Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==// |
| 2 | // |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Shared implementation of BlockFrequency for IR and Machine Instructions. |
| 10 | // See the documentation below for BlockFrequencyInfoImpl for details. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H |
| 15 | #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H |
| 16 | |
| 17 | #include "llvm/ADT/DenseMap.h" |
| 18 | #include "llvm/ADT/DenseSet.h" |
| 19 | #include "llvm/ADT/GraphTraits.h" |
| 20 | #include "llvm/ADT/Optional.h" |
| 21 | #include "llvm/ADT/PostOrderIterator.h" |
| 22 | #include "llvm/ADT/SmallVector.h" |
| 23 | #include "llvm/ADT/SparseBitVector.h" |
| 24 | #include "llvm/ADT/Twine.h" |
| 25 | #include "llvm/ADT/iterator_range.h" |
| 26 | #include "llvm/IR/BasicBlock.h" |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 27 | #include "llvm/IR/ValueHandle.h" |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 28 | #include "llvm/Support/BlockFrequency.h" |
| 29 | #include "llvm/Support/BranchProbability.h" |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 30 | #include "llvm/Support/CommandLine.h" |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 31 | #include "llvm/Support/DOTGraphTraits.h" |
| 32 | #include "llvm/Support/Debug.h" |
| 33 | #include "llvm/Support/ErrorHandling.h" |
| 34 | #include "llvm/Support/Format.h" |
| 35 | #include "llvm/Support/ScaledNumber.h" |
| 36 | #include "llvm/Support/raw_ostream.h" |
| 37 | #include <algorithm> |
| 38 | #include <cassert> |
| 39 | #include <cstddef> |
| 40 | #include <cstdint> |
| 41 | #include <deque> |
| 42 | #include <iterator> |
| 43 | #include <limits> |
| 44 | #include <list> |
| 45 | #include <string> |
| 46 | #include <utility> |
| 47 | #include <vector> |
| 48 | |
| 49 | #define DEBUG_TYPE "block-freq" |
| 50 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 51 | extern llvm::cl::opt<bool> CheckBFIUnknownBlockQueries; |
| 52 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 53 | namespace llvm { |
| 54 | |
| 55 | class BranchProbabilityInfo; |
| 56 | class Function; |
| 57 | class Loop; |
| 58 | class LoopInfo; |
| 59 | class MachineBasicBlock; |
| 60 | class MachineBranchProbabilityInfo; |
| 61 | class MachineFunction; |
| 62 | class MachineLoop; |
| 63 | class MachineLoopInfo; |
| 64 | |
| 65 | namespace bfi_detail { |
| 66 | |
| 67 | struct IrreducibleGraph; |
| 68 | |
| 69 | // This is part of a workaround for a GCC 4.7 crash on lambdas. |
| 70 | template <class BT> struct BlockEdgesAdder; |
| 71 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 72 | /// Mass of a block. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 73 | /// |
| 74 | /// This class implements a sort of fixed-point fraction always between 0.0 and |
| 75 | /// 1.0. getMass() == std::numeric_limits<uint64_t>::max() indicates a value of |
| 76 | /// 1.0. |
| 77 | /// |
| 78 | /// Masses can be added and subtracted. Simple saturation arithmetic is used, |
| 79 | /// so arithmetic operations never overflow or underflow. |
| 80 | /// |
| 81 | /// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses |
| 82 | /// an inexpensive floating-point algorithm that's off-by-one (almost, but not |
| 83 | /// quite, maximum precision). |
| 84 | /// |
| 85 | /// Masses can be scaled by \a BranchProbability at maximum precision. |
| 86 | class BlockMass { |
| 87 | uint64_t Mass = 0; |
| 88 | |
| 89 | public: |
| 90 | BlockMass() = default; |
| 91 | explicit BlockMass(uint64_t Mass) : Mass(Mass) {} |
| 92 | |
| 93 | static BlockMass getEmpty() { return BlockMass(); } |
| 94 | |
| 95 | static BlockMass getFull() { |
| 96 | return BlockMass(std::numeric_limits<uint64_t>::max()); |
| 97 | } |
| 98 | |
| 99 | uint64_t getMass() const { return Mass; } |
| 100 | |
| 101 | bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); } |
| 102 | bool isEmpty() const { return !Mass; } |
| 103 | |
| 104 | bool operator!() const { return isEmpty(); } |
| 105 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 106 | /// Add another mass. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 107 | /// |
| 108 | /// Adds another mass, saturating at \a isFull() rather than overflowing. |
| 109 | BlockMass &operator+=(BlockMass X) { |
| 110 | uint64_t Sum = Mass + X.Mass; |
| 111 | Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum; |
| 112 | return *this; |
| 113 | } |
| 114 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 115 | /// Subtract another mass. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 116 | /// |
| 117 | /// Subtracts another mass, saturating at \a isEmpty() rather than |
| 118 | /// undeflowing. |
| 119 | BlockMass &operator-=(BlockMass X) { |
| 120 | uint64_t Diff = Mass - X.Mass; |
| 121 | Mass = Diff > Mass ? 0 : Diff; |
| 122 | return *this; |
| 123 | } |
| 124 | |
| 125 | BlockMass &operator*=(BranchProbability P) { |
| 126 | Mass = P.scale(Mass); |
| 127 | return *this; |
| 128 | } |
| 129 | |
| 130 | bool operator==(BlockMass X) const { return Mass == X.Mass; } |
| 131 | bool operator!=(BlockMass X) const { return Mass != X.Mass; } |
| 132 | bool operator<=(BlockMass X) const { return Mass <= X.Mass; } |
| 133 | bool operator>=(BlockMass X) const { return Mass >= X.Mass; } |
| 134 | bool operator<(BlockMass X) const { return Mass < X.Mass; } |
| 135 | bool operator>(BlockMass X) const { return Mass > X.Mass; } |
| 136 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 137 | /// Convert to scaled number. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 138 | /// |
| 139 | /// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty() |
| 140 | /// gives slightly above 0.0. |
| 141 | ScaledNumber<uint64_t> toScaled() const; |
| 142 | |
| 143 | void dump() const; |
| 144 | raw_ostream &print(raw_ostream &OS) const; |
| 145 | }; |
| 146 | |
| 147 | inline BlockMass operator+(BlockMass L, BlockMass R) { |
| 148 | return BlockMass(L) += R; |
| 149 | } |
| 150 | inline BlockMass operator-(BlockMass L, BlockMass R) { |
| 151 | return BlockMass(L) -= R; |
| 152 | } |
| 153 | inline BlockMass operator*(BlockMass L, BranchProbability R) { |
| 154 | return BlockMass(L) *= R; |
| 155 | } |
| 156 | inline BlockMass operator*(BranchProbability L, BlockMass R) { |
| 157 | return BlockMass(R) *= L; |
| 158 | } |
| 159 | |
| 160 | inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) { |
| 161 | return X.print(OS); |
| 162 | } |
| 163 | |
| 164 | } // end namespace bfi_detail |
| 165 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 166 | /// Base class for BlockFrequencyInfoImpl |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 167 | /// |
| 168 | /// BlockFrequencyInfoImplBase has supporting data structures and some |
| 169 | /// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on |
| 170 | /// the block type (or that call such algorithms) are skipped here. |
| 171 | /// |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 172 | /// Nevertheless, the majority of the overall algorithm documentation lives with |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 173 | /// BlockFrequencyInfoImpl. See there for details. |
| 174 | class BlockFrequencyInfoImplBase { |
| 175 | public: |
| 176 | using Scaled64 = ScaledNumber<uint64_t>; |
| 177 | using BlockMass = bfi_detail::BlockMass; |
| 178 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 179 | /// Representative of a block. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 180 | /// |
| 181 | /// This is a simple wrapper around an index into the reverse-post-order |
| 182 | /// traversal of the blocks. |
| 183 | /// |
| 184 | /// Unlike a block pointer, its order has meaning (location in the |
| 185 | /// topological sort) and it's class is the same regardless of block type. |
| 186 | struct BlockNode { |
| 187 | using IndexType = uint32_t; |
| 188 | |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 189 | IndexType Index; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 190 | |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 191 | BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {} |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 192 | BlockNode(IndexType Index) : Index(Index) {} |
| 193 | |
| 194 | bool operator==(const BlockNode &X) const { return Index == X.Index; } |
| 195 | bool operator!=(const BlockNode &X) const { return Index != X.Index; } |
| 196 | bool operator<=(const BlockNode &X) const { return Index <= X.Index; } |
| 197 | bool operator>=(const BlockNode &X) const { return Index >= X.Index; } |
| 198 | bool operator<(const BlockNode &X) const { return Index < X.Index; } |
| 199 | bool operator>(const BlockNode &X) const { return Index > X.Index; } |
| 200 | |
| 201 | bool isValid() const { return Index <= getMaxIndex(); } |
| 202 | |
| 203 | static size_t getMaxIndex() { |
| 204 | return std::numeric_limits<uint32_t>::max() - 1; |
| 205 | } |
| 206 | }; |
| 207 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 208 | /// Stats about a block itself. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 209 | struct FrequencyData { |
| 210 | Scaled64 Scaled; |
| 211 | uint64_t Integer; |
| 212 | }; |
| 213 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 214 | /// Data about a loop. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 215 | /// |
| 216 | /// Contains the data necessary to represent a loop as a pseudo-node once it's |
| 217 | /// packaged. |
| 218 | struct LoopData { |
| 219 | using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>; |
| 220 | using NodeList = SmallVector<BlockNode, 4>; |
| 221 | using HeaderMassList = SmallVector<BlockMass, 1>; |
| 222 | |
| 223 | LoopData *Parent; ///< The parent loop. |
| 224 | bool IsPackaged = false; ///< Whether this has been packaged. |
| 225 | uint32_t NumHeaders = 1; ///< Number of headers. |
| 226 | ExitMap Exits; ///< Successor edges (and weights). |
| 227 | NodeList Nodes; ///< Header and the members of the loop. |
| 228 | HeaderMassList BackedgeMass; ///< Mass returned to each loop header. |
| 229 | BlockMass Mass; |
| 230 | Scaled64 Scale; |
| 231 | |
| 232 | LoopData(LoopData *Parent, const BlockNode &Header) |
| 233 | : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {} |
| 234 | |
| 235 | template <class It1, class It2> |
| 236 | LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther, |
| 237 | It2 LastOther) |
| 238 | : Parent(Parent), Nodes(FirstHeader, LastHeader) { |
| 239 | NumHeaders = Nodes.size(); |
| 240 | Nodes.insert(Nodes.end(), FirstOther, LastOther); |
| 241 | BackedgeMass.resize(NumHeaders); |
| 242 | } |
| 243 | |
| 244 | bool isHeader(const BlockNode &Node) const { |
| 245 | if (isIrreducible()) |
| 246 | return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders, |
| 247 | Node); |
| 248 | return Node == Nodes[0]; |
| 249 | } |
| 250 | |
| 251 | BlockNode getHeader() const { return Nodes[0]; } |
| 252 | bool isIrreducible() const { return NumHeaders > 1; } |
| 253 | |
| 254 | HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) { |
| 255 | assert(isHeader(B) && "this is only valid on loop header blocks"); |
| 256 | if (isIrreducible()) |
| 257 | return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) - |
| 258 | Nodes.begin(); |
| 259 | return 0; |
| 260 | } |
| 261 | |
| 262 | NodeList::const_iterator members_begin() const { |
| 263 | return Nodes.begin() + NumHeaders; |
| 264 | } |
| 265 | |
| 266 | NodeList::const_iterator members_end() const { return Nodes.end(); } |
| 267 | iterator_range<NodeList::const_iterator> members() const { |
| 268 | return make_range(members_begin(), members_end()); |
| 269 | } |
| 270 | }; |
| 271 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 272 | /// Index of loop information. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 273 | struct WorkingData { |
| 274 | BlockNode Node; ///< This node. |
| 275 | LoopData *Loop = nullptr; ///< The loop this block is inside. |
| 276 | BlockMass Mass; ///< Mass distribution from the entry block. |
| 277 | |
| 278 | WorkingData(const BlockNode &Node) : Node(Node) {} |
| 279 | |
| 280 | bool isLoopHeader() const { return Loop && Loop->isHeader(Node); } |
| 281 | |
| 282 | bool isDoubleLoopHeader() const { |
| 283 | return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() && |
| 284 | Loop->Parent->isHeader(Node); |
| 285 | } |
| 286 | |
| 287 | LoopData *getContainingLoop() const { |
| 288 | if (!isLoopHeader()) |
| 289 | return Loop; |
| 290 | if (!isDoubleLoopHeader()) |
| 291 | return Loop->Parent; |
| 292 | return Loop->Parent->Parent; |
| 293 | } |
| 294 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 295 | /// Resolve a node to its representative. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 296 | /// |
| 297 | /// Get the node currently representing Node, which could be a containing |
| 298 | /// loop. |
| 299 | /// |
| 300 | /// This function should only be called when distributing mass. As long as |
| 301 | /// there are no irreducible edges to Node, then it will have complexity |
| 302 | /// O(1) in this context. |
| 303 | /// |
| 304 | /// In general, the complexity is O(L), where L is the number of loop |
| 305 | /// headers Node has been packaged into. Since this method is called in |
| 306 | /// the context of distributing mass, L will be the number of loop headers |
| 307 | /// an early exit edge jumps out of. |
| 308 | BlockNode getResolvedNode() const { |
| 309 | auto L = getPackagedLoop(); |
| 310 | return L ? L->getHeader() : Node; |
| 311 | } |
| 312 | |
| 313 | LoopData *getPackagedLoop() const { |
| 314 | if (!Loop || !Loop->IsPackaged) |
| 315 | return nullptr; |
| 316 | auto L = Loop; |
| 317 | while (L->Parent && L->Parent->IsPackaged) |
| 318 | L = L->Parent; |
| 319 | return L; |
| 320 | } |
| 321 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 322 | /// Get the appropriate mass for a node. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 323 | /// |
| 324 | /// Get appropriate mass for Node. If Node is a loop-header (whose loop |
| 325 | /// has been packaged), returns the mass of its pseudo-node. If it's a |
| 326 | /// node inside a packaged loop, it returns the loop's mass. |
| 327 | BlockMass &getMass() { |
| 328 | if (!isAPackage()) |
| 329 | return Mass; |
| 330 | if (!isADoublePackage()) |
| 331 | return Loop->Mass; |
| 332 | return Loop->Parent->Mass; |
| 333 | } |
| 334 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 335 | /// Has ContainingLoop been packaged up? |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 336 | bool isPackaged() const { return getResolvedNode() != Node; } |
| 337 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 338 | /// Has Loop been packaged up? |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 339 | bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; } |
| 340 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 341 | /// Has Loop been packaged up twice? |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 342 | bool isADoublePackage() const { |
| 343 | return isDoubleLoopHeader() && Loop->Parent->IsPackaged; |
| 344 | } |
| 345 | }; |
| 346 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 347 | /// Unscaled probability weight. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 348 | /// |
| 349 | /// Probability weight for an edge in the graph (including the |
| 350 | /// successor/target node). |
| 351 | /// |
| 352 | /// All edges in the original function are 32-bit. However, exit edges from |
| 353 | /// loop packages are taken from 64-bit exit masses, so we need 64-bits of |
| 354 | /// space in general. |
| 355 | /// |
| 356 | /// In addition to the raw weight amount, Weight stores the type of the edge |
| 357 | /// in the current context (i.e., the context of the loop being processed). |
| 358 | /// Is this a local edge within the loop, an exit from the loop, or a |
| 359 | /// backedge to the loop header? |
| 360 | struct Weight { |
| 361 | enum DistType { Local, Exit, Backedge }; |
| 362 | DistType Type = Local; |
| 363 | BlockNode TargetNode; |
| 364 | uint64_t Amount = 0; |
| 365 | |
| 366 | Weight() = default; |
| 367 | Weight(DistType Type, BlockNode TargetNode, uint64_t Amount) |
| 368 | : Type(Type), TargetNode(TargetNode), Amount(Amount) {} |
| 369 | }; |
| 370 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 371 | /// Distribution of unscaled probability weight. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 372 | /// |
| 373 | /// Distribution of unscaled probability weight to a set of successors. |
| 374 | /// |
| 375 | /// This class collates the successor edge weights for later processing. |
| 376 | /// |
| 377 | /// \a DidOverflow indicates whether \a Total did overflow while adding to |
| 378 | /// the distribution. It should never overflow twice. |
| 379 | struct Distribution { |
| 380 | using WeightList = SmallVector<Weight, 4>; |
| 381 | |
| 382 | WeightList Weights; ///< Individual successor weights. |
| 383 | uint64_t Total = 0; ///< Sum of all weights. |
| 384 | bool DidOverflow = false; ///< Whether \a Total did overflow. |
| 385 | |
| 386 | Distribution() = default; |
| 387 | |
| 388 | void addLocal(const BlockNode &Node, uint64_t Amount) { |
| 389 | add(Node, Amount, Weight::Local); |
| 390 | } |
| 391 | |
| 392 | void addExit(const BlockNode &Node, uint64_t Amount) { |
| 393 | add(Node, Amount, Weight::Exit); |
| 394 | } |
| 395 | |
| 396 | void addBackedge(const BlockNode &Node, uint64_t Amount) { |
| 397 | add(Node, Amount, Weight::Backedge); |
| 398 | } |
| 399 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 400 | /// Normalize the distribution. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 401 | /// |
| 402 | /// Combines multiple edges to the same \a Weight::TargetNode and scales |
| 403 | /// down so that \a Total fits into 32-bits. |
| 404 | /// |
| 405 | /// This is linear in the size of \a Weights. For the vast majority of |
| 406 | /// cases, adjacent edge weights are combined by sorting WeightList and |
| 407 | /// combining adjacent weights. However, for very large edge lists an |
| 408 | /// auxiliary hash table is used. |
| 409 | void normalize(); |
| 410 | |
| 411 | private: |
| 412 | void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type); |
| 413 | }; |
| 414 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 415 | /// Data about each block. This is used downstream. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 416 | std::vector<FrequencyData> Freqs; |
| 417 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 418 | /// Whether each block is an irreducible loop header. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 419 | /// This is used downstream. |
| 420 | SparseBitVector<> IsIrrLoopHeader; |
| 421 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 422 | /// Loop data: see initializeLoops(). |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 423 | std::vector<WorkingData> Working; |
| 424 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 425 | /// Indexed information about loops. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 426 | std::list<LoopData> Loops; |
| 427 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 428 | /// Virtual destructor. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 429 | /// |
| 430 | /// Need a virtual destructor to mask the compiler warning about |
| 431 | /// getBlockName(). |
| 432 | virtual ~BlockFrequencyInfoImplBase() = default; |
| 433 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 434 | /// Add all edges out of a packaged loop to the distribution. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 435 | /// |
| 436 | /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each |
| 437 | /// successor edge. |
| 438 | /// |
| 439 | /// \return \c true unless there's an irreducible backedge. |
| 440 | bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop, |
| 441 | Distribution &Dist); |
| 442 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 443 | /// Add an edge to the distribution. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 444 | /// |
| 445 | /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the |
| 446 | /// edge is local/exit/backedge is in the context of LoopHead. Otherwise, |
| 447 | /// every edge should be a local edge (since all the loops are packaged up). |
| 448 | /// |
| 449 | /// \return \c true unless aborted due to an irreducible backedge. |
| 450 | bool addToDist(Distribution &Dist, const LoopData *OuterLoop, |
| 451 | const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight); |
| 452 | |
| 453 | LoopData &getLoopPackage(const BlockNode &Head) { |
| 454 | assert(Head.Index < Working.size()); |
| 455 | assert(Working[Head.Index].isLoopHeader()); |
| 456 | return *Working[Head.Index].Loop; |
| 457 | } |
| 458 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 459 | /// Analyze irreducible SCCs. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 460 | /// |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 461 | /// Separate irreducible SCCs from \c G, which is an explicit graph of \c |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 462 | /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr). |
| 463 | /// Insert them into \a Loops before \c Insert. |
| 464 | /// |
| 465 | /// \return the \c LoopData nodes representing the irreducible SCCs. |
| 466 | iterator_range<std::list<LoopData>::iterator> |
| 467 | analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop, |
| 468 | std::list<LoopData>::iterator Insert); |
| 469 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 470 | /// Update a loop after packaging irreducible SCCs inside of it. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 471 | /// |
| 472 | /// Update \c OuterLoop. Before finding irreducible control flow, it was |
| 473 | /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a |
| 474 | /// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged |
| 475 | /// up need to be removed from \a OuterLoop::Nodes. |
| 476 | void updateLoopWithIrreducible(LoopData &OuterLoop); |
| 477 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 478 | /// Distribute mass according to a distribution. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 479 | /// |
| 480 | /// Distributes the mass in Source according to Dist. If LoopHead.isValid(), |
| 481 | /// backedges and exits are stored in its entry in Loops. |
| 482 | /// |
| 483 | /// Mass is distributed in parallel from two copies of the source mass. |
| 484 | void distributeMass(const BlockNode &Source, LoopData *OuterLoop, |
| 485 | Distribution &Dist); |
| 486 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 487 | /// Compute the loop scale for a loop. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 488 | void computeLoopScale(LoopData &Loop); |
| 489 | |
| 490 | /// Adjust the mass of all headers in an irreducible loop. |
| 491 | /// |
| 492 | /// Initially, irreducible loops are assumed to distribute their mass |
| 493 | /// equally among its headers. This can lead to wrong frequency estimates |
| 494 | /// since some headers may be executed more frequently than others. |
| 495 | /// |
| 496 | /// This adjusts header mass distribution so it matches the weights of |
| 497 | /// the backedges going into each of the loop headers. |
| 498 | void adjustLoopHeaderMass(LoopData &Loop); |
| 499 | |
| 500 | void distributeIrrLoopHeaderMass(Distribution &Dist); |
| 501 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 502 | /// Package up a loop. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 503 | void packageLoop(LoopData &Loop); |
| 504 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 505 | /// Unwrap loops. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 506 | void unwrapLoops(); |
| 507 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 508 | /// Finalize frequency metrics. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 509 | /// |
| 510 | /// Calculates final frequencies and cleans up no-longer-needed data |
| 511 | /// structures. |
| 512 | void finalizeMetrics(); |
| 513 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 514 | /// Clear all memory. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 515 | void clear(); |
| 516 | |
| 517 | virtual std::string getBlockName(const BlockNode &Node) const; |
| 518 | std::string getLoopName(const LoopData &Loop) const; |
| 519 | |
| 520 | virtual raw_ostream &print(raw_ostream &OS) const { return OS; } |
| 521 | void dump() const { print(dbgs()); } |
| 522 | |
| 523 | Scaled64 getFloatingBlockFreq(const BlockNode &Node) const; |
| 524 | |
| 525 | BlockFrequency getBlockFreq(const BlockNode &Node) const; |
| 526 | Optional<uint64_t> getBlockProfileCount(const Function &F, |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 527 | const BlockNode &Node, |
| 528 | bool AllowSynthetic = false) const; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 529 | Optional<uint64_t> getProfileCountFromFreq(const Function &F, |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 530 | uint64_t Freq, |
| 531 | bool AllowSynthetic = false) const; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 532 | bool isIrrLoopHeader(const BlockNode &Node); |
| 533 | |
| 534 | void setBlockFreq(const BlockNode &Node, uint64_t Freq); |
| 535 | |
| 536 | raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const; |
| 537 | raw_ostream &printBlockFreq(raw_ostream &OS, |
| 538 | const BlockFrequency &Freq) const; |
| 539 | |
| 540 | uint64_t getEntryFreq() const { |
| 541 | assert(!Freqs.empty()); |
| 542 | return Freqs[0].Integer; |
| 543 | } |
| 544 | }; |
| 545 | |
| 546 | namespace bfi_detail { |
| 547 | |
| 548 | template <class BlockT> struct TypeMap {}; |
| 549 | template <> struct TypeMap<BasicBlock> { |
| 550 | using BlockT = BasicBlock; |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 551 | using BlockKeyT = AssertingVH<const BasicBlock>; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 552 | using FunctionT = Function; |
| 553 | using BranchProbabilityInfoT = BranchProbabilityInfo; |
| 554 | using LoopT = Loop; |
| 555 | using LoopInfoT = LoopInfo; |
| 556 | }; |
| 557 | template <> struct TypeMap<MachineBasicBlock> { |
| 558 | using BlockT = MachineBasicBlock; |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 559 | using BlockKeyT = const MachineBasicBlock *; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 560 | using FunctionT = MachineFunction; |
| 561 | using BranchProbabilityInfoT = MachineBranchProbabilityInfo; |
| 562 | using LoopT = MachineLoop; |
| 563 | using LoopInfoT = MachineLoopInfo; |
| 564 | }; |
| 565 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 566 | template <class BlockT, class BFIImplT> |
| 567 | class BFICallbackVH; |
| 568 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 569 | /// Get the name of a MachineBasicBlock. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 570 | /// |
| 571 | /// Get the name of a MachineBasicBlock. It's templated so that including from |
| 572 | /// CodeGen is unnecessary (that would be a layering issue). |
| 573 | /// |
| 574 | /// This is used mainly for debug output. The name is similar to |
| 575 | /// MachineBasicBlock::getFullName(), but skips the name of the function. |
| 576 | template <class BlockT> std::string getBlockName(const BlockT *BB) { |
| 577 | assert(BB && "Unexpected nullptr"); |
| 578 | auto MachineName = "BB" + Twine(BB->getNumber()); |
| 579 | if (BB->getBasicBlock()) |
| 580 | return (MachineName + "[" + BB->getName() + "]").str(); |
| 581 | return MachineName.str(); |
| 582 | } |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 583 | /// Get the name of a BasicBlock. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 584 | template <> inline std::string getBlockName(const BasicBlock *BB) { |
| 585 | assert(BB && "Unexpected nullptr"); |
| 586 | return BB->getName().str(); |
| 587 | } |
| 588 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 589 | /// Graph of irreducible control flow. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 590 | /// |
| 591 | /// This graph is used for determining the SCCs in a loop (or top-level |
| 592 | /// function) that has irreducible control flow. |
| 593 | /// |
| 594 | /// During the block frequency algorithm, the local graphs are defined in a |
| 595 | /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock |
| 596 | /// graphs for most edges, but getting others from \a LoopData::ExitMap. The |
| 597 | /// latter only has successor information. |
| 598 | /// |
| 599 | /// \a IrreducibleGraph makes this graph explicit. It's in a form that can use |
| 600 | /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator), |
| 601 | /// and it explicitly lists predecessors and successors. The initialization |
| 602 | /// that relies on \c MachineBasicBlock is defined in the header. |
| 603 | struct IrreducibleGraph { |
| 604 | using BFIBase = BlockFrequencyInfoImplBase; |
| 605 | |
| 606 | BFIBase &BFI; |
| 607 | |
| 608 | using BlockNode = BFIBase::BlockNode; |
| 609 | struct IrrNode { |
| 610 | BlockNode Node; |
| 611 | unsigned NumIn = 0; |
| 612 | std::deque<const IrrNode *> Edges; |
| 613 | |
| 614 | IrrNode(const BlockNode &Node) : Node(Node) {} |
| 615 | |
| 616 | using iterator = std::deque<const IrrNode *>::const_iterator; |
| 617 | |
| 618 | iterator pred_begin() const { return Edges.begin(); } |
| 619 | iterator succ_begin() const { return Edges.begin() + NumIn; } |
| 620 | iterator pred_end() const { return succ_begin(); } |
| 621 | iterator succ_end() const { return Edges.end(); } |
| 622 | }; |
| 623 | BlockNode Start; |
| 624 | const IrrNode *StartIrr = nullptr; |
| 625 | std::vector<IrrNode> Nodes; |
| 626 | SmallDenseMap<uint32_t, IrrNode *, 4> Lookup; |
| 627 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 628 | /// Construct an explicit graph containing irreducible control flow. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 629 | /// |
| 630 | /// Construct an explicit graph of the control flow in \c OuterLoop (or the |
| 631 | /// top-level function, if \c OuterLoop is \c nullptr). Uses \c |
| 632 | /// addBlockEdges to add block successors that have not been packaged into |
| 633 | /// loops. |
| 634 | /// |
| 635 | /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected |
| 636 | /// user of this. |
| 637 | template <class BlockEdgesAdder> |
| 638 | IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop, |
| 639 | BlockEdgesAdder addBlockEdges) : BFI(BFI) { |
| 640 | initialize(OuterLoop, addBlockEdges); |
| 641 | } |
| 642 | |
| 643 | template <class BlockEdgesAdder> |
| 644 | void initialize(const BFIBase::LoopData *OuterLoop, |
| 645 | BlockEdgesAdder addBlockEdges); |
| 646 | void addNodesInLoop(const BFIBase::LoopData &OuterLoop); |
| 647 | void addNodesInFunction(); |
| 648 | |
| 649 | void addNode(const BlockNode &Node) { |
| 650 | Nodes.emplace_back(Node); |
| 651 | BFI.Working[Node.Index].getMass() = BlockMass::getEmpty(); |
| 652 | } |
| 653 | |
| 654 | void indexNodes(); |
| 655 | template <class BlockEdgesAdder> |
| 656 | void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop, |
| 657 | BlockEdgesAdder addBlockEdges); |
| 658 | void addEdge(IrrNode &Irr, const BlockNode &Succ, |
| 659 | const BFIBase::LoopData *OuterLoop); |
| 660 | }; |
| 661 | |
| 662 | template <class BlockEdgesAdder> |
| 663 | void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop, |
| 664 | BlockEdgesAdder addBlockEdges) { |
| 665 | if (OuterLoop) { |
| 666 | addNodesInLoop(*OuterLoop); |
| 667 | for (auto N : OuterLoop->Nodes) |
| 668 | addEdges(N, OuterLoop, addBlockEdges); |
| 669 | } else { |
| 670 | addNodesInFunction(); |
| 671 | for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) |
| 672 | addEdges(Index, OuterLoop, addBlockEdges); |
| 673 | } |
| 674 | StartIrr = Lookup[Start.Index]; |
| 675 | } |
| 676 | |
| 677 | template <class BlockEdgesAdder> |
| 678 | void IrreducibleGraph::addEdges(const BlockNode &Node, |
| 679 | const BFIBase::LoopData *OuterLoop, |
| 680 | BlockEdgesAdder addBlockEdges) { |
| 681 | auto L = Lookup.find(Node.Index); |
| 682 | if (L == Lookup.end()) |
| 683 | return; |
| 684 | IrrNode &Irr = *L->second; |
| 685 | const auto &Working = BFI.Working[Node.Index]; |
| 686 | |
| 687 | if (Working.isAPackage()) |
| 688 | for (const auto &I : Working.Loop->Exits) |
| 689 | addEdge(Irr, I.first, OuterLoop); |
| 690 | else |
| 691 | addBlockEdges(*this, Irr, OuterLoop); |
| 692 | } |
| 693 | |
| 694 | } // end namespace bfi_detail |
| 695 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 696 | /// Shared implementation for block frequency analysis. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 697 | /// |
| 698 | /// This is a shared implementation of BlockFrequencyInfo and |
| 699 | /// MachineBlockFrequencyInfo, and calculates the relative frequencies of |
| 700 | /// blocks. |
| 701 | /// |
| 702 | /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block, |
| 703 | /// which is called the header. A given loop, L, can have sub-loops, which are |
| 704 | /// loops within the subgraph of L that exclude its header. (A "trivial" SCC |
| 705 | /// consists of a single block that does not have a self-edge.) |
| 706 | /// |
| 707 | /// In addition to loops, this algorithm has limited support for irreducible |
| 708 | /// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 709 | /// discovered on the fly, and modelled as loops with multiple headers. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 710 | /// |
| 711 | /// The headers of irreducible sub-SCCs consist of its entry blocks and all |
| 712 | /// nodes that are targets of a backedge within it (excluding backedges within |
| 713 | /// true sub-loops). Block frequency calculations act as if a block is |
| 714 | /// inserted that intercepts all the edges to the headers. All backedges and |
| 715 | /// entries point to this block. Its successors are the headers, which split |
| 716 | /// the frequency evenly. |
| 717 | /// |
| 718 | /// This algorithm leverages BlockMass and ScaledNumber to maintain precision, |
| 719 | /// separates mass distribution from loop scaling, and dithers to eliminate |
| 720 | /// probability mass loss. |
| 721 | /// |
| 722 | /// The implementation is split between BlockFrequencyInfoImpl, which knows the |
| 723 | /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and |
| 724 | /// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a |
| 725 | /// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in |
| 726 | /// reverse-post order. This gives two advantages: it's easy to compare the |
| 727 | /// relative ordering of two nodes, and maps keyed on BlockT can be represented |
| 728 | /// by vectors. |
| 729 | /// |
| 730 | /// This algorithm is O(V+E), unless there is irreducible control flow, in |
| 731 | /// which case it's O(V*E) in the worst case. |
| 732 | /// |
| 733 | /// These are the main stages: |
| 734 | /// |
| 735 | /// 0. Reverse post-order traversal (\a initializeRPOT()). |
| 736 | /// |
| 737 | /// Run a single post-order traversal and save it (in reverse) in RPOT. |
| 738 | /// All other stages make use of this ordering. Save a lookup from BlockT |
| 739 | /// to BlockNode (the index into RPOT) in Nodes. |
| 740 | /// |
| 741 | /// 1. Loop initialization (\a initializeLoops()). |
| 742 | /// |
| 743 | /// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of |
| 744 | /// the algorithm. In particular, store the immediate members of each loop |
| 745 | /// in reverse post-order. |
| 746 | /// |
| 747 | /// 2. Calculate mass and scale in loops (\a computeMassInLoops()). |
| 748 | /// |
| 749 | /// For each loop (bottom-up), distribute mass through the DAG resulting |
| 750 | /// from ignoring backedges and treating sub-loops as a single pseudo-node. |
| 751 | /// Track the backedge mass distributed to the loop header, and use it to |
| 752 | /// calculate the loop scale (number of loop iterations). Immediate |
| 753 | /// members that represent sub-loops will already have been visited and |
| 754 | /// packaged into a pseudo-node. |
| 755 | /// |
| 756 | /// Distributing mass in a loop is a reverse-post-order traversal through |
| 757 | /// the loop. Start by assigning full mass to the Loop header. For each |
| 758 | /// node in the loop: |
| 759 | /// |
| 760 | /// - Fetch and categorize the weight distribution for its successors. |
| 761 | /// If this is a packaged-subloop, the weight distribution is stored |
| 762 | /// in \a LoopData::Exits. Otherwise, fetch it from |
| 763 | /// BranchProbabilityInfo. |
| 764 | /// |
| 765 | /// - Each successor is categorized as \a Weight::Local, a local edge |
| 766 | /// within the current loop, \a Weight::Backedge, a backedge to the |
| 767 | /// loop header, or \a Weight::Exit, any successor outside the loop. |
| 768 | /// The weight, the successor, and its category are stored in \a |
| 769 | /// Distribution. There can be multiple edges to each successor. |
| 770 | /// |
| 771 | /// - If there's a backedge to a non-header, there's an irreducible SCC. |
| 772 | /// The usual flow is temporarily aborted. \a |
| 773 | /// computeIrreducibleMass() finds the irreducible SCCs within the |
| 774 | /// loop, packages them up, and restarts the flow. |
| 775 | /// |
| 776 | /// - Normalize the distribution: scale weights down so that their sum |
| 777 | /// is 32-bits, and coalesce multiple edges to the same node. |
| 778 | /// |
| 779 | /// - Distribute the mass accordingly, dithering to minimize mass loss, |
| 780 | /// as described in \a distributeMass(). |
| 781 | /// |
| 782 | /// In the case of irreducible loops, instead of a single loop header, |
| 783 | /// there will be several. The computation of backedge masses is similar |
| 784 | /// but instead of having a single backedge mass, there will be one |
| 785 | /// backedge per loop header. In these cases, each backedge will carry |
| 786 | /// a mass proportional to the edge weights along the corresponding |
| 787 | /// path. |
| 788 | /// |
| 789 | /// At the end of propagation, the full mass assigned to the loop will be |
| 790 | /// distributed among the loop headers proportionally according to the |
| 791 | /// mass flowing through their backedges. |
| 792 | /// |
| 793 | /// Finally, calculate the loop scale from the accumulated backedge mass. |
| 794 | /// |
| 795 | /// 3. Distribute mass in the function (\a computeMassInFunction()). |
| 796 | /// |
| 797 | /// Finally, distribute mass through the DAG resulting from packaging all |
| 798 | /// loops in the function. This uses the same algorithm as distributing |
| 799 | /// mass in a loop, except that there are no exit or backedge edges. |
| 800 | /// |
| 801 | /// 4. Unpackage loops (\a unwrapLoops()). |
| 802 | /// |
| 803 | /// Initialize each block's frequency to a floating point representation of |
| 804 | /// its mass. |
| 805 | /// |
| 806 | /// Visit loops top-down, scaling the frequencies of its immediate members |
| 807 | /// by the loop's pseudo-node's frequency. |
| 808 | /// |
| 809 | /// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()). |
| 810 | /// |
| 811 | /// Using the min and max frequencies as a guide, translate floating point |
| 812 | /// frequencies to an appropriate range in uint64_t. |
| 813 | /// |
| 814 | /// It has some known flaws. |
| 815 | /// |
| 816 | /// - The model of irreducible control flow is a rough approximation. |
| 817 | /// |
| 818 | /// Modelling irreducible control flow exactly involves setting up and |
| 819 | /// solving a group of infinite geometric series. Such precision is |
| 820 | /// unlikely to be worthwhile, since most of our algorithms give up on |
| 821 | /// irreducible control flow anyway. |
| 822 | /// |
| 823 | /// Nevertheless, we might find that we need to get closer. Here's a sort |
| 824 | /// of TODO list for the model with diminishing returns, to be completed as |
| 825 | /// necessary. |
| 826 | /// |
| 827 | /// - The headers for the \a LoopData representing an irreducible SCC |
| 828 | /// include non-entry blocks. When these extra blocks exist, they |
| 829 | /// indicate a self-contained irreducible sub-SCC. We could treat them |
| 830 | /// as sub-loops, rather than arbitrarily shoving the problematic |
| 831 | /// blocks into the headers of the main irreducible SCC. |
| 832 | /// |
| 833 | /// - Entry frequencies are assumed to be evenly split between the |
| 834 | /// headers of a given irreducible SCC, which is the only option if we |
| 835 | /// need to compute mass in the SCC before its parent loop. Instead, |
| 836 | /// we could partially compute mass in the parent loop, and stop when |
| 837 | /// we get to the SCC. Here, we have the correct ratio of entry |
| 838 | /// masses, which we can use to adjust their relative frequencies. |
| 839 | /// Compute mass in the SCC, and then continue propagation in the |
| 840 | /// parent. |
| 841 | /// |
| 842 | /// - We can propagate mass iteratively through the SCC, for some fixed |
| 843 | /// number of iterations. Each iteration starts by assigning the entry |
| 844 | /// blocks their backedge mass from the prior iteration. The final |
| 845 | /// mass for each block (and each exit, and the total backedge mass |
| 846 | /// used for computing loop scale) is the sum of all iterations. |
| 847 | /// (Running this until fixed point would "solve" the geometric |
| 848 | /// series by simulation.) |
| 849 | template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase { |
| 850 | // This is part of a workaround for a GCC 4.7 crash on lambdas. |
| 851 | friend struct bfi_detail::BlockEdgesAdder<BT>; |
| 852 | |
| 853 | using BlockT = typename bfi_detail::TypeMap<BT>::BlockT; |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 854 | using BlockKeyT = typename bfi_detail::TypeMap<BT>::BlockKeyT; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 855 | using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT; |
| 856 | using BranchProbabilityInfoT = |
| 857 | typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT; |
| 858 | using LoopT = typename bfi_detail::TypeMap<BT>::LoopT; |
| 859 | using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT; |
| 860 | using Successor = GraphTraits<const BlockT *>; |
| 861 | using Predecessor = GraphTraits<Inverse<const BlockT *>>; |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 862 | using BFICallbackVH = |
| 863 | bfi_detail::BFICallbackVH<BlockT, BlockFrequencyInfoImpl>; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 864 | |
| 865 | const BranchProbabilityInfoT *BPI = nullptr; |
| 866 | const LoopInfoT *LI = nullptr; |
| 867 | const FunctionT *F = nullptr; |
| 868 | |
| 869 | // All blocks in reverse postorder. |
| 870 | std::vector<const BlockT *> RPOT; |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 871 | DenseMap<BlockKeyT, std::pair<BlockNode, BFICallbackVH>> Nodes; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 872 | |
| 873 | using rpot_iterator = typename std::vector<const BlockT *>::const_iterator; |
| 874 | |
| 875 | rpot_iterator rpot_begin() const { return RPOT.begin(); } |
| 876 | rpot_iterator rpot_end() const { return RPOT.end(); } |
| 877 | |
| 878 | size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); } |
| 879 | |
| 880 | BlockNode getNode(const rpot_iterator &I) const { |
| 881 | return BlockNode(getIndex(I)); |
| 882 | } |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 883 | |
| 884 | BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB).first; } |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 885 | |
| 886 | const BlockT *getBlock(const BlockNode &Node) const { |
| 887 | assert(Node.Index < RPOT.size()); |
| 888 | return RPOT[Node.Index]; |
| 889 | } |
| 890 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 891 | /// Run (and save) a post-order traversal. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 892 | /// |
| 893 | /// Saves a reverse post-order traversal of all the nodes in \a F. |
| 894 | void initializeRPOT(); |
| 895 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 896 | /// Initialize loop data. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 897 | /// |
| 898 | /// Build up \a Loops using \a LoopInfo. \a LoopInfo gives us a mapping from |
| 899 | /// each block to the deepest loop it's in, but we need the inverse. For each |
| 900 | /// loop, we store in reverse post-order its "immediate" members, defined as |
| 901 | /// the header, the headers of immediate sub-loops, and all other blocks in |
| 902 | /// the loop that are not in sub-loops. |
| 903 | void initializeLoops(); |
| 904 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 905 | /// Propagate to a block's successors. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 906 | /// |
| 907 | /// In the context of distributing mass through \c OuterLoop, divide the mass |
| 908 | /// currently assigned to \c Node between its successors. |
| 909 | /// |
| 910 | /// \return \c true unless there's an irreducible backedge. |
| 911 | bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node); |
| 912 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 913 | /// Compute mass in a particular loop. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 914 | /// |
| 915 | /// Assign mass to \c Loop's header, and then for each block in \c Loop in |
| 916 | /// reverse post-order, distribute mass to its successors. Only visits nodes |
| 917 | /// that have not been packaged into sub-loops. |
| 918 | /// |
| 919 | /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop. |
| 920 | /// \return \c true unless there's an irreducible backedge. |
| 921 | bool computeMassInLoop(LoopData &Loop); |
| 922 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 923 | /// Try to compute mass in the top-level function. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 924 | /// |
| 925 | /// Assign mass to the entry block, and then for each block in reverse |
| 926 | /// post-order, distribute mass to its successors. Skips nodes that have |
| 927 | /// been packaged into loops. |
| 928 | /// |
| 929 | /// \pre \a computeMassInLoops() has been called. |
| 930 | /// \return \c true unless there's an irreducible backedge. |
| 931 | bool tryToComputeMassInFunction(); |
| 932 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 933 | /// Compute mass in (and package up) irreducible SCCs. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 934 | /// |
| 935 | /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front |
| 936 | /// of \c Insert), and call \a computeMassInLoop() on each of them. |
| 937 | /// |
| 938 | /// If \c OuterLoop is \c nullptr, it refers to the top-level function. |
| 939 | /// |
| 940 | /// \pre \a computeMassInLoop() has been called for each subloop of \c |
| 941 | /// OuterLoop. |
| 942 | /// \pre \c Insert points at the last loop successfully processed by \a |
| 943 | /// computeMassInLoop(). |
| 944 | /// \pre \c OuterLoop has irreducible SCCs. |
| 945 | void computeIrreducibleMass(LoopData *OuterLoop, |
| 946 | std::list<LoopData>::iterator Insert); |
| 947 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 948 | /// Compute mass in all loops. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 949 | /// |
| 950 | /// For each loop bottom-up, call \a computeMassInLoop(). |
| 951 | /// |
| 952 | /// \a computeMassInLoop() aborts (and returns \c false) on loops that |
| 953 | /// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then |
| 954 | /// re-enter \a computeMassInLoop(). |
| 955 | /// |
| 956 | /// \post \a computeMassInLoop() has returned \c true for every loop. |
| 957 | void computeMassInLoops(); |
| 958 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 959 | /// Compute mass in the top-level function. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 960 | /// |
| 961 | /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to |
| 962 | /// compute mass in the top-level function. |
| 963 | /// |
| 964 | /// \post \a tryToComputeMassInFunction() has returned \c true. |
| 965 | void computeMassInFunction(); |
| 966 | |
| 967 | std::string getBlockName(const BlockNode &Node) const override { |
| 968 | return bfi_detail::getBlockName(getBlock(Node)); |
| 969 | } |
| 970 | |
| 971 | public: |
| 972 | BlockFrequencyInfoImpl() = default; |
| 973 | |
| 974 | const FunctionT *getFunction() const { return F; } |
| 975 | |
| 976 | void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI, |
| 977 | const LoopInfoT &LI); |
| 978 | |
| 979 | using BlockFrequencyInfoImplBase::getEntryFreq; |
| 980 | |
| 981 | BlockFrequency getBlockFreq(const BlockT *BB) const { |
| 982 | return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB)); |
| 983 | } |
| 984 | |
| 985 | Optional<uint64_t> getBlockProfileCount(const Function &F, |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 986 | const BlockT *BB, |
| 987 | bool AllowSynthetic = false) const { |
| 988 | return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB), |
| 989 | AllowSynthetic); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 990 | } |
| 991 | |
| 992 | Optional<uint64_t> getProfileCountFromFreq(const Function &F, |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 993 | uint64_t Freq, |
| 994 | bool AllowSynthetic = false) const { |
| 995 | return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq, |
| 996 | AllowSynthetic); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 997 | } |
| 998 | |
| 999 | bool isIrrLoopHeader(const BlockT *BB) { |
| 1000 | return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB)); |
| 1001 | } |
| 1002 | |
| 1003 | void setBlockFreq(const BlockT *BB, uint64_t Freq); |
| 1004 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 1005 | void forgetBlock(const BlockT *BB) { |
| 1006 | // We don't erase corresponding items from `Freqs`, `RPOT` and other to |
| 1007 | // avoid invalidating indices. Doing so would have saved some memory, but |
| 1008 | // it's not worth it. |
| 1009 | Nodes.erase(BB); |
| 1010 | } |
| 1011 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1012 | Scaled64 getFloatingBlockFreq(const BlockT *BB) const { |
| 1013 | return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB)); |
| 1014 | } |
| 1015 | |
| 1016 | const BranchProbabilityInfoT &getBPI() const { return *BPI; } |
| 1017 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1018 | /// Print the frequencies for the current function. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1019 | /// |
| 1020 | /// Prints the frequencies for the blocks in the current function. |
| 1021 | /// |
| 1022 | /// Blocks are printed in the natural iteration order of the function, rather |
| 1023 | /// than reverse post-order. This provides two advantages: writing -analyze |
| 1024 | /// tests is easier (since blocks come out in source order), and even |
| 1025 | /// unreachable blocks are printed. |
| 1026 | /// |
| 1027 | /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so |
| 1028 | /// we need to override it here. |
| 1029 | raw_ostream &print(raw_ostream &OS) const override; |
| 1030 | |
| 1031 | using BlockFrequencyInfoImplBase::dump; |
| 1032 | using BlockFrequencyInfoImplBase::printBlockFreq; |
| 1033 | |
| 1034 | raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const { |
| 1035 | return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB)); |
| 1036 | } |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 1037 | |
| 1038 | void verifyMatch(BlockFrequencyInfoImpl<BT> &Other) const; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1039 | }; |
| 1040 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 1041 | namespace bfi_detail { |
| 1042 | |
| 1043 | template <class BFIImplT> |
| 1044 | class BFICallbackVH<BasicBlock, BFIImplT> : public CallbackVH { |
| 1045 | BFIImplT *BFIImpl; |
| 1046 | |
| 1047 | public: |
| 1048 | BFICallbackVH() = default; |
| 1049 | |
| 1050 | BFICallbackVH(const BasicBlock *BB, BFIImplT *BFIImpl) |
| 1051 | : CallbackVH(BB), BFIImpl(BFIImpl) {} |
| 1052 | |
| 1053 | virtual ~BFICallbackVH() = default; |
| 1054 | |
| 1055 | void deleted() override { |
| 1056 | BFIImpl->forgetBlock(cast<BasicBlock>(getValPtr())); |
| 1057 | } |
| 1058 | }; |
| 1059 | |
| 1060 | /// Dummy implementation since MachineBasicBlocks aren't Values, so ValueHandles |
| 1061 | /// don't apply to them. |
| 1062 | template <class BFIImplT> |
| 1063 | class BFICallbackVH<MachineBasicBlock, BFIImplT> { |
| 1064 | public: |
| 1065 | BFICallbackVH() = default; |
| 1066 | BFICallbackVH(const MachineBasicBlock *, BFIImplT *) {} |
| 1067 | }; |
| 1068 | |
| 1069 | } // end namespace bfi_detail |
| 1070 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1071 | template <class BT> |
| 1072 | void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F, |
| 1073 | const BranchProbabilityInfoT &BPI, |
| 1074 | const LoopInfoT &LI) { |
| 1075 | // Save the parameters. |
| 1076 | this->BPI = &BPI; |
| 1077 | this->LI = &LI; |
| 1078 | this->F = &F; |
| 1079 | |
| 1080 | // Clean up left-over data structures. |
| 1081 | BlockFrequencyInfoImplBase::clear(); |
| 1082 | RPOT.clear(); |
| 1083 | Nodes.clear(); |
| 1084 | |
| 1085 | // Initialize. |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1086 | LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName() |
| 1087 | << "\n=================" |
| 1088 | << std::string(F.getName().size(), '=') << "\n"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1089 | initializeRPOT(); |
| 1090 | initializeLoops(); |
| 1091 | |
| 1092 | // Visit loops in post-order to find the local mass distribution, and then do |
| 1093 | // the full function. |
| 1094 | computeMassInLoops(); |
| 1095 | computeMassInFunction(); |
| 1096 | unwrapLoops(); |
| 1097 | finalizeMetrics(); |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 1098 | |
| 1099 | if (CheckBFIUnknownBlockQueries) { |
| 1100 | // To detect BFI queries for unknown blocks, add entries for unreachable |
| 1101 | // blocks, if any. This is to distinguish between known/existing unreachable |
| 1102 | // blocks and unknown blocks. |
| 1103 | for (const BlockT &BB : F) |
| 1104 | if (!Nodes.count(&BB)) |
| 1105 | setBlockFreq(&BB, 0); |
| 1106 | } |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1107 | } |
| 1108 | |
| 1109 | template <class BT> |
| 1110 | void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) { |
| 1111 | if (Nodes.count(BB)) |
| 1112 | BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq); |
| 1113 | else { |
| 1114 | // If BB is a newly added block after BFI is done, we need to create a new |
| 1115 | // BlockNode for it assigned with a new index. The index can be determined |
| 1116 | // by the size of Freqs. |
| 1117 | BlockNode NewNode(Freqs.size()); |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 1118 | Nodes[BB] = {NewNode, BFICallbackVH(BB, this)}; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1119 | Freqs.emplace_back(); |
| 1120 | BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq); |
| 1121 | } |
| 1122 | } |
| 1123 | |
| 1124 | template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() { |
| 1125 | const BlockT *Entry = &F->front(); |
| 1126 | RPOT.reserve(F->size()); |
| 1127 | std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT)); |
| 1128 | std::reverse(RPOT.begin(), RPOT.end()); |
| 1129 | |
| 1130 | assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() && |
| 1131 | "More nodes in function than Block Frequency Info supports"); |
| 1132 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1133 | LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1134 | for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) { |
| 1135 | BlockNode Node = getNode(I); |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1136 | LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) |
| 1137 | << "\n"); |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 1138 | Nodes[*I] = {Node, BFICallbackVH(*I, this)}; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1139 | } |
| 1140 | |
| 1141 | Working.reserve(RPOT.size()); |
| 1142 | for (size_t Index = 0; Index < RPOT.size(); ++Index) |
| 1143 | Working.emplace_back(Index); |
| 1144 | Freqs.resize(RPOT.size()); |
| 1145 | } |
| 1146 | |
| 1147 | template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() { |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1148 | LLVM_DEBUG(dbgs() << "loop-detection\n"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1149 | if (LI->empty()) |
| 1150 | return; |
| 1151 | |
| 1152 | // Visit loops top down and assign them an index. |
| 1153 | std::deque<std::pair<const LoopT *, LoopData *>> Q; |
| 1154 | for (const LoopT *L : *LI) |
| 1155 | Q.emplace_back(L, nullptr); |
| 1156 | while (!Q.empty()) { |
| 1157 | const LoopT *Loop = Q.front().first; |
| 1158 | LoopData *Parent = Q.front().second; |
| 1159 | Q.pop_front(); |
| 1160 | |
| 1161 | BlockNode Header = getNode(Loop->getHeader()); |
| 1162 | assert(Header.isValid()); |
| 1163 | |
| 1164 | Loops.emplace_back(Parent, Header); |
| 1165 | Working[Header.Index].Loop = &Loops.back(); |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1166 | LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1167 | |
| 1168 | for (const LoopT *L : *Loop) |
| 1169 | Q.emplace_back(L, &Loops.back()); |
| 1170 | } |
| 1171 | |
| 1172 | // Visit nodes in reverse post-order and add them to their deepest containing |
| 1173 | // loop. |
| 1174 | for (size_t Index = 0; Index < RPOT.size(); ++Index) { |
| 1175 | // Loop headers have already been mostly mapped. |
| 1176 | if (Working[Index].isLoopHeader()) { |
| 1177 | LoopData *ContainingLoop = Working[Index].getContainingLoop(); |
| 1178 | if (ContainingLoop) |
| 1179 | ContainingLoop->Nodes.push_back(Index); |
| 1180 | continue; |
| 1181 | } |
| 1182 | |
| 1183 | const LoopT *Loop = LI->getLoopFor(RPOT[Index]); |
| 1184 | if (!Loop) |
| 1185 | continue; |
| 1186 | |
| 1187 | // Add this node to its containing loop's member list. |
| 1188 | BlockNode Header = getNode(Loop->getHeader()); |
| 1189 | assert(Header.isValid()); |
| 1190 | const auto &HeaderData = Working[Header.Index]; |
| 1191 | assert(HeaderData.isLoopHeader()); |
| 1192 | |
| 1193 | Working[Index].Loop = HeaderData.Loop; |
| 1194 | HeaderData.Loop->Nodes.push_back(Index); |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1195 | LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) |
| 1196 | << ": member = " << getBlockName(Index) << "\n"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1197 | } |
| 1198 | } |
| 1199 | |
| 1200 | template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() { |
| 1201 | // Visit loops with the deepest first, and the top-level loops last. |
| 1202 | for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) { |
| 1203 | if (computeMassInLoop(*L)) |
| 1204 | continue; |
| 1205 | auto Next = std::next(L); |
| 1206 | computeIrreducibleMass(&*L, L.base()); |
| 1207 | L = std::prev(Next); |
| 1208 | if (computeMassInLoop(*L)) |
| 1209 | continue; |
| 1210 | llvm_unreachable("unhandled irreducible control flow"); |
| 1211 | } |
| 1212 | } |
| 1213 | |
| 1214 | template <class BT> |
| 1215 | bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) { |
| 1216 | // Compute mass in loop. |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1217 | LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1218 | |
| 1219 | if (Loop.isIrreducible()) { |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1220 | LLVM_DEBUG(dbgs() << "isIrreducible = true\n"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1221 | Distribution Dist; |
| 1222 | unsigned NumHeadersWithWeight = 0; |
| 1223 | Optional<uint64_t> MinHeaderWeight; |
| 1224 | DenseSet<uint32_t> HeadersWithoutWeight; |
| 1225 | HeadersWithoutWeight.reserve(Loop.NumHeaders); |
| 1226 | for (uint32_t H = 0; H < Loop.NumHeaders; ++H) { |
| 1227 | auto &HeaderNode = Loop.Nodes[H]; |
| 1228 | const BlockT *Block = getBlock(HeaderNode); |
| 1229 | IsIrrLoopHeader.set(Loop.Nodes[H].Index); |
| 1230 | Optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight(); |
| 1231 | if (!HeaderWeight) { |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1232 | LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on " |
| 1233 | << getBlockName(HeaderNode) << "\n"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1234 | HeadersWithoutWeight.insert(H); |
| 1235 | continue; |
| 1236 | } |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1237 | LLVM_DEBUG(dbgs() << getBlockName(HeaderNode) |
| 1238 | << " has irr loop header weight " |
| 1239 | << HeaderWeight.getValue() << "\n"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1240 | NumHeadersWithWeight++; |
| 1241 | uint64_t HeaderWeightValue = HeaderWeight.getValue(); |
| 1242 | if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight) |
| 1243 | MinHeaderWeight = HeaderWeightValue; |
| 1244 | if (HeaderWeightValue) { |
| 1245 | Dist.addLocal(HeaderNode, HeaderWeightValue); |
| 1246 | } |
| 1247 | } |
| 1248 | // As a heuristic, if some headers don't have a weight, give them the |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 1249 | // minimum weight seen (not to disrupt the existing trends too much by |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1250 | // using a weight that's in the general range of the other headers' weights, |
| 1251 | // and the minimum seems to perform better than the average.) |
| 1252 | // FIXME: better update in the passes that drop the header weight. |
| 1253 | // If no headers have a weight, give them even weight (use weight 1). |
| 1254 | if (!MinHeaderWeight) |
| 1255 | MinHeaderWeight = 1; |
| 1256 | for (uint32_t H : HeadersWithoutWeight) { |
| 1257 | auto &HeaderNode = Loop.Nodes[H]; |
| 1258 | assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() && |
| 1259 | "Shouldn't have a weight metadata"); |
| 1260 | uint64_t MinWeight = MinHeaderWeight.getValue(); |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1261 | LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to " |
| 1262 | << getBlockName(HeaderNode) << "\n"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1263 | if (MinWeight) |
| 1264 | Dist.addLocal(HeaderNode, MinWeight); |
| 1265 | } |
| 1266 | distributeIrrLoopHeaderMass(Dist); |
| 1267 | for (const BlockNode &M : Loop.Nodes) |
| 1268 | if (!propagateMassToSuccessors(&Loop, M)) |
| 1269 | llvm_unreachable("unhandled irreducible control flow"); |
| 1270 | if (NumHeadersWithWeight == 0) |
| 1271 | // No headers have a metadata. Adjust header mass. |
| 1272 | adjustLoopHeaderMass(Loop); |
| 1273 | } else { |
| 1274 | Working[Loop.getHeader().Index].getMass() = BlockMass::getFull(); |
| 1275 | if (!propagateMassToSuccessors(&Loop, Loop.getHeader())) |
| 1276 | llvm_unreachable("irreducible control flow to loop header!?"); |
| 1277 | for (const BlockNode &M : Loop.members()) |
| 1278 | if (!propagateMassToSuccessors(&Loop, M)) |
| 1279 | // Irreducible backedge. |
| 1280 | return false; |
| 1281 | } |
| 1282 | |
| 1283 | computeLoopScale(Loop); |
| 1284 | packageLoop(Loop); |
| 1285 | return true; |
| 1286 | } |
| 1287 | |
| 1288 | template <class BT> |
| 1289 | bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() { |
| 1290 | // Compute mass in function. |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1291 | LLVM_DEBUG(dbgs() << "compute-mass-in-function\n"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1292 | assert(!Working.empty() && "no blocks in function"); |
| 1293 | assert(!Working[0].isLoopHeader() && "entry block is a loop header"); |
| 1294 | |
| 1295 | Working[0].getMass() = BlockMass::getFull(); |
| 1296 | for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) { |
| 1297 | // Check for nodes that have been packaged. |
| 1298 | BlockNode Node = getNode(I); |
| 1299 | if (Working[Node.Index].isPackaged()) |
| 1300 | continue; |
| 1301 | |
| 1302 | if (!propagateMassToSuccessors(nullptr, Node)) |
| 1303 | return false; |
| 1304 | } |
| 1305 | return true; |
| 1306 | } |
| 1307 | |
| 1308 | template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() { |
| 1309 | if (tryToComputeMassInFunction()) |
| 1310 | return; |
| 1311 | computeIrreducibleMass(nullptr, Loops.begin()); |
| 1312 | if (tryToComputeMassInFunction()) |
| 1313 | return; |
| 1314 | llvm_unreachable("unhandled irreducible control flow"); |
| 1315 | } |
| 1316 | |
| 1317 | /// \note This should be a lambda, but that crashes GCC 4.7. |
| 1318 | namespace bfi_detail { |
| 1319 | |
| 1320 | template <class BT> struct BlockEdgesAdder { |
| 1321 | using BlockT = BT; |
| 1322 | using LoopData = BlockFrequencyInfoImplBase::LoopData; |
| 1323 | using Successor = GraphTraits<const BlockT *>; |
| 1324 | |
| 1325 | const BlockFrequencyInfoImpl<BT> &BFI; |
| 1326 | |
| 1327 | explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI) |
| 1328 | : BFI(BFI) {} |
| 1329 | |
| 1330 | void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr, |
| 1331 | const LoopData *OuterLoop) { |
| 1332 | const BlockT *BB = BFI.RPOT[Irr.Node.Index]; |
| 1333 | for (const auto Succ : children<const BlockT *>(BB)) |
| 1334 | G.addEdge(Irr, BFI.getNode(Succ), OuterLoop); |
| 1335 | } |
| 1336 | }; |
| 1337 | |
| 1338 | } // end namespace bfi_detail |
| 1339 | |
| 1340 | template <class BT> |
| 1341 | void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass( |
| 1342 | LoopData *OuterLoop, std::list<LoopData>::iterator Insert) { |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1343 | LLVM_DEBUG(dbgs() << "analyze-irreducible-in-"; |
| 1344 | if (OuterLoop) dbgs() |
| 1345 | << "loop: " << getLoopName(*OuterLoop) << "\n"; |
| 1346 | else dbgs() << "function\n"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1347 | |
| 1348 | using namespace bfi_detail; |
| 1349 | |
| 1350 | // Ideally, addBlockEdges() would be declared here as a lambda, but that |
| 1351 | // crashes GCC 4.7. |
| 1352 | BlockEdgesAdder<BT> addBlockEdges(*this); |
| 1353 | IrreducibleGraph G(*this, OuterLoop, addBlockEdges); |
| 1354 | |
| 1355 | for (auto &L : analyzeIrreducible(G, OuterLoop, Insert)) |
| 1356 | computeMassInLoop(L); |
| 1357 | |
| 1358 | if (!OuterLoop) |
| 1359 | return; |
| 1360 | updateLoopWithIrreducible(*OuterLoop); |
| 1361 | } |
| 1362 | |
| 1363 | // A helper function that converts a branch probability into weight. |
| 1364 | inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) { |
| 1365 | return Prob.getNumerator(); |
| 1366 | } |
| 1367 | |
| 1368 | template <class BT> |
| 1369 | bool |
| 1370 | BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop, |
| 1371 | const BlockNode &Node) { |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1372 | LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1373 | // Calculate probability for successors. |
| 1374 | Distribution Dist; |
| 1375 | if (auto *Loop = Working[Node.Index].getPackagedLoop()) { |
| 1376 | assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop"); |
| 1377 | if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist)) |
| 1378 | // Irreducible backedge. |
| 1379 | return false; |
| 1380 | } else { |
| 1381 | const BlockT *BB = getBlock(Node); |
| 1382 | for (auto SI = GraphTraits<const BlockT *>::child_begin(BB), |
| 1383 | SE = GraphTraits<const BlockT *>::child_end(BB); |
| 1384 | SI != SE; ++SI) |
| 1385 | if (!addToDist( |
| 1386 | Dist, OuterLoop, Node, getNode(*SI), |
| 1387 | getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI)))) |
| 1388 | // Irreducible backedge. |
| 1389 | return false; |
| 1390 | } |
| 1391 | |
| 1392 | // Distribute mass to successors, saving exit and backedge data in the |
| 1393 | // loop header. |
| 1394 | distributeMass(Node, OuterLoop, Dist); |
| 1395 | return true; |
| 1396 | } |
| 1397 | |
| 1398 | template <class BT> |
| 1399 | raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const { |
| 1400 | if (!F) |
| 1401 | return OS; |
| 1402 | OS << "block-frequency-info: " << F->getName() << "\n"; |
| 1403 | for (const BlockT &BB : *F) { |
| 1404 | OS << " - " << bfi_detail::getBlockName(&BB) << ": float = "; |
| 1405 | getFloatingBlockFreq(&BB).print(OS, 5) |
| 1406 | << ", int = " << getBlockFreq(&BB).getFrequency(); |
| 1407 | if (Optional<uint64_t> ProfileCount = |
| 1408 | BlockFrequencyInfoImplBase::getBlockProfileCount( |
| 1409 | F->getFunction(), getNode(&BB))) |
| 1410 | OS << ", count = " << ProfileCount.getValue(); |
| 1411 | if (Optional<uint64_t> IrrLoopHeaderWeight = |
| 1412 | BB.getIrrLoopHeaderWeight()) |
| 1413 | OS << ", irr_loop_header_weight = " << IrrLoopHeaderWeight.getValue(); |
| 1414 | OS << "\n"; |
| 1415 | } |
| 1416 | |
| 1417 | // Add an extra newline for readability. |
| 1418 | OS << "\n"; |
| 1419 | return OS; |
| 1420 | } |
| 1421 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 1422 | template <class BT> |
| 1423 | void BlockFrequencyInfoImpl<BT>::verifyMatch( |
| 1424 | BlockFrequencyInfoImpl<BT> &Other) const { |
| 1425 | bool Match = true; |
| 1426 | DenseMap<const BlockT *, BlockNode> ValidNodes; |
| 1427 | DenseMap<const BlockT *, BlockNode> OtherValidNodes; |
| 1428 | for (auto &Entry : Nodes) { |
| 1429 | const BlockT *BB = Entry.first; |
| 1430 | if (BB) { |
| 1431 | ValidNodes[BB] = Entry.second.first; |
| 1432 | } |
| 1433 | } |
| 1434 | for (auto &Entry : Other.Nodes) { |
| 1435 | const BlockT *BB = Entry.first; |
| 1436 | if (BB) { |
| 1437 | OtherValidNodes[BB] = Entry.second.first; |
| 1438 | } |
| 1439 | } |
| 1440 | unsigned NumValidNodes = ValidNodes.size(); |
| 1441 | unsigned NumOtherValidNodes = OtherValidNodes.size(); |
| 1442 | if (NumValidNodes != NumOtherValidNodes) { |
| 1443 | Match = false; |
| 1444 | dbgs() << "Number of blocks mismatch: " << NumValidNodes << " vs " |
| 1445 | << NumOtherValidNodes << "\n"; |
| 1446 | } else { |
| 1447 | for (auto &Entry : ValidNodes) { |
| 1448 | const BlockT *BB = Entry.first; |
| 1449 | BlockNode Node = Entry.second; |
| 1450 | if (OtherValidNodes.count(BB)) { |
| 1451 | BlockNode OtherNode = OtherValidNodes[BB]; |
| 1452 | const auto &Freq = Freqs[Node.Index]; |
| 1453 | const auto &OtherFreq = Other.Freqs[OtherNode.Index]; |
| 1454 | if (Freq.Integer != OtherFreq.Integer) { |
| 1455 | Match = false; |
| 1456 | dbgs() << "Freq mismatch: " << bfi_detail::getBlockName(BB) << " " |
| 1457 | << Freq.Integer << " vs " << OtherFreq.Integer << "\n"; |
| 1458 | } |
| 1459 | } else { |
| 1460 | Match = false; |
| 1461 | dbgs() << "Block " << bfi_detail::getBlockName(BB) << " index " |
| 1462 | << Node.Index << " does not exist in Other.\n"; |
| 1463 | } |
| 1464 | } |
| 1465 | // If there's a valid node in OtherValidNodes that's not in ValidNodes, |
| 1466 | // either the above num check or the check on OtherValidNodes will fail. |
| 1467 | } |
| 1468 | if (!Match) { |
| 1469 | dbgs() << "This\n"; |
| 1470 | print(dbgs()); |
| 1471 | dbgs() << "Other\n"; |
| 1472 | Other.print(dbgs()); |
| 1473 | } |
| 1474 | assert(Match && "BFI mismatch"); |
| 1475 | } |
| 1476 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1477 | // Graph trait base class for block frequency information graph |
| 1478 | // viewer. |
| 1479 | |
| 1480 | enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count }; |
| 1481 | |
| 1482 | template <class BlockFrequencyInfoT, class BranchProbabilityInfoT> |
| 1483 | struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits { |
| 1484 | using GTraits = GraphTraits<BlockFrequencyInfoT *>; |
| 1485 | using NodeRef = typename GTraits::NodeRef; |
| 1486 | using EdgeIter = typename GTraits::ChildIteratorType; |
| 1487 | using NodeIter = typename GTraits::nodes_iterator; |
| 1488 | |
| 1489 | uint64_t MaxFrequency = 0; |
| 1490 | |
| 1491 | explicit BFIDOTGraphTraitsBase(bool isSimple = false) |
| 1492 | : DefaultDOTGraphTraits(isSimple) {} |
| 1493 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 1494 | static StringRef getGraphName(const BlockFrequencyInfoT *G) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1495 | return G->getFunction()->getName(); |
| 1496 | } |
| 1497 | |
| 1498 | std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph, |
| 1499 | unsigned HotPercentThreshold = 0) { |
| 1500 | std::string Result; |
| 1501 | if (!HotPercentThreshold) |
| 1502 | return Result; |
| 1503 | |
| 1504 | // Compute MaxFrequency on the fly: |
| 1505 | if (!MaxFrequency) { |
| 1506 | for (NodeIter I = GTraits::nodes_begin(Graph), |
| 1507 | E = GTraits::nodes_end(Graph); |
| 1508 | I != E; ++I) { |
| 1509 | NodeRef N = *I; |
| 1510 | MaxFrequency = |
| 1511 | std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency()); |
| 1512 | } |
| 1513 | } |
| 1514 | BlockFrequency Freq = Graph->getBlockFreq(Node); |
| 1515 | BlockFrequency HotFreq = |
| 1516 | (BlockFrequency(MaxFrequency) * |
| 1517 | BranchProbability::getBranchProbability(HotPercentThreshold, 100)); |
| 1518 | |
| 1519 | if (Freq < HotFreq) |
| 1520 | return Result; |
| 1521 | |
| 1522 | raw_string_ostream OS(Result); |
| 1523 | OS << "color=\"red\""; |
| 1524 | OS.flush(); |
| 1525 | return Result; |
| 1526 | } |
| 1527 | |
| 1528 | std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph, |
| 1529 | GVDAGType GType, int layout_order = -1) { |
| 1530 | std::string Result; |
| 1531 | raw_string_ostream OS(Result); |
| 1532 | |
| 1533 | if (layout_order != -1) |
| 1534 | OS << Node->getName() << "[" << layout_order << "] : "; |
| 1535 | else |
| 1536 | OS << Node->getName() << " : "; |
| 1537 | switch (GType) { |
| 1538 | case GVDT_Fraction: |
| 1539 | Graph->printBlockFreq(OS, Node); |
| 1540 | break; |
| 1541 | case GVDT_Integer: |
| 1542 | OS << Graph->getBlockFreq(Node).getFrequency(); |
| 1543 | break; |
| 1544 | case GVDT_Count: { |
| 1545 | auto Count = Graph->getBlockProfileCount(Node); |
| 1546 | if (Count) |
| 1547 | OS << Count.getValue(); |
| 1548 | else |
| 1549 | OS << "Unknown"; |
| 1550 | break; |
| 1551 | } |
| 1552 | case GVDT_None: |
| 1553 | llvm_unreachable("If we are not supposed to render a graph we should " |
| 1554 | "never reach this point."); |
| 1555 | } |
| 1556 | return Result; |
| 1557 | } |
| 1558 | |
| 1559 | std::string getEdgeAttributes(NodeRef Node, EdgeIter EI, |
| 1560 | const BlockFrequencyInfoT *BFI, |
| 1561 | const BranchProbabilityInfoT *BPI, |
| 1562 | unsigned HotPercentThreshold = 0) { |
| 1563 | std::string Str; |
| 1564 | if (!BPI) |
| 1565 | return Str; |
| 1566 | |
| 1567 | BranchProbability BP = BPI->getEdgeProbability(Node, EI); |
| 1568 | uint32_t N = BP.getNumerator(); |
| 1569 | uint32_t D = BP.getDenominator(); |
| 1570 | double Percent = 100.0 * N / D; |
| 1571 | raw_string_ostream OS(Str); |
| 1572 | OS << format("label=\"%.1f%%\"", Percent); |
| 1573 | |
| 1574 | if (HotPercentThreshold) { |
| 1575 | BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP; |
| 1576 | BlockFrequency HotFreq = BlockFrequency(MaxFrequency) * |
| 1577 | BranchProbability(HotPercentThreshold, 100); |
| 1578 | |
| 1579 | if (EFreq >= HotFreq) { |
| 1580 | OS << ",color=\"red\""; |
| 1581 | } |
| 1582 | } |
| 1583 | |
| 1584 | OS.flush(); |
| 1585 | return Str; |
| 1586 | } |
| 1587 | }; |
| 1588 | |
| 1589 | } // end namespace llvm |
| 1590 | |
| 1591 | #undef DEBUG_TYPE |
| 1592 | |
| 1593 | #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H |