return false;
3710 }
3711
3712 virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
3713 const SDLoc &DL) const {
3714 llvm_unreachable("not implemented for this target");
3715 }
3716
3717 /// Lower TLS global address SDNode for target independent emulated TLS model.
3718 virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
3719 SelectionDAG &DAG) const;
3720
3721 /// Expands target specific indirect branch for the case of JumpTable
3722 /// expanasion.
3723 virtual SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value, SDValue Addr,
3724 SelectionDAG &DAG) const {
3725 return DAG.getNode(ISD::BRIND, dl, MVT::Other, Value, Addr);
3726 }
3727
3728 // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
3729 // If we're comparing for equality to zero and isCtlzFast is true, expose the
3730 // fact that this can be implemented as a ctlz/srl pair, so that the dag
3731 // combiner can fold the new nodes.
3732 SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const;
3733
3734private:
3735 SDValue simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3736 ISD::CondCode Cond, DAGCombinerInfo &DCI,
3737 const SDLoc &DL) const;
Andrew Scullcdfcccc2018-10-05 20:58:37 +01003738
3739 SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
3740 SDValue N1, ISD::CondCode Cond,
3741 DAGCombinerInfo &DCI,
3742 const SDLoc &DL) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003743};
3744
3745/// Given an LLVM IR type and return type attributes, compute the return value
3746/// EVTs and flags, and optionally also the offsets, if the return value is
3747/// being lowered to memory.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01003748void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003749 SmallVectorImpl<ISD::OutputArg> &Outs,
3750 const TargetLowering &TLI, const DataLayout &DL);
3751
3752} // end namespace llvm
3753
3754#endif // LLVM_CODEGEN_TARGETLOWERING_H