Update prebuilt Clang to r416183b from Android.

https://android.googlesource.com/platform/prebuilts/clang/host/
linux-x86/+/06a71ddac05c22edb2d10b590e1769b3f8619bef

clang 12.0.5 (based on r416183b) from build 7284624.

Change-Id: I277a316abcf47307562d8b748b84870f31a72866
Signed-off-by: Olivier Deprez <olivier.deprez@arm.com>
diff --git a/linux-x64/clang/include/llvm/CodeGen/ModuloSchedule.h b/linux-x64/clang/include/llvm/CodeGen/ModuloSchedule.h
new file mode 100644
index 0000000..1aa2320
--- /dev/null
+++ b/linux-x64/clang/include/llvm/CodeGen/ModuloSchedule.h
@@ -0,0 +1,389 @@
+//===- ModuloSchedule.h - Software pipeline schedule expansion ------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Software pipelining (SWP) is an instruction scheduling technique for loops
+// that overlaps loop iterations and exploits ILP via compiler transformations.
+//
+// There are multiple methods for analyzing a loop and creating a schedule.
+// An example algorithm is Swing Modulo Scheduling (implemented by the
+// MachinePipeliner). The details of how a schedule is arrived at are irrelevant
+// for the task of actually rewriting a loop to adhere to the schedule, which
+// is what this file does.
+//
+// A schedule is, for every instruction in a block, a Cycle and a Stage. Note
+// that we only support single-block loops, so "block" and "loop" can be used
+// interchangably.
+//
+// The Cycle of an instruction defines a partial order of the instructions in
+// the remapped loop. Instructions within a cycle must not consume the output
+// of any instruction in the same cycle. Cycle information is assumed to have
+// been calculated such that the processor will execute instructions in
+// lock-step (for example in a VLIW ISA).
+//
+// The Stage of an instruction defines the mapping between logical loop
+// iterations and pipelined loop iterations. An example (unrolled) pipeline
+// may look something like:
+//
+//  I0[0]                      Execute instruction I0 of iteration 0
+//  I1[0], I0[1]               Execute I0 of iteration 1 and I1 of iteration 1
+//         I1[1], I0[2]
+//                I1[2], I0[3]
+//
+// In the schedule for this unrolled sequence we would say that I0 was scheduled
+// in stage 0 and I1 in stage 1:
+//
+//  loop:
+//    [stage 0] x = I0
+//    [stage 1] I1 x (from stage 0)
+//
+// And to actually generate valid code we must insert a phi:
+//
+//  loop:
+//    x' = phi(x)
+//    x = I0
+//    I1 x'
+//
+// This is a simple example; the rules for how to generate correct code given
+// an arbitrary schedule containing loop-carried values are complex.
+//
+// Note that these examples only mention the steady-state kernel of the
+// generated loop; prologs and epilogs must be generated also that prime and
+// flush the pipeline. Doing so is nontrivial.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_CODEGEN_MODULOSCHEDULE_H
+#define LLVM_LIB_CODEGEN_MODULOSCHEDULE_H
+
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineLoopUtils.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include <deque>
+#include <vector>
+
+namespace llvm {
+class MachineBasicBlock;
+class MachineInstr;
+class LiveIntervals;
+
+/// Represents a schedule for a single-block loop. For every instruction we
+/// maintain a Cycle and Stage.
+class ModuloSchedule {
+private:
+  /// The block containing the loop instructions.
+  MachineLoop *Loop;
+
+  /// The instructions to be generated, in total order. Cycle provides a partial
+  /// order; the total order within cycles has been decided by the schedule
+  /// producer.
+  std::vector<MachineInstr *> ScheduledInstrs;
+
+  /// The cycle for each instruction.
+  DenseMap<MachineInstr *, int> Cycle;
+
+  /// The stage for each instruction.
+  DenseMap<MachineInstr *, int> Stage;
+
+  /// The number of stages in this schedule (Max(Stage) + 1).
+  int NumStages;
+
+public:
+  /// Create a new ModuloSchedule.
+  /// \arg ScheduledInstrs The new loop instructions, in total resequenced
+  ///    order.
+  /// \arg Cycle Cycle index for all instructions in ScheduledInstrs. Cycle does
+  ///    not need to start at zero. ScheduledInstrs must be partially ordered by
+  ///    Cycle.
+  /// \arg Stage Stage index for all instructions in ScheduleInstrs.
+  ModuloSchedule(MachineFunction &MF, MachineLoop *Loop,
+                 std::vector<MachineInstr *> ScheduledInstrs,
+                 DenseMap<MachineInstr *, int> Cycle,
+                 DenseMap<MachineInstr *, int> Stage)
+      : Loop(Loop), ScheduledInstrs(ScheduledInstrs), Cycle(std::move(Cycle)),
+        Stage(std::move(Stage)) {
+    NumStages = 0;
+    for (auto &KV : this->Stage)
+      NumStages = std::max(NumStages, KV.second);
+    ++NumStages;
+  }
+
+  /// Return the single-block loop being scheduled.
+  MachineLoop *getLoop() const { return Loop; }
+
+  /// Return the number of stages contained in this schedule, which is the
+  /// largest stage index + 1.
+  int getNumStages() const { return NumStages; }
+
+  /// Return the first cycle in the schedule, which is the cycle index of the
+  /// first instruction.
+  int getFirstCycle() { return Cycle[ScheduledInstrs.front()]; }
+
+  /// Return the final cycle in the schedule, which is the cycle index of the
+  /// last instruction.
+  int getFinalCycle() { return Cycle[ScheduledInstrs.back()]; }
+
+  /// Return the stage that MI is scheduled in, or -1.
+  int getStage(MachineInstr *MI) {
+    auto I = Stage.find(MI);
+    return I == Stage.end() ? -1 : I->second;
+  }
+
+  /// Return the cycle that MI is scheduled at, or -1.
+  int getCycle(MachineInstr *MI) {
+    auto I = Cycle.find(MI);
+    return I == Cycle.end() ? -1 : I->second;
+  }
+
+  /// Set the stage of a newly created instruction.
+  void setStage(MachineInstr *MI, int MIStage) {
+    assert(Stage.count(MI) == 0);
+    Stage[MI] = MIStage;
+  }
+
+  /// Return the rescheduled instructions in order.
+  ArrayRef<MachineInstr *> getInstructions() { return ScheduledInstrs; }
+
+  void dump() { print(dbgs()); }
+  void print(raw_ostream &OS);
+};
+
+/// The ModuloScheduleExpander takes a ModuloSchedule and expands it in-place,
+/// rewriting the old loop and inserting prologs and epilogs as required.
+class ModuloScheduleExpander {
+public:
+  using InstrChangesTy = DenseMap<MachineInstr *, std::pair<unsigned, int64_t>>;
+
+private:
+  using ValueMapTy = DenseMap<unsigned, unsigned>;
+  using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
+  using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
+
+  ModuloSchedule &Schedule;
+  MachineFunction &MF;
+  const TargetSubtargetInfo &ST;
+  MachineRegisterInfo &MRI;
+  const TargetInstrInfo *TII;
+  LiveIntervals &LIS;
+
+  MachineBasicBlock *BB;
+  MachineBasicBlock *Preheader;
+  MachineBasicBlock *NewKernel = nullptr;
+  std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopInfo;
+
+  /// Map for each register and the max difference between its uses and def.
+  /// The first element in the pair is the max difference in stages. The
+  /// second is true if the register defines a Phi value and loop value is
+  /// scheduled before the Phi.
+  std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
+
+  /// Instructions to change when emitting the final schedule.
+  InstrChangesTy InstrChanges;
+
+  void generatePipelinedLoop();
+  void generateProlog(unsigned LastStage, MachineBasicBlock *KernelBB,
+                      ValueMapTy *VRMap, MBBVectorTy &PrologBBs);
+  void generateEpilog(unsigned LastStage, MachineBasicBlock *KernelBB,
+                      ValueMapTy *VRMap, MBBVectorTy &EpilogBBs,
+                      MBBVectorTy &PrologBBs);
+  void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
+                            MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
+                            ValueMapTy *VRMap, InstrMapTy &InstrMap,
+                            unsigned LastStageNum, unsigned CurStageNum,
+                            bool IsLast);
+  void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
+                    MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
+                    ValueMapTy *VRMap, InstrMapTy &InstrMap,
+                    unsigned LastStageNum, unsigned CurStageNum, bool IsLast);
+  void removeDeadInstructions(MachineBasicBlock *KernelBB,
+                              MBBVectorTy &EpilogBBs);
+  void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs);
+  void addBranches(MachineBasicBlock &PreheaderBB, MBBVectorTy &PrologBBs,
+                   MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
+                   ValueMapTy *VRMap);
+  bool computeDelta(MachineInstr &MI, unsigned &Delta);
+  void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
+                         unsigned Num);
+  MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
+                           unsigned InstStageNum);
+  MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
+                                    unsigned InstStageNum);
+  void updateInstruction(MachineInstr *NewMI, bool LastDef,
+                         unsigned CurStageNum, unsigned InstrStageNum,
+                         ValueMapTy *VRMap);
+  MachineInstr *findDefInLoop(unsigned Reg);
+  unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
+                         unsigned LoopStage, ValueMapTy *VRMap,
+                         MachineBasicBlock *BB);
+  void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
+                        ValueMapTy *VRMap, InstrMapTy &InstrMap);
+  void rewriteScheduledInstr(MachineBasicBlock *BB, InstrMapTy &InstrMap,
+                             unsigned CurStageNum, unsigned PhiNum,
+                             MachineInstr *Phi, unsigned OldReg,
+                             unsigned NewReg, unsigned PrevReg = 0);
+  bool isLoopCarried(MachineInstr &Phi);
+
+  /// Return the max. number of stages/iterations that can occur between a
+  /// register definition and its uses.
+  unsigned getStagesForReg(int Reg, unsigned CurStage) {
+    std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
+    if ((int)CurStage > Schedule.getNumStages() - 1 && Stages.first == 0 &&
+        Stages.second)
+      return 1;
+    return Stages.first;
+  }
+
+  /// The number of stages for a Phi is a little different than other
+  /// instructions. The minimum value computed in RegToStageDiff is 1
+  /// because we assume the Phi is needed for at least 1 iteration.
+  /// This is not the case if the loop value is scheduled prior to the
+  /// Phi in the same stage.  This function returns the number of stages
+  /// or iterations needed between the Phi definition and any uses.
+  unsigned getStagesForPhi(int Reg) {
+    std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
+    if (Stages.second)
+      return Stages.first;
+    return Stages.first - 1;
+  }
+
+public:
+  /// Create a new ModuloScheduleExpander.
+  /// \arg InstrChanges Modifications to make to instructions with memory
+  ///   operands.
+  /// FIXME: InstrChanges is opaque and is an implementation detail of an
+  ///   optimization in MachinePipeliner that crosses abstraction boundaries.
+  ModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S,
+                         LiveIntervals &LIS, InstrChangesTy InstrChanges)
+      : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()),
+        TII(ST.getInstrInfo()), LIS(LIS),
+        InstrChanges(std::move(InstrChanges)) {}
+
+  /// Performs the actual expansion.
+  void expand();
+  /// Performs final cleanup after expansion.
+  void cleanup();
+
+  /// Returns the newly rewritten kernel block, or nullptr if this was
+  /// optimized away.
+  MachineBasicBlock *getRewrittenKernel() { return NewKernel; }
+};
+
+/// A reimplementation of ModuloScheduleExpander. It works by generating a
+/// standalone kernel loop and peeling out the prologs and epilogs.
+class PeelingModuloScheduleExpander {
+public:
+  PeelingModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S,
+                                LiveIntervals *LIS)
+      : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()),
+        TII(ST.getInstrInfo()), LIS(LIS) {}
+
+  void expand();
+
+  /// Runs ModuloScheduleExpander and treats it as a golden input to validate
+  /// aspects of the code generated by PeelingModuloScheduleExpander.
+  void validateAgainstModuloScheduleExpander();
+
+protected:
+  ModuloSchedule &Schedule;
+  MachineFunction &MF;
+  const TargetSubtargetInfo &ST;
+  MachineRegisterInfo &MRI;
+  const TargetInstrInfo *TII;
+  LiveIntervals *LIS;
+
+  /// The original loop block that gets rewritten in-place.
+  MachineBasicBlock *BB;
+  /// The original loop preheader.
+  MachineBasicBlock *Preheader;
+  /// All prolog and epilog blocks.
+  SmallVector<MachineBasicBlock *, 4> Prologs, Epilogs;
+  /// For every block, the stages that are produced.
+  DenseMap<MachineBasicBlock *, BitVector> LiveStages;
+  /// For every block, the stages that are available. A stage can be available
+  /// but not produced (in the epilog) or produced but not available (in the
+  /// prolog).
+  DenseMap<MachineBasicBlock *, BitVector> AvailableStages;
+  /// When peeling the epilogue keep track of the distance between the phi
+  /// nodes and the kernel.
+  DenseMap<MachineInstr *, unsigned> PhiNodeLoopIteration;
+
+  /// CanonicalMIs and BlockMIs form a bidirectional map between any of the
+  /// loop kernel clones.
+  DenseMap<MachineInstr *, MachineInstr *> CanonicalMIs;
+  DenseMap<std::pair<MachineBasicBlock *, MachineInstr *>, MachineInstr *>
+      BlockMIs;
+
+  /// State passed from peelKernel to peelPrologAndEpilogs().
+  std::deque<MachineBasicBlock *> PeeledFront, PeeledBack;
+  /// Illegal phis that need to be deleted once we re-link stages.
+  SmallVector<MachineInstr *, 4> IllegalPhisToDelete;
+
+  /// Converts BB from the original loop body to the rewritten, pipelined
+  /// steady-state.
+  void rewriteKernel();
+
+  /// Peels one iteration of the rewritten kernel (BB) in the specified
+  /// direction.
+  MachineBasicBlock *peelKernel(LoopPeelDirection LPD);
+  // Delete instructions whose stage is less than MinStage in the given basic
+  // block.
+  void filterInstructions(MachineBasicBlock *MB, int MinStage);
+  // Move instructions of the given stage from sourceBB to DestBB. Remap the phi
+  // instructions to keep a valid IR.
+  void moveStageBetweenBlocks(MachineBasicBlock *DestBB,
+                              MachineBasicBlock *SourceBB, unsigned Stage);
+  /// Peel the kernel forwards and backwards to produce prologs and epilogs,
+  /// and stitch them together.
+  void peelPrologAndEpilogs();
+  /// All prolog and epilog blocks are clones of the kernel, so any produced
+  /// register in one block has an corollary in all other blocks.
+  Register getEquivalentRegisterIn(Register Reg, MachineBasicBlock *BB);
+  /// Change all users of MI, if MI is predicated out
+  /// (LiveStages[MI->getParent()] == false).
+  void rewriteUsesOf(MachineInstr *MI);
+  /// Insert branches between prologs, kernel and epilogs.
+  void fixupBranches();
+  /// Create a poor-man's LCSSA by cloning only the PHIs from the kernel block
+  /// to a block dominated by all prologs and epilogs. This allows us to treat
+  /// the loop exiting block as any other kernel clone.
+  MachineBasicBlock *CreateLCSSAExitingBlock();
+  /// Helper to get the stage of an instruction in the schedule.
+  unsigned getStage(MachineInstr *MI) {
+    if (CanonicalMIs.count(MI))
+      MI = CanonicalMIs[MI];
+    return Schedule.getStage(MI);
+  }
+  /// Helper function to find the right canonical register for a phi instruction
+  /// coming from a peeled out prologue.
+  Register getPhiCanonicalReg(MachineInstr* CanonicalPhi, MachineInstr* Phi);
+  /// Target loop info before kernel peeling.
+  std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopInfo;
+};
+
+/// Expander that simply annotates each scheduled instruction with a post-instr
+/// symbol that can be consumed by the ModuloScheduleTest pass.
+///
+/// The post-instr symbol is a way of annotating an instruction that can be
+/// roundtripped in MIR. The syntax is:
+///   MYINST %0, post-instr-symbol <mcsymbol Stage-1_Cycle-5>
+class ModuloScheduleTestAnnotater {
+  MachineFunction &MF;
+  ModuloSchedule &S;
+
+public:
+  ModuloScheduleTestAnnotater(MachineFunction &MF, ModuloSchedule &S)
+      : MF(MF), S(S) {}
+
+  /// Performs the annotation.
+  void annotate();
+};
+
+} // end namespace llvm
+
+#endif // LLVM_LIB_CODEGEN_MODULOSCHEDULE_H