Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame^] | 1 | //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Shared implementation of BlockFrequency for IR and Machine Instructions. |
| 11 | // See the documentation below for BlockFrequencyInfoImpl for details. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H |
| 16 | #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H |
| 17 | |
| 18 | #include "llvm/ADT/DenseMap.h" |
| 19 | #include "llvm/ADT/DenseSet.h" |
| 20 | #include "llvm/ADT/GraphTraits.h" |
| 21 | #include "llvm/ADT/Optional.h" |
| 22 | #include "llvm/ADT/PostOrderIterator.h" |
| 23 | #include "llvm/ADT/SmallVector.h" |
| 24 | #include "llvm/ADT/SparseBitVector.h" |
| 25 | #include "llvm/ADT/Twine.h" |
| 26 | #include "llvm/ADT/iterator_range.h" |
| 27 | #include "llvm/IR/BasicBlock.h" |
| 28 | #include "llvm/Support/BlockFrequency.h" |
| 29 | #include "llvm/Support/BranchProbability.h" |
| 30 | #include "llvm/Support/DOTGraphTraits.h" |
| 31 | #include "llvm/Support/Debug.h" |
| 32 | #include "llvm/Support/ErrorHandling.h" |
| 33 | #include "llvm/Support/Format.h" |
| 34 | #include "llvm/Support/ScaledNumber.h" |
| 35 | #include "llvm/Support/raw_ostream.h" |
| 36 | #include <algorithm> |
| 37 | #include <cassert> |
| 38 | #include <cstddef> |
| 39 | #include <cstdint> |
| 40 | #include <deque> |
| 41 | #include <iterator> |
| 42 | #include <limits> |
| 43 | #include <list> |
| 44 | #include <string> |
| 45 | #include <utility> |
| 46 | #include <vector> |
| 47 | |
| 48 | #define DEBUG_TYPE "block-freq" |
| 49 | |
| 50 | namespace llvm { |
| 51 | |
| 52 | class BranchProbabilityInfo; |
| 53 | class Function; |
| 54 | class Loop; |
| 55 | class LoopInfo; |
| 56 | class MachineBasicBlock; |
| 57 | class MachineBranchProbabilityInfo; |
| 58 | class MachineFunction; |
| 59 | class MachineLoop; |
| 60 | class MachineLoopInfo; |
| 61 | |
| 62 | namespace bfi_detail { |
| 63 | |
| 64 | struct IrreducibleGraph; |
| 65 | |
| 66 | // This is part of a workaround for a GCC 4.7 crash on lambdas. |
| 67 | template <class BT> struct BlockEdgesAdder; |
| 68 | |
| 69 | /// \brief Mass of a block. |
| 70 | /// |
| 71 | /// This class implements a sort of fixed-point fraction always between 0.0 and |
| 72 | /// 1.0. getMass() == std::numeric_limits<uint64_t>::max() indicates a value of |
| 73 | /// 1.0. |
| 74 | /// |
| 75 | /// Masses can be added and subtracted. Simple saturation arithmetic is used, |
| 76 | /// so arithmetic operations never overflow or underflow. |
| 77 | /// |
| 78 | /// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses |
| 79 | /// an inexpensive floating-point algorithm that's off-by-one (almost, but not |
| 80 | /// quite, maximum precision). |
| 81 | /// |
| 82 | /// Masses can be scaled by \a BranchProbability at maximum precision. |
| 83 | class BlockMass { |
| 84 | uint64_t Mass = 0; |
| 85 | |
| 86 | public: |
| 87 | BlockMass() = default; |
| 88 | explicit BlockMass(uint64_t Mass) : Mass(Mass) {} |
| 89 | |
| 90 | static BlockMass getEmpty() { return BlockMass(); } |
| 91 | |
| 92 | static BlockMass getFull() { |
| 93 | return BlockMass(std::numeric_limits<uint64_t>::max()); |
| 94 | } |
| 95 | |
| 96 | uint64_t getMass() const { return Mass; } |
| 97 | |
| 98 | bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); } |
| 99 | bool isEmpty() const { return !Mass; } |
| 100 | |
| 101 | bool operator!() const { return isEmpty(); } |
| 102 | |
| 103 | /// \brief Add another mass. |
| 104 | /// |
| 105 | /// Adds another mass, saturating at \a isFull() rather than overflowing. |
| 106 | BlockMass &operator+=(BlockMass X) { |
| 107 | uint64_t Sum = Mass + X.Mass; |
| 108 | Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum; |
| 109 | return *this; |
| 110 | } |
| 111 | |
| 112 | /// \brief Subtract another mass. |
| 113 | /// |
| 114 | /// Subtracts another mass, saturating at \a isEmpty() rather than |
| 115 | /// undeflowing. |
| 116 | BlockMass &operator-=(BlockMass X) { |
| 117 | uint64_t Diff = Mass - X.Mass; |
| 118 | Mass = Diff > Mass ? 0 : Diff; |
| 119 | return *this; |
| 120 | } |
| 121 | |
| 122 | BlockMass &operator*=(BranchProbability P) { |
| 123 | Mass = P.scale(Mass); |
| 124 | return *this; |
| 125 | } |
| 126 | |
| 127 | bool operator==(BlockMass X) const { return Mass == X.Mass; } |
| 128 | bool operator!=(BlockMass X) const { return Mass != X.Mass; } |
| 129 | bool operator<=(BlockMass X) const { return Mass <= X.Mass; } |
| 130 | bool operator>=(BlockMass X) const { return Mass >= X.Mass; } |
| 131 | bool operator<(BlockMass X) const { return Mass < X.Mass; } |
| 132 | bool operator>(BlockMass X) const { return Mass > X.Mass; } |
| 133 | |
| 134 | /// \brief Convert to scaled number. |
| 135 | /// |
| 136 | /// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty() |
| 137 | /// gives slightly above 0.0. |
| 138 | ScaledNumber<uint64_t> toScaled() const; |
| 139 | |
| 140 | void dump() const; |
| 141 | raw_ostream &print(raw_ostream &OS) const; |
| 142 | }; |
| 143 | |
| 144 | inline BlockMass operator+(BlockMass L, BlockMass R) { |
| 145 | return BlockMass(L) += R; |
| 146 | } |
| 147 | inline BlockMass operator-(BlockMass L, BlockMass R) { |
| 148 | return BlockMass(L) -= R; |
| 149 | } |
| 150 | inline BlockMass operator*(BlockMass L, BranchProbability R) { |
| 151 | return BlockMass(L) *= R; |
| 152 | } |
| 153 | inline BlockMass operator*(BranchProbability L, BlockMass R) { |
| 154 | return BlockMass(R) *= L; |
| 155 | } |
| 156 | |
| 157 | inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) { |
| 158 | return X.print(OS); |
| 159 | } |
| 160 | |
| 161 | } // end namespace bfi_detail |
| 162 | |
| 163 | template <> struct isPodLike<bfi_detail::BlockMass> { |
| 164 | static const bool value = true; |
| 165 | }; |
| 166 | |
| 167 | /// \brief Base class for BlockFrequencyInfoImpl |
| 168 | /// |
| 169 | /// BlockFrequencyInfoImplBase has supporting data structures and some |
| 170 | /// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on |
| 171 | /// the block type (or that call such algorithms) are skipped here. |
| 172 | /// |
| 173 | /// Nevertheless, the majority of the overall algorithm documention lives with |
| 174 | /// BlockFrequencyInfoImpl. See there for details. |
| 175 | class BlockFrequencyInfoImplBase { |
| 176 | public: |
| 177 | using Scaled64 = ScaledNumber<uint64_t>; |
| 178 | using BlockMass = bfi_detail::BlockMass; |
| 179 | |
| 180 | /// \brief Representative of a block. |
| 181 | /// |
| 182 | /// This is a simple wrapper around an index into the reverse-post-order |
| 183 | /// traversal of the blocks. |
| 184 | /// |
| 185 | /// Unlike a block pointer, its order has meaning (location in the |
| 186 | /// topological sort) and it's class is the same regardless of block type. |
| 187 | struct BlockNode { |
| 188 | using IndexType = uint32_t; |
| 189 | |
| 190 | IndexType Index = std::numeric_limits<uint32_t>::max(); |
| 191 | |
| 192 | BlockNode() = default; |
| 193 | BlockNode(IndexType Index) : Index(Index) {} |
| 194 | |
| 195 | bool operator==(const BlockNode &X) const { return Index == X.Index; } |
| 196 | bool operator!=(const BlockNode &X) const { return Index != X.Index; } |
| 197 | bool operator<=(const BlockNode &X) const { return Index <= X.Index; } |
| 198 | bool operator>=(const BlockNode &X) const { return Index >= X.Index; } |
| 199 | bool operator<(const BlockNode &X) const { return Index < X.Index; } |
| 200 | bool operator>(const BlockNode &X) const { return Index > X.Index; } |
| 201 | |
| 202 | bool isValid() const { return Index <= getMaxIndex(); } |
| 203 | |
| 204 | static size_t getMaxIndex() { |
| 205 | return std::numeric_limits<uint32_t>::max() - 1; |
| 206 | } |
| 207 | }; |
| 208 | |
| 209 | /// \brief Stats about a block itself. |
| 210 | struct FrequencyData { |
| 211 | Scaled64 Scaled; |
| 212 | uint64_t Integer; |
| 213 | }; |
| 214 | |
| 215 | /// \brief Data about a loop. |
| 216 | /// |
| 217 | /// Contains the data necessary to represent a loop as a pseudo-node once it's |
| 218 | /// packaged. |
| 219 | struct LoopData { |
| 220 | using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>; |
| 221 | using NodeList = SmallVector<BlockNode, 4>; |
| 222 | using HeaderMassList = SmallVector<BlockMass, 1>; |
| 223 | |
| 224 | LoopData *Parent; ///< The parent loop. |
| 225 | bool IsPackaged = false; ///< Whether this has been packaged. |
| 226 | uint32_t NumHeaders = 1; ///< Number of headers. |
| 227 | ExitMap Exits; ///< Successor edges (and weights). |
| 228 | NodeList Nodes; ///< Header and the members of the loop. |
| 229 | HeaderMassList BackedgeMass; ///< Mass returned to each loop header. |
| 230 | BlockMass Mass; |
| 231 | Scaled64 Scale; |
| 232 | |
| 233 | LoopData(LoopData *Parent, const BlockNode &Header) |
| 234 | : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {} |
| 235 | |
| 236 | template <class It1, class It2> |
| 237 | LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther, |
| 238 | It2 LastOther) |
| 239 | : Parent(Parent), Nodes(FirstHeader, LastHeader) { |
| 240 | NumHeaders = Nodes.size(); |
| 241 | Nodes.insert(Nodes.end(), FirstOther, LastOther); |
| 242 | BackedgeMass.resize(NumHeaders); |
| 243 | } |
| 244 | |
| 245 | bool isHeader(const BlockNode &Node) const { |
| 246 | if (isIrreducible()) |
| 247 | return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders, |
| 248 | Node); |
| 249 | return Node == Nodes[0]; |
| 250 | } |
| 251 | |
| 252 | BlockNode getHeader() const { return Nodes[0]; } |
| 253 | bool isIrreducible() const { return NumHeaders > 1; } |
| 254 | |
| 255 | HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) { |
| 256 | assert(isHeader(B) && "this is only valid on loop header blocks"); |
| 257 | if (isIrreducible()) |
| 258 | return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) - |
| 259 | Nodes.begin(); |
| 260 | return 0; |
| 261 | } |
| 262 | |
| 263 | NodeList::const_iterator members_begin() const { |
| 264 | return Nodes.begin() + NumHeaders; |
| 265 | } |
| 266 | |
| 267 | NodeList::const_iterator members_end() const { return Nodes.end(); } |
| 268 | iterator_range<NodeList::const_iterator> members() const { |
| 269 | return make_range(members_begin(), members_end()); |
| 270 | } |
| 271 | }; |
| 272 | |
| 273 | /// \brief Index of loop information. |
| 274 | struct WorkingData { |
| 275 | BlockNode Node; ///< This node. |
| 276 | LoopData *Loop = nullptr; ///< The loop this block is inside. |
| 277 | BlockMass Mass; ///< Mass distribution from the entry block. |
| 278 | |
| 279 | WorkingData(const BlockNode &Node) : Node(Node) {} |
| 280 | |
| 281 | bool isLoopHeader() const { return Loop && Loop->isHeader(Node); } |
| 282 | |
| 283 | bool isDoubleLoopHeader() const { |
| 284 | return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() && |
| 285 | Loop->Parent->isHeader(Node); |
| 286 | } |
| 287 | |
| 288 | LoopData *getContainingLoop() const { |
| 289 | if (!isLoopHeader()) |
| 290 | return Loop; |
| 291 | if (!isDoubleLoopHeader()) |
| 292 | return Loop->Parent; |
| 293 | return Loop->Parent->Parent; |
| 294 | } |
| 295 | |
| 296 | /// \brief Resolve a node to its representative. |
| 297 | /// |
| 298 | /// Get the node currently representing Node, which could be a containing |
| 299 | /// loop. |
| 300 | /// |
| 301 | /// This function should only be called when distributing mass. As long as |
| 302 | /// there are no irreducible edges to Node, then it will have complexity |
| 303 | /// O(1) in this context. |
| 304 | /// |
| 305 | /// In general, the complexity is O(L), where L is the number of loop |
| 306 | /// headers Node has been packaged into. Since this method is called in |
| 307 | /// the context of distributing mass, L will be the number of loop headers |
| 308 | /// an early exit edge jumps out of. |
| 309 | BlockNode getResolvedNode() const { |
| 310 | auto L = getPackagedLoop(); |
| 311 | return L ? L->getHeader() : Node; |
| 312 | } |
| 313 | |
| 314 | LoopData *getPackagedLoop() const { |
| 315 | if (!Loop || !Loop->IsPackaged) |
| 316 | return nullptr; |
| 317 | auto L = Loop; |
| 318 | while (L->Parent && L->Parent->IsPackaged) |
| 319 | L = L->Parent; |
| 320 | return L; |
| 321 | } |
| 322 | |
| 323 | /// \brief Get the appropriate mass for a node. |
| 324 | /// |
| 325 | /// Get appropriate mass for Node. If Node is a loop-header (whose loop |
| 326 | /// has been packaged), returns the mass of its pseudo-node. If it's a |
| 327 | /// node inside a packaged loop, it returns the loop's mass. |
| 328 | BlockMass &getMass() { |
| 329 | if (!isAPackage()) |
| 330 | return Mass; |
| 331 | if (!isADoublePackage()) |
| 332 | return Loop->Mass; |
| 333 | return Loop->Parent->Mass; |
| 334 | } |
| 335 | |
| 336 | /// \brief Has ContainingLoop been packaged up? |
| 337 | bool isPackaged() const { return getResolvedNode() != Node; } |
| 338 | |
| 339 | /// \brief Has Loop been packaged up? |
| 340 | bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; } |
| 341 | |
| 342 | /// \brief Has Loop been packaged up twice? |
| 343 | bool isADoublePackage() const { |
| 344 | return isDoubleLoopHeader() && Loop->Parent->IsPackaged; |
| 345 | } |
| 346 | }; |
| 347 | |
| 348 | /// \brief Unscaled probability weight. |
| 349 | /// |
| 350 | /// Probability weight for an edge in the graph (including the |
| 351 | /// successor/target node). |
| 352 | /// |
| 353 | /// All edges in the original function are 32-bit. However, exit edges from |
| 354 | /// loop packages are taken from 64-bit exit masses, so we need 64-bits of |
| 355 | /// space in general. |
| 356 | /// |
| 357 | /// In addition to the raw weight amount, Weight stores the type of the edge |
| 358 | /// in the current context (i.e., the context of the loop being processed). |
| 359 | /// Is this a local edge within the loop, an exit from the loop, or a |
| 360 | /// backedge to the loop header? |
| 361 | struct Weight { |
| 362 | enum DistType { Local, Exit, Backedge }; |
| 363 | DistType Type = Local; |
| 364 | BlockNode TargetNode; |
| 365 | uint64_t Amount = 0; |
| 366 | |
| 367 | Weight() = default; |
| 368 | Weight(DistType Type, BlockNode TargetNode, uint64_t Amount) |
| 369 | : Type(Type), TargetNode(TargetNode), Amount(Amount) {} |
| 370 | }; |
| 371 | |
| 372 | /// \brief Distribution of unscaled probability weight. |
| 373 | /// |
| 374 | /// Distribution of unscaled probability weight to a set of successors. |
| 375 | /// |
| 376 | /// This class collates the successor edge weights for later processing. |
| 377 | /// |
| 378 | /// \a DidOverflow indicates whether \a Total did overflow while adding to |
| 379 | /// the distribution. It should never overflow twice. |
| 380 | struct Distribution { |
| 381 | using WeightList = SmallVector<Weight, 4>; |
| 382 | |
| 383 | WeightList Weights; ///< Individual successor weights. |
| 384 | uint64_t Total = 0; ///< Sum of all weights. |
| 385 | bool DidOverflow = false; ///< Whether \a Total did overflow. |
| 386 | |
| 387 | Distribution() = default; |
| 388 | |
| 389 | void addLocal(const BlockNode &Node, uint64_t Amount) { |
| 390 | add(Node, Amount, Weight::Local); |
| 391 | } |
| 392 | |
| 393 | void addExit(const BlockNode &Node, uint64_t Amount) { |
| 394 | add(Node, Amount, Weight::Exit); |
| 395 | } |
| 396 | |
| 397 | void addBackedge(const BlockNode &Node, uint64_t Amount) { |
| 398 | add(Node, Amount, Weight::Backedge); |
| 399 | } |
| 400 | |
| 401 | /// \brief Normalize the distribution. |
| 402 | /// |
| 403 | /// Combines multiple edges to the same \a Weight::TargetNode and scales |
| 404 | /// down so that \a Total fits into 32-bits. |
| 405 | /// |
| 406 | /// This is linear in the size of \a Weights. For the vast majority of |
| 407 | /// cases, adjacent edge weights are combined by sorting WeightList and |
| 408 | /// combining adjacent weights. However, for very large edge lists an |
| 409 | /// auxiliary hash table is used. |
| 410 | void normalize(); |
| 411 | |
| 412 | private: |
| 413 | void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type); |
| 414 | }; |
| 415 | |
| 416 | /// \brief Data about each block. This is used downstream. |
| 417 | std::vector<FrequencyData> Freqs; |
| 418 | |
| 419 | /// \brief Whether each block is an irreducible loop header. |
| 420 | /// This is used downstream. |
| 421 | SparseBitVector<> IsIrrLoopHeader; |
| 422 | |
| 423 | /// \brief Loop data: see initializeLoops(). |
| 424 | std::vector<WorkingData> Working; |
| 425 | |
| 426 | /// \brief Indexed information about loops. |
| 427 | std::list<LoopData> Loops; |
| 428 | |
| 429 | /// \brief Virtual destructor. |
| 430 | /// |
| 431 | /// Need a virtual destructor to mask the compiler warning about |
| 432 | /// getBlockName(). |
| 433 | virtual ~BlockFrequencyInfoImplBase() = default; |
| 434 | |
| 435 | /// \brief Add all edges out of a packaged loop to the distribution. |
| 436 | /// |
| 437 | /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each |
| 438 | /// successor edge. |
| 439 | /// |
| 440 | /// \return \c true unless there's an irreducible backedge. |
| 441 | bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop, |
| 442 | Distribution &Dist); |
| 443 | |
| 444 | /// \brief Add an edge to the distribution. |
| 445 | /// |
| 446 | /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the |
| 447 | /// edge is local/exit/backedge is in the context of LoopHead. Otherwise, |
| 448 | /// every edge should be a local edge (since all the loops are packaged up). |
| 449 | /// |
| 450 | /// \return \c true unless aborted due to an irreducible backedge. |
| 451 | bool addToDist(Distribution &Dist, const LoopData *OuterLoop, |
| 452 | const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight); |
| 453 | |
| 454 | LoopData &getLoopPackage(const BlockNode &Head) { |
| 455 | assert(Head.Index < Working.size()); |
| 456 | assert(Working[Head.Index].isLoopHeader()); |
| 457 | return *Working[Head.Index].Loop; |
| 458 | } |
| 459 | |
| 460 | /// \brief Analyze irreducible SCCs. |
| 461 | /// |
| 462 | /// Separate irreducible SCCs from \c G, which is an explict graph of \c |
| 463 | /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr). |
| 464 | /// Insert them into \a Loops before \c Insert. |
| 465 | /// |
| 466 | /// \return the \c LoopData nodes representing the irreducible SCCs. |
| 467 | iterator_range<std::list<LoopData>::iterator> |
| 468 | analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop, |
| 469 | std::list<LoopData>::iterator Insert); |
| 470 | |
| 471 | /// \brief Update a loop after packaging irreducible SCCs inside of it. |
| 472 | /// |
| 473 | /// Update \c OuterLoop. Before finding irreducible control flow, it was |
| 474 | /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a |
| 475 | /// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged |
| 476 | /// up need to be removed from \a OuterLoop::Nodes. |
| 477 | void updateLoopWithIrreducible(LoopData &OuterLoop); |
| 478 | |
| 479 | /// \brief Distribute mass according to a distribution. |
| 480 | /// |
| 481 | /// Distributes the mass in Source according to Dist. If LoopHead.isValid(), |
| 482 | /// backedges and exits are stored in its entry in Loops. |
| 483 | /// |
| 484 | /// Mass is distributed in parallel from two copies of the source mass. |
| 485 | void distributeMass(const BlockNode &Source, LoopData *OuterLoop, |
| 486 | Distribution &Dist); |
| 487 | |
| 488 | /// \brief Compute the loop scale for a loop. |
| 489 | void computeLoopScale(LoopData &Loop); |
| 490 | |
| 491 | /// Adjust the mass of all headers in an irreducible loop. |
| 492 | /// |
| 493 | /// Initially, irreducible loops are assumed to distribute their mass |
| 494 | /// equally among its headers. This can lead to wrong frequency estimates |
| 495 | /// since some headers may be executed more frequently than others. |
| 496 | /// |
| 497 | /// This adjusts header mass distribution so it matches the weights of |
| 498 | /// the backedges going into each of the loop headers. |
| 499 | void adjustLoopHeaderMass(LoopData &Loop); |
| 500 | |
| 501 | void distributeIrrLoopHeaderMass(Distribution &Dist); |
| 502 | |
| 503 | /// \brief Package up a loop. |
| 504 | void packageLoop(LoopData &Loop); |
| 505 | |
| 506 | /// \brief Unwrap loops. |
| 507 | void unwrapLoops(); |
| 508 | |
| 509 | /// \brief Finalize frequency metrics. |
| 510 | /// |
| 511 | /// Calculates final frequencies and cleans up no-longer-needed data |
| 512 | /// structures. |
| 513 | void finalizeMetrics(); |
| 514 | |
| 515 | /// \brief Clear all memory. |
| 516 | void clear(); |
| 517 | |
| 518 | virtual std::string getBlockName(const BlockNode &Node) const; |
| 519 | std::string getLoopName(const LoopData &Loop) const; |
| 520 | |
| 521 | virtual raw_ostream &print(raw_ostream &OS) const { return OS; } |
| 522 | void dump() const { print(dbgs()); } |
| 523 | |
| 524 | Scaled64 getFloatingBlockFreq(const BlockNode &Node) const; |
| 525 | |
| 526 | BlockFrequency getBlockFreq(const BlockNode &Node) const; |
| 527 | Optional<uint64_t> getBlockProfileCount(const Function &F, |
| 528 | const BlockNode &Node) const; |
| 529 | Optional<uint64_t> getProfileCountFromFreq(const Function &F, |
| 530 | uint64_t Freq) const; |
| 531 | bool isIrrLoopHeader(const BlockNode &Node); |
| 532 | |
| 533 | void setBlockFreq(const BlockNode &Node, uint64_t Freq); |
| 534 | |
| 535 | raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const; |
| 536 | raw_ostream &printBlockFreq(raw_ostream &OS, |
| 537 | const BlockFrequency &Freq) const; |
| 538 | |
| 539 | uint64_t getEntryFreq() const { |
| 540 | assert(!Freqs.empty()); |
| 541 | return Freqs[0].Integer; |
| 542 | } |
| 543 | }; |
| 544 | |
| 545 | namespace bfi_detail { |
| 546 | |
| 547 | template <class BlockT> struct TypeMap {}; |
| 548 | template <> struct TypeMap<BasicBlock> { |
| 549 | using BlockT = BasicBlock; |
| 550 | using FunctionT = Function; |
| 551 | using BranchProbabilityInfoT = BranchProbabilityInfo; |
| 552 | using LoopT = Loop; |
| 553 | using LoopInfoT = LoopInfo; |
| 554 | }; |
| 555 | template <> struct TypeMap<MachineBasicBlock> { |
| 556 | using BlockT = MachineBasicBlock; |
| 557 | using FunctionT = MachineFunction; |
| 558 | using BranchProbabilityInfoT = MachineBranchProbabilityInfo; |
| 559 | using LoopT = MachineLoop; |
| 560 | using LoopInfoT = MachineLoopInfo; |
| 561 | }; |
| 562 | |
| 563 | /// \brief Get the name of a MachineBasicBlock. |
| 564 | /// |
| 565 | /// Get the name of a MachineBasicBlock. It's templated so that including from |
| 566 | /// CodeGen is unnecessary (that would be a layering issue). |
| 567 | /// |
| 568 | /// This is used mainly for debug output. The name is similar to |
| 569 | /// MachineBasicBlock::getFullName(), but skips the name of the function. |
| 570 | template <class BlockT> std::string getBlockName(const BlockT *BB) { |
| 571 | assert(BB && "Unexpected nullptr"); |
| 572 | auto MachineName = "BB" + Twine(BB->getNumber()); |
| 573 | if (BB->getBasicBlock()) |
| 574 | return (MachineName + "[" + BB->getName() + "]").str(); |
| 575 | return MachineName.str(); |
| 576 | } |
| 577 | /// \brief Get the name of a BasicBlock. |
| 578 | template <> inline std::string getBlockName(const BasicBlock *BB) { |
| 579 | assert(BB && "Unexpected nullptr"); |
| 580 | return BB->getName().str(); |
| 581 | } |
| 582 | |
| 583 | /// \brief Graph of irreducible control flow. |
| 584 | /// |
| 585 | /// This graph is used for determining the SCCs in a loop (or top-level |
| 586 | /// function) that has irreducible control flow. |
| 587 | /// |
| 588 | /// During the block frequency algorithm, the local graphs are defined in a |
| 589 | /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock |
| 590 | /// graphs for most edges, but getting others from \a LoopData::ExitMap. The |
| 591 | /// latter only has successor information. |
| 592 | /// |
| 593 | /// \a IrreducibleGraph makes this graph explicit. It's in a form that can use |
| 594 | /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator), |
| 595 | /// and it explicitly lists predecessors and successors. The initialization |
| 596 | /// that relies on \c MachineBasicBlock is defined in the header. |
| 597 | struct IrreducibleGraph { |
| 598 | using BFIBase = BlockFrequencyInfoImplBase; |
| 599 | |
| 600 | BFIBase &BFI; |
| 601 | |
| 602 | using BlockNode = BFIBase::BlockNode; |
| 603 | struct IrrNode { |
| 604 | BlockNode Node; |
| 605 | unsigned NumIn = 0; |
| 606 | std::deque<const IrrNode *> Edges; |
| 607 | |
| 608 | IrrNode(const BlockNode &Node) : Node(Node) {} |
| 609 | |
| 610 | using iterator = std::deque<const IrrNode *>::const_iterator; |
| 611 | |
| 612 | iterator pred_begin() const { return Edges.begin(); } |
| 613 | iterator succ_begin() const { return Edges.begin() + NumIn; } |
| 614 | iterator pred_end() const { return succ_begin(); } |
| 615 | iterator succ_end() const { return Edges.end(); } |
| 616 | }; |
| 617 | BlockNode Start; |
| 618 | const IrrNode *StartIrr = nullptr; |
| 619 | std::vector<IrrNode> Nodes; |
| 620 | SmallDenseMap<uint32_t, IrrNode *, 4> Lookup; |
| 621 | |
| 622 | /// \brief Construct an explicit graph containing irreducible control flow. |
| 623 | /// |
| 624 | /// Construct an explicit graph of the control flow in \c OuterLoop (or the |
| 625 | /// top-level function, if \c OuterLoop is \c nullptr). Uses \c |
| 626 | /// addBlockEdges to add block successors that have not been packaged into |
| 627 | /// loops. |
| 628 | /// |
| 629 | /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected |
| 630 | /// user of this. |
| 631 | template <class BlockEdgesAdder> |
| 632 | IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop, |
| 633 | BlockEdgesAdder addBlockEdges) : BFI(BFI) { |
| 634 | initialize(OuterLoop, addBlockEdges); |
| 635 | } |
| 636 | |
| 637 | template <class BlockEdgesAdder> |
| 638 | void initialize(const BFIBase::LoopData *OuterLoop, |
| 639 | BlockEdgesAdder addBlockEdges); |
| 640 | void addNodesInLoop(const BFIBase::LoopData &OuterLoop); |
| 641 | void addNodesInFunction(); |
| 642 | |
| 643 | void addNode(const BlockNode &Node) { |
| 644 | Nodes.emplace_back(Node); |
| 645 | BFI.Working[Node.Index].getMass() = BlockMass::getEmpty(); |
| 646 | } |
| 647 | |
| 648 | void indexNodes(); |
| 649 | template <class BlockEdgesAdder> |
| 650 | void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop, |
| 651 | BlockEdgesAdder addBlockEdges); |
| 652 | void addEdge(IrrNode &Irr, const BlockNode &Succ, |
| 653 | const BFIBase::LoopData *OuterLoop); |
| 654 | }; |
| 655 | |
| 656 | template <class BlockEdgesAdder> |
| 657 | void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop, |
| 658 | BlockEdgesAdder addBlockEdges) { |
| 659 | if (OuterLoop) { |
| 660 | addNodesInLoop(*OuterLoop); |
| 661 | for (auto N : OuterLoop->Nodes) |
| 662 | addEdges(N, OuterLoop, addBlockEdges); |
| 663 | } else { |
| 664 | addNodesInFunction(); |
| 665 | for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) |
| 666 | addEdges(Index, OuterLoop, addBlockEdges); |
| 667 | } |
| 668 | StartIrr = Lookup[Start.Index]; |
| 669 | } |
| 670 | |
| 671 | template <class BlockEdgesAdder> |
| 672 | void IrreducibleGraph::addEdges(const BlockNode &Node, |
| 673 | const BFIBase::LoopData *OuterLoop, |
| 674 | BlockEdgesAdder addBlockEdges) { |
| 675 | auto L = Lookup.find(Node.Index); |
| 676 | if (L == Lookup.end()) |
| 677 | return; |
| 678 | IrrNode &Irr = *L->second; |
| 679 | const auto &Working = BFI.Working[Node.Index]; |
| 680 | |
| 681 | if (Working.isAPackage()) |
| 682 | for (const auto &I : Working.Loop->Exits) |
| 683 | addEdge(Irr, I.first, OuterLoop); |
| 684 | else |
| 685 | addBlockEdges(*this, Irr, OuterLoop); |
| 686 | } |
| 687 | |
| 688 | } // end namespace bfi_detail |
| 689 | |
| 690 | /// \brief Shared implementation for block frequency analysis. |
| 691 | /// |
| 692 | /// This is a shared implementation of BlockFrequencyInfo and |
| 693 | /// MachineBlockFrequencyInfo, and calculates the relative frequencies of |
| 694 | /// blocks. |
| 695 | /// |
| 696 | /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block, |
| 697 | /// which is called the header. A given loop, L, can have sub-loops, which are |
| 698 | /// loops within the subgraph of L that exclude its header. (A "trivial" SCC |
| 699 | /// consists of a single block that does not have a self-edge.) |
| 700 | /// |
| 701 | /// In addition to loops, this algorithm has limited support for irreducible |
| 702 | /// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are |
| 703 | /// discovered on they fly, and modelled as loops with multiple headers. |
| 704 | /// |
| 705 | /// The headers of irreducible sub-SCCs consist of its entry blocks and all |
| 706 | /// nodes that are targets of a backedge within it (excluding backedges within |
| 707 | /// true sub-loops). Block frequency calculations act as if a block is |
| 708 | /// inserted that intercepts all the edges to the headers. All backedges and |
| 709 | /// entries point to this block. Its successors are the headers, which split |
| 710 | /// the frequency evenly. |
| 711 | /// |
| 712 | /// This algorithm leverages BlockMass and ScaledNumber to maintain precision, |
| 713 | /// separates mass distribution from loop scaling, and dithers to eliminate |
| 714 | /// probability mass loss. |
| 715 | /// |
| 716 | /// The implementation is split between BlockFrequencyInfoImpl, which knows the |
| 717 | /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and |
| 718 | /// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a |
| 719 | /// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in |
| 720 | /// reverse-post order. This gives two advantages: it's easy to compare the |
| 721 | /// relative ordering of two nodes, and maps keyed on BlockT can be represented |
| 722 | /// by vectors. |
| 723 | /// |
| 724 | /// This algorithm is O(V+E), unless there is irreducible control flow, in |
| 725 | /// which case it's O(V*E) in the worst case. |
| 726 | /// |
| 727 | /// These are the main stages: |
| 728 | /// |
| 729 | /// 0. Reverse post-order traversal (\a initializeRPOT()). |
| 730 | /// |
| 731 | /// Run a single post-order traversal and save it (in reverse) in RPOT. |
| 732 | /// All other stages make use of this ordering. Save a lookup from BlockT |
| 733 | /// to BlockNode (the index into RPOT) in Nodes. |
| 734 | /// |
| 735 | /// 1. Loop initialization (\a initializeLoops()). |
| 736 | /// |
| 737 | /// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of |
| 738 | /// the algorithm. In particular, store the immediate members of each loop |
| 739 | /// in reverse post-order. |
| 740 | /// |
| 741 | /// 2. Calculate mass and scale in loops (\a computeMassInLoops()). |
| 742 | /// |
| 743 | /// For each loop (bottom-up), distribute mass through the DAG resulting |
| 744 | /// from ignoring backedges and treating sub-loops as a single pseudo-node. |
| 745 | /// Track the backedge mass distributed to the loop header, and use it to |
| 746 | /// calculate the loop scale (number of loop iterations). Immediate |
| 747 | /// members that represent sub-loops will already have been visited and |
| 748 | /// packaged into a pseudo-node. |
| 749 | /// |
| 750 | /// Distributing mass in a loop is a reverse-post-order traversal through |
| 751 | /// the loop. Start by assigning full mass to the Loop header. For each |
| 752 | /// node in the loop: |
| 753 | /// |
| 754 | /// - Fetch and categorize the weight distribution for its successors. |
| 755 | /// If this is a packaged-subloop, the weight distribution is stored |
| 756 | /// in \a LoopData::Exits. Otherwise, fetch it from |
| 757 | /// BranchProbabilityInfo. |
| 758 | /// |
| 759 | /// - Each successor is categorized as \a Weight::Local, a local edge |
| 760 | /// within the current loop, \a Weight::Backedge, a backedge to the |
| 761 | /// loop header, or \a Weight::Exit, any successor outside the loop. |
| 762 | /// The weight, the successor, and its category are stored in \a |
| 763 | /// Distribution. There can be multiple edges to each successor. |
| 764 | /// |
| 765 | /// - If there's a backedge to a non-header, there's an irreducible SCC. |
| 766 | /// The usual flow is temporarily aborted. \a |
| 767 | /// computeIrreducibleMass() finds the irreducible SCCs within the |
| 768 | /// loop, packages them up, and restarts the flow. |
| 769 | /// |
| 770 | /// - Normalize the distribution: scale weights down so that their sum |
| 771 | /// is 32-bits, and coalesce multiple edges to the same node. |
| 772 | /// |
| 773 | /// - Distribute the mass accordingly, dithering to minimize mass loss, |
| 774 | /// as described in \a distributeMass(). |
| 775 | /// |
| 776 | /// In the case of irreducible loops, instead of a single loop header, |
| 777 | /// there will be several. The computation of backedge masses is similar |
| 778 | /// but instead of having a single backedge mass, there will be one |
| 779 | /// backedge per loop header. In these cases, each backedge will carry |
| 780 | /// a mass proportional to the edge weights along the corresponding |
| 781 | /// path. |
| 782 | /// |
| 783 | /// At the end of propagation, the full mass assigned to the loop will be |
| 784 | /// distributed among the loop headers proportionally according to the |
| 785 | /// mass flowing through their backedges. |
| 786 | /// |
| 787 | /// Finally, calculate the loop scale from the accumulated backedge mass. |
| 788 | /// |
| 789 | /// 3. Distribute mass in the function (\a computeMassInFunction()). |
| 790 | /// |
| 791 | /// Finally, distribute mass through the DAG resulting from packaging all |
| 792 | /// loops in the function. This uses the same algorithm as distributing |
| 793 | /// mass in a loop, except that there are no exit or backedge edges. |
| 794 | /// |
| 795 | /// 4. Unpackage loops (\a unwrapLoops()). |
| 796 | /// |
| 797 | /// Initialize each block's frequency to a floating point representation of |
| 798 | /// its mass. |
| 799 | /// |
| 800 | /// Visit loops top-down, scaling the frequencies of its immediate members |
| 801 | /// by the loop's pseudo-node's frequency. |
| 802 | /// |
| 803 | /// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()). |
| 804 | /// |
| 805 | /// Using the min and max frequencies as a guide, translate floating point |
| 806 | /// frequencies to an appropriate range in uint64_t. |
| 807 | /// |
| 808 | /// It has some known flaws. |
| 809 | /// |
| 810 | /// - The model of irreducible control flow is a rough approximation. |
| 811 | /// |
| 812 | /// Modelling irreducible control flow exactly involves setting up and |
| 813 | /// solving a group of infinite geometric series. Such precision is |
| 814 | /// unlikely to be worthwhile, since most of our algorithms give up on |
| 815 | /// irreducible control flow anyway. |
| 816 | /// |
| 817 | /// Nevertheless, we might find that we need to get closer. Here's a sort |
| 818 | /// of TODO list for the model with diminishing returns, to be completed as |
| 819 | /// necessary. |
| 820 | /// |
| 821 | /// - The headers for the \a LoopData representing an irreducible SCC |
| 822 | /// include non-entry blocks. When these extra blocks exist, they |
| 823 | /// indicate a self-contained irreducible sub-SCC. We could treat them |
| 824 | /// as sub-loops, rather than arbitrarily shoving the problematic |
| 825 | /// blocks into the headers of the main irreducible SCC. |
| 826 | /// |
| 827 | /// - Entry frequencies are assumed to be evenly split between the |
| 828 | /// headers of a given irreducible SCC, which is the only option if we |
| 829 | /// need to compute mass in the SCC before its parent loop. Instead, |
| 830 | /// we could partially compute mass in the parent loop, and stop when |
| 831 | /// we get to the SCC. Here, we have the correct ratio of entry |
| 832 | /// masses, which we can use to adjust their relative frequencies. |
| 833 | /// Compute mass in the SCC, and then continue propagation in the |
| 834 | /// parent. |
| 835 | /// |
| 836 | /// - We can propagate mass iteratively through the SCC, for some fixed |
| 837 | /// number of iterations. Each iteration starts by assigning the entry |
| 838 | /// blocks their backedge mass from the prior iteration. The final |
| 839 | /// mass for each block (and each exit, and the total backedge mass |
| 840 | /// used for computing loop scale) is the sum of all iterations. |
| 841 | /// (Running this until fixed point would "solve" the geometric |
| 842 | /// series by simulation.) |
| 843 | template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase { |
| 844 | // This is part of a workaround for a GCC 4.7 crash on lambdas. |
| 845 | friend struct bfi_detail::BlockEdgesAdder<BT>; |
| 846 | |
| 847 | using BlockT = typename bfi_detail::TypeMap<BT>::BlockT; |
| 848 | using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT; |
| 849 | using BranchProbabilityInfoT = |
| 850 | typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT; |
| 851 | using LoopT = typename bfi_detail::TypeMap<BT>::LoopT; |
| 852 | using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT; |
| 853 | using Successor = GraphTraits<const BlockT *>; |
| 854 | using Predecessor = GraphTraits<Inverse<const BlockT *>>; |
| 855 | |
| 856 | const BranchProbabilityInfoT *BPI = nullptr; |
| 857 | const LoopInfoT *LI = nullptr; |
| 858 | const FunctionT *F = nullptr; |
| 859 | |
| 860 | // All blocks in reverse postorder. |
| 861 | std::vector<const BlockT *> RPOT; |
| 862 | DenseMap<const BlockT *, BlockNode> Nodes; |
| 863 | |
| 864 | using rpot_iterator = typename std::vector<const BlockT *>::const_iterator; |
| 865 | |
| 866 | rpot_iterator rpot_begin() const { return RPOT.begin(); } |
| 867 | rpot_iterator rpot_end() const { return RPOT.end(); } |
| 868 | |
| 869 | size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); } |
| 870 | |
| 871 | BlockNode getNode(const rpot_iterator &I) const { |
| 872 | return BlockNode(getIndex(I)); |
| 873 | } |
| 874 | BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); } |
| 875 | |
| 876 | const BlockT *getBlock(const BlockNode &Node) const { |
| 877 | assert(Node.Index < RPOT.size()); |
| 878 | return RPOT[Node.Index]; |
| 879 | } |
| 880 | |
| 881 | /// \brief Run (and save) a post-order traversal. |
| 882 | /// |
| 883 | /// Saves a reverse post-order traversal of all the nodes in \a F. |
| 884 | void initializeRPOT(); |
| 885 | |
| 886 | /// \brief Initialize loop data. |
| 887 | /// |
| 888 | /// Build up \a Loops using \a LoopInfo. \a LoopInfo gives us a mapping from |
| 889 | /// each block to the deepest loop it's in, but we need the inverse. For each |
| 890 | /// loop, we store in reverse post-order its "immediate" members, defined as |
| 891 | /// the header, the headers of immediate sub-loops, and all other blocks in |
| 892 | /// the loop that are not in sub-loops. |
| 893 | void initializeLoops(); |
| 894 | |
| 895 | /// \brief Propagate to a block's successors. |
| 896 | /// |
| 897 | /// In the context of distributing mass through \c OuterLoop, divide the mass |
| 898 | /// currently assigned to \c Node between its successors. |
| 899 | /// |
| 900 | /// \return \c true unless there's an irreducible backedge. |
| 901 | bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node); |
| 902 | |
| 903 | /// \brief Compute mass in a particular loop. |
| 904 | /// |
| 905 | /// Assign mass to \c Loop's header, and then for each block in \c Loop in |
| 906 | /// reverse post-order, distribute mass to its successors. Only visits nodes |
| 907 | /// that have not been packaged into sub-loops. |
| 908 | /// |
| 909 | /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop. |
| 910 | /// \return \c true unless there's an irreducible backedge. |
| 911 | bool computeMassInLoop(LoopData &Loop); |
| 912 | |
| 913 | /// \brief Try to compute mass in the top-level function. |
| 914 | /// |
| 915 | /// Assign mass to the entry block, and then for each block in reverse |
| 916 | /// post-order, distribute mass to its successors. Skips nodes that have |
| 917 | /// been packaged into loops. |
| 918 | /// |
| 919 | /// \pre \a computeMassInLoops() has been called. |
| 920 | /// \return \c true unless there's an irreducible backedge. |
| 921 | bool tryToComputeMassInFunction(); |
| 922 | |
| 923 | /// \brief Compute mass in (and package up) irreducible SCCs. |
| 924 | /// |
| 925 | /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front |
| 926 | /// of \c Insert), and call \a computeMassInLoop() on each of them. |
| 927 | /// |
| 928 | /// If \c OuterLoop is \c nullptr, it refers to the top-level function. |
| 929 | /// |
| 930 | /// \pre \a computeMassInLoop() has been called for each subloop of \c |
| 931 | /// OuterLoop. |
| 932 | /// \pre \c Insert points at the last loop successfully processed by \a |
| 933 | /// computeMassInLoop(). |
| 934 | /// \pre \c OuterLoop has irreducible SCCs. |
| 935 | void computeIrreducibleMass(LoopData *OuterLoop, |
| 936 | std::list<LoopData>::iterator Insert); |
| 937 | |
| 938 | /// \brief Compute mass in all loops. |
| 939 | /// |
| 940 | /// For each loop bottom-up, call \a computeMassInLoop(). |
| 941 | /// |
| 942 | /// \a computeMassInLoop() aborts (and returns \c false) on loops that |
| 943 | /// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then |
| 944 | /// re-enter \a computeMassInLoop(). |
| 945 | /// |
| 946 | /// \post \a computeMassInLoop() has returned \c true for every loop. |
| 947 | void computeMassInLoops(); |
| 948 | |
| 949 | /// \brief Compute mass in the top-level function. |
| 950 | /// |
| 951 | /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to |
| 952 | /// compute mass in the top-level function. |
| 953 | /// |
| 954 | /// \post \a tryToComputeMassInFunction() has returned \c true. |
| 955 | void computeMassInFunction(); |
| 956 | |
| 957 | std::string getBlockName(const BlockNode &Node) const override { |
| 958 | return bfi_detail::getBlockName(getBlock(Node)); |
| 959 | } |
| 960 | |
| 961 | public: |
| 962 | BlockFrequencyInfoImpl() = default; |
| 963 | |
| 964 | const FunctionT *getFunction() const { return F; } |
| 965 | |
| 966 | void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI, |
| 967 | const LoopInfoT &LI); |
| 968 | |
| 969 | using BlockFrequencyInfoImplBase::getEntryFreq; |
| 970 | |
| 971 | BlockFrequency getBlockFreq(const BlockT *BB) const { |
| 972 | return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB)); |
| 973 | } |
| 974 | |
| 975 | Optional<uint64_t> getBlockProfileCount(const Function &F, |
| 976 | const BlockT *BB) const { |
| 977 | return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB)); |
| 978 | } |
| 979 | |
| 980 | Optional<uint64_t> getProfileCountFromFreq(const Function &F, |
| 981 | uint64_t Freq) const { |
| 982 | return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq); |
| 983 | } |
| 984 | |
| 985 | bool isIrrLoopHeader(const BlockT *BB) { |
| 986 | return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB)); |
| 987 | } |
| 988 | |
| 989 | void setBlockFreq(const BlockT *BB, uint64_t Freq); |
| 990 | |
| 991 | Scaled64 getFloatingBlockFreq(const BlockT *BB) const { |
| 992 | return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB)); |
| 993 | } |
| 994 | |
| 995 | const BranchProbabilityInfoT &getBPI() const { return *BPI; } |
| 996 | |
| 997 | /// \brief Print the frequencies for the current function. |
| 998 | /// |
| 999 | /// Prints the frequencies for the blocks in the current function. |
| 1000 | /// |
| 1001 | /// Blocks are printed in the natural iteration order of the function, rather |
| 1002 | /// than reverse post-order. This provides two advantages: writing -analyze |
| 1003 | /// tests is easier (since blocks come out in source order), and even |
| 1004 | /// unreachable blocks are printed. |
| 1005 | /// |
| 1006 | /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so |
| 1007 | /// we need to override it here. |
| 1008 | raw_ostream &print(raw_ostream &OS) const override; |
| 1009 | |
| 1010 | using BlockFrequencyInfoImplBase::dump; |
| 1011 | using BlockFrequencyInfoImplBase::printBlockFreq; |
| 1012 | |
| 1013 | raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const { |
| 1014 | return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB)); |
| 1015 | } |
| 1016 | }; |
| 1017 | |
| 1018 | template <class BT> |
| 1019 | void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F, |
| 1020 | const BranchProbabilityInfoT &BPI, |
| 1021 | const LoopInfoT &LI) { |
| 1022 | // Save the parameters. |
| 1023 | this->BPI = &BPI; |
| 1024 | this->LI = &LI; |
| 1025 | this->F = &F; |
| 1026 | |
| 1027 | // Clean up left-over data structures. |
| 1028 | BlockFrequencyInfoImplBase::clear(); |
| 1029 | RPOT.clear(); |
| 1030 | Nodes.clear(); |
| 1031 | |
| 1032 | // Initialize. |
| 1033 | DEBUG(dbgs() << "\nblock-frequency: " << F.getName() << "\n=================" |
| 1034 | << std::string(F.getName().size(), '=') << "\n"); |
| 1035 | initializeRPOT(); |
| 1036 | initializeLoops(); |
| 1037 | |
| 1038 | // Visit loops in post-order to find the local mass distribution, and then do |
| 1039 | // the full function. |
| 1040 | computeMassInLoops(); |
| 1041 | computeMassInFunction(); |
| 1042 | unwrapLoops(); |
| 1043 | finalizeMetrics(); |
| 1044 | } |
| 1045 | |
| 1046 | template <class BT> |
| 1047 | void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) { |
| 1048 | if (Nodes.count(BB)) |
| 1049 | BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq); |
| 1050 | else { |
| 1051 | // If BB is a newly added block after BFI is done, we need to create a new |
| 1052 | // BlockNode for it assigned with a new index. The index can be determined |
| 1053 | // by the size of Freqs. |
| 1054 | BlockNode NewNode(Freqs.size()); |
| 1055 | Nodes[BB] = NewNode; |
| 1056 | Freqs.emplace_back(); |
| 1057 | BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq); |
| 1058 | } |
| 1059 | } |
| 1060 | |
| 1061 | template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() { |
| 1062 | const BlockT *Entry = &F->front(); |
| 1063 | RPOT.reserve(F->size()); |
| 1064 | std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT)); |
| 1065 | std::reverse(RPOT.begin(), RPOT.end()); |
| 1066 | |
| 1067 | assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() && |
| 1068 | "More nodes in function than Block Frequency Info supports"); |
| 1069 | |
| 1070 | DEBUG(dbgs() << "reverse-post-order-traversal\n"); |
| 1071 | for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) { |
| 1072 | BlockNode Node = getNode(I); |
| 1073 | DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n"); |
| 1074 | Nodes[*I] = Node; |
| 1075 | } |
| 1076 | |
| 1077 | Working.reserve(RPOT.size()); |
| 1078 | for (size_t Index = 0; Index < RPOT.size(); ++Index) |
| 1079 | Working.emplace_back(Index); |
| 1080 | Freqs.resize(RPOT.size()); |
| 1081 | } |
| 1082 | |
| 1083 | template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() { |
| 1084 | DEBUG(dbgs() << "loop-detection\n"); |
| 1085 | if (LI->empty()) |
| 1086 | return; |
| 1087 | |
| 1088 | // Visit loops top down and assign them an index. |
| 1089 | std::deque<std::pair<const LoopT *, LoopData *>> Q; |
| 1090 | for (const LoopT *L : *LI) |
| 1091 | Q.emplace_back(L, nullptr); |
| 1092 | while (!Q.empty()) { |
| 1093 | const LoopT *Loop = Q.front().first; |
| 1094 | LoopData *Parent = Q.front().second; |
| 1095 | Q.pop_front(); |
| 1096 | |
| 1097 | BlockNode Header = getNode(Loop->getHeader()); |
| 1098 | assert(Header.isValid()); |
| 1099 | |
| 1100 | Loops.emplace_back(Parent, Header); |
| 1101 | Working[Header.Index].Loop = &Loops.back(); |
| 1102 | DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n"); |
| 1103 | |
| 1104 | for (const LoopT *L : *Loop) |
| 1105 | Q.emplace_back(L, &Loops.back()); |
| 1106 | } |
| 1107 | |
| 1108 | // Visit nodes in reverse post-order and add them to their deepest containing |
| 1109 | // loop. |
| 1110 | for (size_t Index = 0; Index < RPOT.size(); ++Index) { |
| 1111 | // Loop headers have already been mostly mapped. |
| 1112 | if (Working[Index].isLoopHeader()) { |
| 1113 | LoopData *ContainingLoop = Working[Index].getContainingLoop(); |
| 1114 | if (ContainingLoop) |
| 1115 | ContainingLoop->Nodes.push_back(Index); |
| 1116 | continue; |
| 1117 | } |
| 1118 | |
| 1119 | const LoopT *Loop = LI->getLoopFor(RPOT[Index]); |
| 1120 | if (!Loop) |
| 1121 | continue; |
| 1122 | |
| 1123 | // Add this node to its containing loop's member list. |
| 1124 | BlockNode Header = getNode(Loop->getHeader()); |
| 1125 | assert(Header.isValid()); |
| 1126 | const auto &HeaderData = Working[Header.Index]; |
| 1127 | assert(HeaderData.isLoopHeader()); |
| 1128 | |
| 1129 | Working[Index].Loop = HeaderData.Loop; |
| 1130 | HeaderData.Loop->Nodes.push_back(Index); |
| 1131 | DEBUG(dbgs() << " - loop = " << getBlockName(Header) |
| 1132 | << ": member = " << getBlockName(Index) << "\n"); |
| 1133 | } |
| 1134 | } |
| 1135 | |
| 1136 | template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() { |
| 1137 | // Visit loops with the deepest first, and the top-level loops last. |
| 1138 | for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) { |
| 1139 | if (computeMassInLoop(*L)) |
| 1140 | continue; |
| 1141 | auto Next = std::next(L); |
| 1142 | computeIrreducibleMass(&*L, L.base()); |
| 1143 | L = std::prev(Next); |
| 1144 | if (computeMassInLoop(*L)) |
| 1145 | continue; |
| 1146 | llvm_unreachable("unhandled irreducible control flow"); |
| 1147 | } |
| 1148 | } |
| 1149 | |
| 1150 | template <class BT> |
| 1151 | bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) { |
| 1152 | // Compute mass in loop. |
| 1153 | DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n"); |
| 1154 | |
| 1155 | if (Loop.isIrreducible()) { |
| 1156 | DEBUG(dbgs() << "isIrreducible = true\n"); |
| 1157 | Distribution Dist; |
| 1158 | unsigned NumHeadersWithWeight = 0; |
| 1159 | Optional<uint64_t> MinHeaderWeight; |
| 1160 | DenseSet<uint32_t> HeadersWithoutWeight; |
| 1161 | HeadersWithoutWeight.reserve(Loop.NumHeaders); |
| 1162 | for (uint32_t H = 0; H < Loop.NumHeaders; ++H) { |
| 1163 | auto &HeaderNode = Loop.Nodes[H]; |
| 1164 | const BlockT *Block = getBlock(HeaderNode); |
| 1165 | IsIrrLoopHeader.set(Loop.Nodes[H].Index); |
| 1166 | Optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight(); |
| 1167 | if (!HeaderWeight) { |
| 1168 | DEBUG(dbgs() << "Missing irr loop header metadata on " |
| 1169 | << getBlockName(HeaderNode) << "\n"); |
| 1170 | HeadersWithoutWeight.insert(H); |
| 1171 | continue; |
| 1172 | } |
| 1173 | DEBUG(dbgs() << getBlockName(HeaderNode) |
| 1174 | << " has irr loop header weight " << HeaderWeight.getValue() |
| 1175 | << "\n"); |
| 1176 | NumHeadersWithWeight++; |
| 1177 | uint64_t HeaderWeightValue = HeaderWeight.getValue(); |
| 1178 | if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight) |
| 1179 | MinHeaderWeight = HeaderWeightValue; |
| 1180 | if (HeaderWeightValue) { |
| 1181 | Dist.addLocal(HeaderNode, HeaderWeightValue); |
| 1182 | } |
| 1183 | } |
| 1184 | // As a heuristic, if some headers don't have a weight, give them the |
| 1185 | // minimium weight seen (not to disrupt the existing trends too much by |
| 1186 | // using a weight that's in the general range of the other headers' weights, |
| 1187 | // and the minimum seems to perform better than the average.) |
| 1188 | // FIXME: better update in the passes that drop the header weight. |
| 1189 | // If no headers have a weight, give them even weight (use weight 1). |
| 1190 | if (!MinHeaderWeight) |
| 1191 | MinHeaderWeight = 1; |
| 1192 | for (uint32_t H : HeadersWithoutWeight) { |
| 1193 | auto &HeaderNode = Loop.Nodes[H]; |
| 1194 | assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() && |
| 1195 | "Shouldn't have a weight metadata"); |
| 1196 | uint64_t MinWeight = MinHeaderWeight.getValue(); |
| 1197 | DEBUG(dbgs() << "Giving weight " << MinWeight |
| 1198 | << " to " << getBlockName(HeaderNode) << "\n"); |
| 1199 | if (MinWeight) |
| 1200 | Dist.addLocal(HeaderNode, MinWeight); |
| 1201 | } |
| 1202 | distributeIrrLoopHeaderMass(Dist); |
| 1203 | for (const BlockNode &M : Loop.Nodes) |
| 1204 | if (!propagateMassToSuccessors(&Loop, M)) |
| 1205 | llvm_unreachable("unhandled irreducible control flow"); |
| 1206 | if (NumHeadersWithWeight == 0) |
| 1207 | // No headers have a metadata. Adjust header mass. |
| 1208 | adjustLoopHeaderMass(Loop); |
| 1209 | } else { |
| 1210 | Working[Loop.getHeader().Index].getMass() = BlockMass::getFull(); |
| 1211 | if (!propagateMassToSuccessors(&Loop, Loop.getHeader())) |
| 1212 | llvm_unreachable("irreducible control flow to loop header!?"); |
| 1213 | for (const BlockNode &M : Loop.members()) |
| 1214 | if (!propagateMassToSuccessors(&Loop, M)) |
| 1215 | // Irreducible backedge. |
| 1216 | return false; |
| 1217 | } |
| 1218 | |
| 1219 | computeLoopScale(Loop); |
| 1220 | packageLoop(Loop); |
| 1221 | return true; |
| 1222 | } |
| 1223 | |
| 1224 | template <class BT> |
| 1225 | bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() { |
| 1226 | // Compute mass in function. |
| 1227 | DEBUG(dbgs() << "compute-mass-in-function\n"); |
| 1228 | assert(!Working.empty() && "no blocks in function"); |
| 1229 | assert(!Working[0].isLoopHeader() && "entry block is a loop header"); |
| 1230 | |
| 1231 | Working[0].getMass() = BlockMass::getFull(); |
| 1232 | for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) { |
| 1233 | // Check for nodes that have been packaged. |
| 1234 | BlockNode Node = getNode(I); |
| 1235 | if (Working[Node.Index].isPackaged()) |
| 1236 | continue; |
| 1237 | |
| 1238 | if (!propagateMassToSuccessors(nullptr, Node)) |
| 1239 | return false; |
| 1240 | } |
| 1241 | return true; |
| 1242 | } |
| 1243 | |
| 1244 | template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() { |
| 1245 | if (tryToComputeMassInFunction()) |
| 1246 | return; |
| 1247 | computeIrreducibleMass(nullptr, Loops.begin()); |
| 1248 | if (tryToComputeMassInFunction()) |
| 1249 | return; |
| 1250 | llvm_unreachable("unhandled irreducible control flow"); |
| 1251 | } |
| 1252 | |
| 1253 | /// \note This should be a lambda, but that crashes GCC 4.7. |
| 1254 | namespace bfi_detail { |
| 1255 | |
| 1256 | template <class BT> struct BlockEdgesAdder { |
| 1257 | using BlockT = BT; |
| 1258 | using LoopData = BlockFrequencyInfoImplBase::LoopData; |
| 1259 | using Successor = GraphTraits<const BlockT *>; |
| 1260 | |
| 1261 | const BlockFrequencyInfoImpl<BT> &BFI; |
| 1262 | |
| 1263 | explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI) |
| 1264 | : BFI(BFI) {} |
| 1265 | |
| 1266 | void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr, |
| 1267 | const LoopData *OuterLoop) { |
| 1268 | const BlockT *BB = BFI.RPOT[Irr.Node.Index]; |
| 1269 | for (const auto Succ : children<const BlockT *>(BB)) |
| 1270 | G.addEdge(Irr, BFI.getNode(Succ), OuterLoop); |
| 1271 | } |
| 1272 | }; |
| 1273 | |
| 1274 | } // end namespace bfi_detail |
| 1275 | |
| 1276 | template <class BT> |
| 1277 | void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass( |
| 1278 | LoopData *OuterLoop, std::list<LoopData>::iterator Insert) { |
| 1279 | DEBUG(dbgs() << "analyze-irreducible-in-"; |
| 1280 | if (OuterLoop) dbgs() << "loop: " << getLoopName(*OuterLoop) << "\n"; |
| 1281 | else dbgs() << "function\n"); |
| 1282 | |
| 1283 | using namespace bfi_detail; |
| 1284 | |
| 1285 | // Ideally, addBlockEdges() would be declared here as a lambda, but that |
| 1286 | // crashes GCC 4.7. |
| 1287 | BlockEdgesAdder<BT> addBlockEdges(*this); |
| 1288 | IrreducibleGraph G(*this, OuterLoop, addBlockEdges); |
| 1289 | |
| 1290 | for (auto &L : analyzeIrreducible(G, OuterLoop, Insert)) |
| 1291 | computeMassInLoop(L); |
| 1292 | |
| 1293 | if (!OuterLoop) |
| 1294 | return; |
| 1295 | updateLoopWithIrreducible(*OuterLoop); |
| 1296 | } |
| 1297 | |
| 1298 | // A helper function that converts a branch probability into weight. |
| 1299 | inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) { |
| 1300 | return Prob.getNumerator(); |
| 1301 | } |
| 1302 | |
| 1303 | template <class BT> |
| 1304 | bool |
| 1305 | BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop, |
| 1306 | const BlockNode &Node) { |
| 1307 | DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n"); |
| 1308 | // Calculate probability for successors. |
| 1309 | Distribution Dist; |
| 1310 | if (auto *Loop = Working[Node.Index].getPackagedLoop()) { |
| 1311 | assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop"); |
| 1312 | if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist)) |
| 1313 | // Irreducible backedge. |
| 1314 | return false; |
| 1315 | } else { |
| 1316 | const BlockT *BB = getBlock(Node); |
| 1317 | for (auto SI = GraphTraits<const BlockT *>::child_begin(BB), |
| 1318 | SE = GraphTraits<const BlockT *>::child_end(BB); |
| 1319 | SI != SE; ++SI) |
| 1320 | if (!addToDist( |
| 1321 | Dist, OuterLoop, Node, getNode(*SI), |
| 1322 | getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI)))) |
| 1323 | // Irreducible backedge. |
| 1324 | return false; |
| 1325 | } |
| 1326 | |
| 1327 | // Distribute mass to successors, saving exit and backedge data in the |
| 1328 | // loop header. |
| 1329 | distributeMass(Node, OuterLoop, Dist); |
| 1330 | return true; |
| 1331 | } |
| 1332 | |
| 1333 | template <class BT> |
| 1334 | raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const { |
| 1335 | if (!F) |
| 1336 | return OS; |
| 1337 | OS << "block-frequency-info: " << F->getName() << "\n"; |
| 1338 | for (const BlockT &BB : *F) { |
| 1339 | OS << " - " << bfi_detail::getBlockName(&BB) << ": float = "; |
| 1340 | getFloatingBlockFreq(&BB).print(OS, 5) |
| 1341 | << ", int = " << getBlockFreq(&BB).getFrequency(); |
| 1342 | if (Optional<uint64_t> ProfileCount = |
| 1343 | BlockFrequencyInfoImplBase::getBlockProfileCount( |
| 1344 | F->getFunction(), getNode(&BB))) |
| 1345 | OS << ", count = " << ProfileCount.getValue(); |
| 1346 | if (Optional<uint64_t> IrrLoopHeaderWeight = |
| 1347 | BB.getIrrLoopHeaderWeight()) |
| 1348 | OS << ", irr_loop_header_weight = " << IrrLoopHeaderWeight.getValue(); |
| 1349 | OS << "\n"; |
| 1350 | } |
| 1351 | |
| 1352 | // Add an extra newline for readability. |
| 1353 | OS << "\n"; |
| 1354 | return OS; |
| 1355 | } |
| 1356 | |
| 1357 | // Graph trait base class for block frequency information graph |
| 1358 | // viewer. |
| 1359 | |
| 1360 | enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count }; |
| 1361 | |
| 1362 | template <class BlockFrequencyInfoT, class BranchProbabilityInfoT> |
| 1363 | struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits { |
| 1364 | using GTraits = GraphTraits<BlockFrequencyInfoT *>; |
| 1365 | using NodeRef = typename GTraits::NodeRef; |
| 1366 | using EdgeIter = typename GTraits::ChildIteratorType; |
| 1367 | using NodeIter = typename GTraits::nodes_iterator; |
| 1368 | |
| 1369 | uint64_t MaxFrequency = 0; |
| 1370 | |
| 1371 | explicit BFIDOTGraphTraitsBase(bool isSimple = false) |
| 1372 | : DefaultDOTGraphTraits(isSimple) {} |
| 1373 | |
| 1374 | static std::string getGraphName(const BlockFrequencyInfoT *G) { |
| 1375 | return G->getFunction()->getName(); |
| 1376 | } |
| 1377 | |
| 1378 | std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph, |
| 1379 | unsigned HotPercentThreshold = 0) { |
| 1380 | std::string Result; |
| 1381 | if (!HotPercentThreshold) |
| 1382 | return Result; |
| 1383 | |
| 1384 | // Compute MaxFrequency on the fly: |
| 1385 | if (!MaxFrequency) { |
| 1386 | for (NodeIter I = GTraits::nodes_begin(Graph), |
| 1387 | E = GTraits::nodes_end(Graph); |
| 1388 | I != E; ++I) { |
| 1389 | NodeRef N = *I; |
| 1390 | MaxFrequency = |
| 1391 | std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency()); |
| 1392 | } |
| 1393 | } |
| 1394 | BlockFrequency Freq = Graph->getBlockFreq(Node); |
| 1395 | BlockFrequency HotFreq = |
| 1396 | (BlockFrequency(MaxFrequency) * |
| 1397 | BranchProbability::getBranchProbability(HotPercentThreshold, 100)); |
| 1398 | |
| 1399 | if (Freq < HotFreq) |
| 1400 | return Result; |
| 1401 | |
| 1402 | raw_string_ostream OS(Result); |
| 1403 | OS << "color=\"red\""; |
| 1404 | OS.flush(); |
| 1405 | return Result; |
| 1406 | } |
| 1407 | |
| 1408 | std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph, |
| 1409 | GVDAGType GType, int layout_order = -1) { |
| 1410 | std::string Result; |
| 1411 | raw_string_ostream OS(Result); |
| 1412 | |
| 1413 | if (layout_order != -1) |
| 1414 | OS << Node->getName() << "[" << layout_order << "] : "; |
| 1415 | else |
| 1416 | OS << Node->getName() << " : "; |
| 1417 | switch (GType) { |
| 1418 | case GVDT_Fraction: |
| 1419 | Graph->printBlockFreq(OS, Node); |
| 1420 | break; |
| 1421 | case GVDT_Integer: |
| 1422 | OS << Graph->getBlockFreq(Node).getFrequency(); |
| 1423 | break; |
| 1424 | case GVDT_Count: { |
| 1425 | auto Count = Graph->getBlockProfileCount(Node); |
| 1426 | if (Count) |
| 1427 | OS << Count.getValue(); |
| 1428 | else |
| 1429 | OS << "Unknown"; |
| 1430 | break; |
| 1431 | } |
| 1432 | case GVDT_None: |
| 1433 | llvm_unreachable("If we are not supposed to render a graph we should " |
| 1434 | "never reach this point."); |
| 1435 | } |
| 1436 | return Result; |
| 1437 | } |
| 1438 | |
| 1439 | std::string getEdgeAttributes(NodeRef Node, EdgeIter EI, |
| 1440 | const BlockFrequencyInfoT *BFI, |
| 1441 | const BranchProbabilityInfoT *BPI, |
| 1442 | unsigned HotPercentThreshold = 0) { |
| 1443 | std::string Str; |
| 1444 | if (!BPI) |
| 1445 | return Str; |
| 1446 | |
| 1447 | BranchProbability BP = BPI->getEdgeProbability(Node, EI); |
| 1448 | uint32_t N = BP.getNumerator(); |
| 1449 | uint32_t D = BP.getDenominator(); |
| 1450 | double Percent = 100.0 * N / D; |
| 1451 | raw_string_ostream OS(Str); |
| 1452 | OS << format("label=\"%.1f%%\"", Percent); |
| 1453 | |
| 1454 | if (HotPercentThreshold) { |
| 1455 | BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP; |
| 1456 | BlockFrequency HotFreq = BlockFrequency(MaxFrequency) * |
| 1457 | BranchProbability(HotPercentThreshold, 100); |
| 1458 | |
| 1459 | if (EFreq >= HotFreq) { |
| 1460 | OS << ",color=\"red\""; |
| 1461 | } |
| 1462 | } |
| 1463 | |
| 1464 | OS.flush(); |
| 1465 | return Str; |
| 1466 | } |
| 1467 | }; |
| 1468 | |
| 1469 | } // end namespace llvm |
| 1470 | |
| 1471 | #undef DEBUG_TYPE |
| 1472 | |
| 1473 | #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H |