Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 1 | //===- ModuloSchedule.h - Software pipeline schedule expansion ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Software pipelining (SWP) is an instruction scheduling technique for loops |
| 10 | // that overlaps loop iterations and exploits ILP via compiler transformations. |
| 11 | // |
| 12 | // There are multiple methods for analyzing a loop and creating a schedule. |
| 13 | // An example algorithm is Swing Modulo Scheduling (implemented by the |
| 14 | // MachinePipeliner). The details of how a schedule is arrived at are irrelevant |
| 15 | // for the task of actually rewriting a loop to adhere to the schedule, which |
| 16 | // is what this file does. |
| 17 | // |
| 18 | // A schedule is, for every instruction in a block, a Cycle and a Stage. Note |
| 19 | // that we only support single-block loops, so "block" and "loop" can be used |
| 20 | // interchangably. |
| 21 | // |
| 22 | // The Cycle of an instruction defines a partial order of the instructions in |
| 23 | // the remapped loop. Instructions within a cycle must not consume the output |
| 24 | // of any instruction in the same cycle. Cycle information is assumed to have |
| 25 | // been calculated such that the processor will execute instructions in |
| 26 | // lock-step (for example in a VLIW ISA). |
| 27 | // |
| 28 | // The Stage of an instruction defines the mapping between logical loop |
| 29 | // iterations and pipelined loop iterations. An example (unrolled) pipeline |
| 30 | // may look something like: |
| 31 | // |
| 32 | // I0[0] Execute instruction I0 of iteration 0 |
| 33 | // I1[0], I0[1] Execute I0 of iteration 1 and I1 of iteration 1 |
| 34 | // I1[1], I0[2] |
| 35 | // I1[2], I0[3] |
| 36 | // |
| 37 | // In the schedule for this unrolled sequence we would say that I0 was scheduled |
| 38 | // in stage 0 and I1 in stage 1: |
| 39 | // |
| 40 | // loop: |
| 41 | // [stage 0] x = I0 |
| 42 | // [stage 1] I1 x (from stage 0) |
| 43 | // |
| 44 | // And to actually generate valid code we must insert a phi: |
| 45 | // |
| 46 | // loop: |
| 47 | // x' = phi(x) |
| 48 | // x = I0 |
| 49 | // I1 x' |
| 50 | // |
| 51 | // This is a simple example; the rules for how to generate correct code given |
| 52 | // an arbitrary schedule containing loop-carried values are complex. |
| 53 | // |
| 54 | // Note that these examples only mention the steady-state kernel of the |
| 55 | // generated loop; prologs and epilogs must be generated also that prime and |
| 56 | // flush the pipeline. Doing so is nontrivial. |
| 57 | // |
| 58 | //===----------------------------------------------------------------------===// |
| 59 | |
| 60 | #ifndef LLVM_LIB_CODEGEN_MODULOSCHEDULE_H |
| 61 | #define LLVM_LIB_CODEGEN_MODULOSCHEDULE_H |
| 62 | |
| 63 | #include "llvm/CodeGen/MachineFunction.h" |
| 64 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 65 | #include "llvm/CodeGen/MachineLoopUtils.h" |
| 66 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 67 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 68 | #include <deque> |
| 69 | #include <vector> |
| 70 | |
| 71 | namespace llvm { |
| 72 | class MachineBasicBlock; |
| 73 | class MachineInstr; |
| 74 | class LiveIntervals; |
| 75 | |
| 76 | /// Represents a schedule for a single-block loop. For every instruction we |
| 77 | /// maintain a Cycle and Stage. |
| 78 | class ModuloSchedule { |
| 79 | private: |
| 80 | /// The block containing the loop instructions. |
| 81 | MachineLoop *Loop; |
| 82 | |
| 83 | /// The instructions to be generated, in total order. Cycle provides a partial |
| 84 | /// order; the total order within cycles has been decided by the schedule |
| 85 | /// producer. |
| 86 | std::vector<MachineInstr *> ScheduledInstrs; |
| 87 | |
| 88 | /// The cycle for each instruction. |
| 89 | DenseMap<MachineInstr *, int> Cycle; |
| 90 | |
| 91 | /// The stage for each instruction. |
| 92 | DenseMap<MachineInstr *, int> Stage; |
| 93 | |
| 94 | /// The number of stages in this schedule (Max(Stage) + 1). |
| 95 | int NumStages; |
| 96 | |
| 97 | public: |
| 98 | /// Create a new ModuloSchedule. |
| 99 | /// \arg ScheduledInstrs The new loop instructions, in total resequenced |
| 100 | /// order. |
| 101 | /// \arg Cycle Cycle index for all instructions in ScheduledInstrs. Cycle does |
| 102 | /// not need to start at zero. ScheduledInstrs must be partially ordered by |
| 103 | /// Cycle. |
| 104 | /// \arg Stage Stage index for all instructions in ScheduleInstrs. |
| 105 | ModuloSchedule(MachineFunction &MF, MachineLoop *Loop, |
| 106 | std::vector<MachineInstr *> ScheduledInstrs, |
| 107 | DenseMap<MachineInstr *, int> Cycle, |
| 108 | DenseMap<MachineInstr *, int> Stage) |
| 109 | : Loop(Loop), ScheduledInstrs(ScheduledInstrs), Cycle(std::move(Cycle)), |
| 110 | Stage(std::move(Stage)) { |
| 111 | NumStages = 0; |
| 112 | for (auto &KV : this->Stage) |
| 113 | NumStages = std::max(NumStages, KV.second); |
| 114 | ++NumStages; |
| 115 | } |
| 116 | |
| 117 | /// Return the single-block loop being scheduled. |
| 118 | MachineLoop *getLoop() const { return Loop; } |
| 119 | |
| 120 | /// Return the number of stages contained in this schedule, which is the |
| 121 | /// largest stage index + 1. |
| 122 | int getNumStages() const { return NumStages; } |
| 123 | |
| 124 | /// Return the first cycle in the schedule, which is the cycle index of the |
| 125 | /// first instruction. |
| 126 | int getFirstCycle() { return Cycle[ScheduledInstrs.front()]; } |
| 127 | |
| 128 | /// Return the final cycle in the schedule, which is the cycle index of the |
| 129 | /// last instruction. |
| 130 | int getFinalCycle() { return Cycle[ScheduledInstrs.back()]; } |
| 131 | |
| 132 | /// Return the stage that MI is scheduled in, or -1. |
| 133 | int getStage(MachineInstr *MI) { |
| 134 | auto I = Stage.find(MI); |
| 135 | return I == Stage.end() ? -1 : I->second; |
| 136 | } |
| 137 | |
| 138 | /// Return the cycle that MI is scheduled at, or -1. |
| 139 | int getCycle(MachineInstr *MI) { |
| 140 | auto I = Cycle.find(MI); |
| 141 | return I == Cycle.end() ? -1 : I->second; |
| 142 | } |
| 143 | |
| 144 | /// Set the stage of a newly created instruction. |
| 145 | void setStage(MachineInstr *MI, int MIStage) { |
| 146 | assert(Stage.count(MI) == 0); |
| 147 | Stage[MI] = MIStage; |
| 148 | } |
| 149 | |
| 150 | /// Return the rescheduled instructions in order. |
| 151 | ArrayRef<MachineInstr *> getInstructions() { return ScheduledInstrs; } |
| 152 | |
| 153 | void dump() { print(dbgs()); } |
| 154 | void print(raw_ostream &OS); |
| 155 | }; |
| 156 | |
| 157 | /// The ModuloScheduleExpander takes a ModuloSchedule and expands it in-place, |
| 158 | /// rewriting the old loop and inserting prologs and epilogs as required. |
| 159 | class ModuloScheduleExpander { |
| 160 | public: |
| 161 | using InstrChangesTy = DenseMap<MachineInstr *, std::pair<unsigned, int64_t>>; |
| 162 | |
| 163 | private: |
| 164 | using ValueMapTy = DenseMap<unsigned, unsigned>; |
| 165 | using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; |
| 166 | using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; |
| 167 | |
| 168 | ModuloSchedule &Schedule; |
| 169 | MachineFunction &MF; |
| 170 | const TargetSubtargetInfo &ST; |
| 171 | MachineRegisterInfo &MRI; |
| 172 | const TargetInstrInfo *TII; |
| 173 | LiveIntervals &LIS; |
| 174 | |
| 175 | MachineBasicBlock *BB; |
| 176 | MachineBasicBlock *Preheader; |
| 177 | MachineBasicBlock *NewKernel = nullptr; |
| 178 | std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopInfo; |
| 179 | |
| 180 | /// Map for each register and the max difference between its uses and def. |
| 181 | /// The first element in the pair is the max difference in stages. The |
| 182 | /// second is true if the register defines a Phi value and loop value is |
| 183 | /// scheduled before the Phi. |
| 184 | std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; |
| 185 | |
| 186 | /// Instructions to change when emitting the final schedule. |
| 187 | InstrChangesTy InstrChanges; |
| 188 | |
| 189 | void generatePipelinedLoop(); |
| 190 | void generateProlog(unsigned LastStage, MachineBasicBlock *KernelBB, |
| 191 | ValueMapTy *VRMap, MBBVectorTy &PrologBBs); |
| 192 | void generateEpilog(unsigned LastStage, MachineBasicBlock *KernelBB, |
| 193 | ValueMapTy *VRMap, MBBVectorTy &EpilogBBs, |
| 194 | MBBVectorTy &PrologBBs); |
| 195 | void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, |
| 196 | MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, |
| 197 | ValueMapTy *VRMap, InstrMapTy &InstrMap, |
| 198 | unsigned LastStageNum, unsigned CurStageNum, |
| 199 | bool IsLast); |
| 200 | void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, |
| 201 | MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, |
| 202 | ValueMapTy *VRMap, InstrMapTy &InstrMap, |
| 203 | unsigned LastStageNum, unsigned CurStageNum, bool IsLast); |
| 204 | void removeDeadInstructions(MachineBasicBlock *KernelBB, |
| 205 | MBBVectorTy &EpilogBBs); |
| 206 | void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs); |
| 207 | void addBranches(MachineBasicBlock &PreheaderBB, MBBVectorTy &PrologBBs, |
| 208 | MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, |
| 209 | ValueMapTy *VRMap); |
| 210 | bool computeDelta(MachineInstr &MI, unsigned &Delta); |
| 211 | void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, |
| 212 | unsigned Num); |
| 213 | MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, |
| 214 | unsigned InstStageNum); |
| 215 | MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, |
| 216 | unsigned InstStageNum); |
| 217 | void updateInstruction(MachineInstr *NewMI, bool LastDef, |
| 218 | unsigned CurStageNum, unsigned InstrStageNum, |
| 219 | ValueMapTy *VRMap); |
| 220 | MachineInstr *findDefInLoop(unsigned Reg); |
| 221 | unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, |
| 222 | unsigned LoopStage, ValueMapTy *VRMap, |
| 223 | MachineBasicBlock *BB); |
| 224 | void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, |
| 225 | ValueMapTy *VRMap, InstrMapTy &InstrMap); |
| 226 | void rewriteScheduledInstr(MachineBasicBlock *BB, InstrMapTy &InstrMap, |
| 227 | unsigned CurStageNum, unsigned PhiNum, |
| 228 | MachineInstr *Phi, unsigned OldReg, |
| 229 | unsigned NewReg, unsigned PrevReg = 0); |
| 230 | bool isLoopCarried(MachineInstr &Phi); |
| 231 | |
| 232 | /// Return the max. number of stages/iterations that can occur between a |
| 233 | /// register definition and its uses. |
| 234 | unsigned getStagesForReg(int Reg, unsigned CurStage) { |
| 235 | std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; |
| 236 | if ((int)CurStage > Schedule.getNumStages() - 1 && Stages.first == 0 && |
| 237 | Stages.second) |
| 238 | return 1; |
| 239 | return Stages.first; |
| 240 | } |
| 241 | |
| 242 | /// The number of stages for a Phi is a little different than other |
| 243 | /// instructions. The minimum value computed in RegToStageDiff is 1 |
| 244 | /// because we assume the Phi is needed for at least 1 iteration. |
| 245 | /// This is not the case if the loop value is scheduled prior to the |
| 246 | /// Phi in the same stage. This function returns the number of stages |
| 247 | /// or iterations needed between the Phi definition and any uses. |
| 248 | unsigned getStagesForPhi(int Reg) { |
| 249 | std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; |
| 250 | if (Stages.second) |
| 251 | return Stages.first; |
| 252 | return Stages.first - 1; |
| 253 | } |
| 254 | |
| 255 | public: |
| 256 | /// Create a new ModuloScheduleExpander. |
| 257 | /// \arg InstrChanges Modifications to make to instructions with memory |
| 258 | /// operands. |
| 259 | /// FIXME: InstrChanges is opaque and is an implementation detail of an |
| 260 | /// optimization in MachinePipeliner that crosses abstraction boundaries. |
| 261 | ModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S, |
| 262 | LiveIntervals &LIS, InstrChangesTy InstrChanges) |
| 263 | : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()), |
| 264 | TII(ST.getInstrInfo()), LIS(LIS), |
| 265 | InstrChanges(std::move(InstrChanges)) {} |
| 266 | |
| 267 | /// Performs the actual expansion. |
| 268 | void expand(); |
| 269 | /// Performs final cleanup after expansion. |
| 270 | void cleanup(); |
| 271 | |
| 272 | /// Returns the newly rewritten kernel block, or nullptr if this was |
| 273 | /// optimized away. |
| 274 | MachineBasicBlock *getRewrittenKernel() { return NewKernel; } |
| 275 | }; |
| 276 | |
| 277 | /// A reimplementation of ModuloScheduleExpander. It works by generating a |
| 278 | /// standalone kernel loop and peeling out the prologs and epilogs. |
| 279 | class PeelingModuloScheduleExpander { |
| 280 | public: |
| 281 | PeelingModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S, |
| 282 | LiveIntervals *LIS) |
| 283 | : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()), |
| 284 | TII(ST.getInstrInfo()), LIS(LIS) {} |
| 285 | |
| 286 | void expand(); |
| 287 | |
| 288 | /// Runs ModuloScheduleExpander and treats it as a golden input to validate |
| 289 | /// aspects of the code generated by PeelingModuloScheduleExpander. |
| 290 | void validateAgainstModuloScheduleExpander(); |
| 291 | |
| 292 | protected: |
| 293 | ModuloSchedule &Schedule; |
| 294 | MachineFunction &MF; |
| 295 | const TargetSubtargetInfo &ST; |
| 296 | MachineRegisterInfo &MRI; |
| 297 | const TargetInstrInfo *TII; |
| 298 | LiveIntervals *LIS; |
| 299 | |
| 300 | /// The original loop block that gets rewritten in-place. |
| 301 | MachineBasicBlock *BB; |
| 302 | /// The original loop preheader. |
| 303 | MachineBasicBlock *Preheader; |
| 304 | /// All prolog and epilog blocks. |
| 305 | SmallVector<MachineBasicBlock *, 4> Prologs, Epilogs; |
| 306 | /// For every block, the stages that are produced. |
| 307 | DenseMap<MachineBasicBlock *, BitVector> LiveStages; |
| 308 | /// For every block, the stages that are available. A stage can be available |
| 309 | /// but not produced (in the epilog) or produced but not available (in the |
| 310 | /// prolog). |
| 311 | DenseMap<MachineBasicBlock *, BitVector> AvailableStages; |
| 312 | /// When peeling the epilogue keep track of the distance between the phi |
| 313 | /// nodes and the kernel. |
| 314 | DenseMap<MachineInstr *, unsigned> PhiNodeLoopIteration; |
| 315 | |
| 316 | /// CanonicalMIs and BlockMIs form a bidirectional map between any of the |
| 317 | /// loop kernel clones. |
| 318 | DenseMap<MachineInstr *, MachineInstr *> CanonicalMIs; |
| 319 | DenseMap<std::pair<MachineBasicBlock *, MachineInstr *>, MachineInstr *> |
| 320 | BlockMIs; |
| 321 | |
| 322 | /// State passed from peelKernel to peelPrologAndEpilogs(). |
| 323 | std::deque<MachineBasicBlock *> PeeledFront, PeeledBack; |
| 324 | /// Illegal phis that need to be deleted once we re-link stages. |
| 325 | SmallVector<MachineInstr *, 4> IllegalPhisToDelete; |
| 326 | |
| 327 | /// Converts BB from the original loop body to the rewritten, pipelined |
| 328 | /// steady-state. |
| 329 | void rewriteKernel(); |
| 330 | |
| 331 | /// Peels one iteration of the rewritten kernel (BB) in the specified |
| 332 | /// direction. |
| 333 | MachineBasicBlock *peelKernel(LoopPeelDirection LPD); |
| 334 | // Delete instructions whose stage is less than MinStage in the given basic |
| 335 | // block. |
| 336 | void filterInstructions(MachineBasicBlock *MB, int MinStage); |
| 337 | // Move instructions of the given stage from sourceBB to DestBB. Remap the phi |
| 338 | // instructions to keep a valid IR. |
| 339 | void moveStageBetweenBlocks(MachineBasicBlock *DestBB, |
| 340 | MachineBasicBlock *SourceBB, unsigned Stage); |
| 341 | /// Peel the kernel forwards and backwards to produce prologs and epilogs, |
| 342 | /// and stitch them together. |
| 343 | void peelPrologAndEpilogs(); |
| 344 | /// All prolog and epilog blocks are clones of the kernel, so any produced |
| 345 | /// register in one block has an corollary in all other blocks. |
| 346 | Register getEquivalentRegisterIn(Register Reg, MachineBasicBlock *BB); |
| 347 | /// Change all users of MI, if MI is predicated out |
| 348 | /// (LiveStages[MI->getParent()] == false). |
| 349 | void rewriteUsesOf(MachineInstr *MI); |
| 350 | /// Insert branches between prologs, kernel and epilogs. |
| 351 | void fixupBranches(); |
| 352 | /// Create a poor-man's LCSSA by cloning only the PHIs from the kernel block |
| 353 | /// to a block dominated by all prologs and epilogs. This allows us to treat |
| 354 | /// the loop exiting block as any other kernel clone. |
| 355 | MachineBasicBlock *CreateLCSSAExitingBlock(); |
| 356 | /// Helper to get the stage of an instruction in the schedule. |
| 357 | unsigned getStage(MachineInstr *MI) { |
| 358 | if (CanonicalMIs.count(MI)) |
| 359 | MI = CanonicalMIs[MI]; |
| 360 | return Schedule.getStage(MI); |
| 361 | } |
| 362 | /// Helper function to find the right canonical register for a phi instruction |
| 363 | /// coming from a peeled out prologue. |
| 364 | Register getPhiCanonicalReg(MachineInstr* CanonicalPhi, MachineInstr* Phi); |
| 365 | /// Target loop info before kernel peeling. |
| 366 | std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopInfo; |
| 367 | }; |
| 368 | |
| 369 | /// Expander that simply annotates each scheduled instruction with a post-instr |
| 370 | /// symbol that can be consumed by the ModuloScheduleTest pass. |
| 371 | /// |
| 372 | /// The post-instr symbol is a way of annotating an instruction that can be |
| 373 | /// roundtripped in MIR. The syntax is: |
| 374 | /// MYINST %0, post-instr-symbol <mcsymbol Stage-1_Cycle-5> |
| 375 | class ModuloScheduleTestAnnotater { |
| 376 | MachineFunction &MF; |
| 377 | ModuloSchedule &S; |
| 378 | |
| 379 | public: |
| 380 | ModuloScheduleTestAnnotater(MachineFunction &MF, ModuloSchedule &S) |
| 381 | : MF(MF), S(S) {} |
| 382 | |
| 383 | /// Performs the annotation. |
| 384 | void annotate(); |
| 385 | }; |
| 386 | |
| 387 | } // end namespace llvm |
| 388 | |
| 389 | #endif // LLVM_LIB_CODEGEN_MODULOSCHEDULE_H |