blob: 1a7596d42767206c8bfaa0e957d6cd9f9972d4b0 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// @file
11/// This file contains the declarations for the subclasses of Constant,
12/// which represent the different flavors of constant values that live in LLVM.
13/// Note that Constants are immutable (once created they never change) and are
14/// fully shared by structural equivalence. This means that two structurally
15/// equivalent constants will always have the same address. Constants are
16/// created on demand as needed and never deleted: thus clients don't have to
17/// worry about the lifetime of the objects.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_IR_CONSTANTS_H
22#define LLVM_IR_CONSTANTS_H
23
24#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/APInt.h"
26#include "llvm/ADT/ArrayRef.h"
27#include "llvm/ADT/None.h"
28#include "llvm/ADT/Optional.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/StringRef.h"
31#include "llvm/IR/Constant.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/OperandTraits.h"
34#include "llvm/IR/User.h"
35#include "llvm/IR/Value.h"
36#include "llvm/Support/Casting.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/ErrorHandling.h"
39#include <cassert>
40#include <cstddef>
41#include <cstdint>
42
43namespace llvm {
44
45class ArrayType;
46class IntegerType;
47class PointerType;
48class SequentialType;
49class StructType;
50class VectorType;
51template <class ConstantClass> struct ConstantAggrKeyType;
52
53/// Base class for constants with no operands.
54///
55/// These constants have no operands; they represent their data directly.
56/// Since they can be in use by unrelated modules (and are never based on
57/// GlobalValues), it never makes sense to RAUW them.
58class ConstantData : public Constant {
59 friend class Constant;
60
61 Value *handleOperandChangeImpl(Value *From, Value *To) {
62 llvm_unreachable("Constant data does not have operands!");
63 }
64
65protected:
66 explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}
67
68 void *operator new(size_t s) { return User::operator new(s, 0); }
69
70public:
71 ConstantData(const ConstantData &) = delete;
72
73 /// Methods to support type inquiry through isa, cast, and dyn_cast.
74 static bool classof(const Value *V) {
75 return V->getValueID() >= ConstantDataFirstVal &&
76 V->getValueID() <= ConstantDataLastVal;
77 }
78};
79
80//===----------------------------------------------------------------------===//
81/// This is the shared class of boolean and integer constants. This class
82/// represents both boolean and integral constants.
83/// @brief Class for constant integers.
84class ConstantInt final : public ConstantData {
85 friend class Constant;
86
87 APInt Val;
88
89 ConstantInt(IntegerType *Ty, const APInt& V);
90
91 void destroyConstantImpl();
92
93public:
94 ConstantInt(const ConstantInt &) = delete;
95
96 static ConstantInt *getTrue(LLVMContext &Context);
97 static ConstantInt *getFalse(LLVMContext &Context);
98 static Constant *getTrue(Type *Ty);
99 static Constant *getFalse(Type *Ty);
100
101 /// If Ty is a vector type, return a Constant with a splat of the given
102 /// value. Otherwise return a ConstantInt for the given value.
103 static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
104
105 /// Return a ConstantInt with the specified integer value for the specified
106 /// type. If the type is wider than 64 bits, the value will be zero-extended
107 /// to fit the type, unless isSigned is true, in which case the value will
108 /// be interpreted as a 64-bit signed integer and sign-extended to fit
109 /// the type.
110 /// @brief Get a ConstantInt for a specific value.
111 static ConstantInt *get(IntegerType *Ty, uint64_t V,
112 bool isSigned = false);
113
114 /// Return a ConstantInt with the specified value for the specified type. The
115 /// value V will be canonicalized to a an unsigned APInt. Accessing it with
116 /// either getSExtValue() or getZExtValue() will yield a correctly sized and
117 /// signed value for the type Ty.
118 /// @brief Get a ConstantInt for a specific signed value.
119 static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
120 static Constant *getSigned(Type *Ty, int64_t V);
121
122 /// Return a ConstantInt with the specified value and an implied Type. The
123 /// type is the integer type that corresponds to the bit width of the value.
124 static ConstantInt *get(LLVMContext &Context, const APInt &V);
125
126 /// Return a ConstantInt constructed from the string strStart with the given
127 /// radix.
128 static ConstantInt *get(IntegerType *Ty, StringRef Str,
129 uint8_t radix);
130
131 /// If Ty is a vector type, return a Constant with a splat of the given
132 /// value. Otherwise return a ConstantInt for the given value.
133 static Constant *get(Type* Ty, const APInt& V);
134
135 /// Return the constant as an APInt value reference. This allows clients to
136 /// obtain a full-precision copy of the value.
137 /// @brief Return the constant's value.
138 inline const APInt &getValue() const {
139 return Val;
140 }
141
142 /// getBitWidth - Return the bitwidth of this constant.
143 unsigned getBitWidth() const { return Val.getBitWidth(); }
144
145 /// Return the constant as a 64-bit unsigned integer value after it
146 /// has been zero extended as appropriate for the type of this constant. Note
147 /// that this method can assert if the value does not fit in 64 bits.
148 /// @brief Return the zero extended value.
149 inline uint64_t getZExtValue() const {
150 return Val.getZExtValue();
151 }
152
153 /// Return the constant as a 64-bit integer value after it has been sign
154 /// extended as appropriate for the type of this constant. Note that
155 /// this method can assert if the value does not fit in 64 bits.
156 /// @brief Return the sign extended value.
157 inline int64_t getSExtValue() const {
158 return Val.getSExtValue();
159 }
160
161 /// A helper method that can be used to determine if the constant contained
162 /// within is equal to a constant. This only works for very small values,
163 /// because this is all that can be represented with all types.
164 /// @brief Determine if this constant's value is same as an unsigned char.
165 bool equalsInt(uint64_t V) const {
166 return Val == V;
167 }
168
169 /// getType - Specialize the getType() method to always return an IntegerType,
170 /// which reduces the amount of casting needed in parts of the compiler.
171 ///
172 inline IntegerType *getType() const {
173 return cast<IntegerType>(Value::getType());
174 }
175
176 /// This static method returns true if the type Ty is big enough to
177 /// represent the value V. This can be used to avoid having the get method
178 /// assert when V is larger than Ty can represent. Note that there are two
179 /// versions of this method, one for unsigned and one for signed integers.
180 /// Although ConstantInt canonicalizes everything to an unsigned integer,
181 /// the signed version avoids callers having to convert a signed quantity
182 /// to the appropriate unsigned type before calling the method.
183 /// @returns true if V is a valid value for type Ty
184 /// @brief Determine if the value is in range for the given type.
185 static bool isValueValidForType(Type *Ty, uint64_t V);
186 static bool isValueValidForType(Type *Ty, int64_t V);
187
188 bool isNegative() const { return Val.isNegative(); }
189
190 /// This is just a convenience method to make client code smaller for a
191 /// common code. It also correctly performs the comparison without the
192 /// potential for an assertion from getZExtValue().
193 bool isZero() const {
194 return Val.isNullValue();
195 }
196
197 /// This is just a convenience method to make client code smaller for a
198 /// common case. It also correctly performs the comparison without the
199 /// potential for an assertion from getZExtValue().
200 /// @brief Determine if the value is one.
201 bool isOne() const {
202 return Val.isOneValue();
203 }
204
205 /// This function will return true iff every bit in this constant is set
206 /// to true.
207 /// @returns true iff this constant's bits are all set to true.
208 /// @brief Determine if the value is all ones.
209 bool isMinusOne() const {
210 return Val.isAllOnesValue();
211 }
212
213 /// This function will return true iff this constant represents the largest
214 /// value that may be represented by the constant's type.
215 /// @returns true iff this is the largest value that may be represented
216 /// by this type.
217 /// @brief Determine if the value is maximal.
218 bool isMaxValue(bool isSigned) const {
219 if (isSigned)
220 return Val.isMaxSignedValue();
221 else
222 return Val.isMaxValue();
223 }
224
225 /// This function will return true iff this constant represents the smallest
226 /// value that may be represented by this constant's type.
227 /// @returns true if this is the smallest value that may be represented by
228 /// this type.
229 /// @brief Determine if the value is minimal.
230 bool isMinValue(bool isSigned) const {
231 if (isSigned)
232 return Val.isMinSignedValue();
233 else
234 return Val.isMinValue();
235 }
236
237 /// This function will return true iff this constant represents a value with
238 /// active bits bigger than 64 bits or a value greater than the given uint64_t
239 /// value.
240 /// @returns true iff this constant is greater or equal to the given number.
241 /// @brief Determine if the value is greater or equal to the given number.
242 bool uge(uint64_t Num) const {
243 return Val.uge(Num);
244 }
245
246 /// getLimitedValue - If the value is smaller than the specified limit,
247 /// return it, otherwise return the limit value. This causes the value
248 /// to saturate to the limit.
249 /// @returns the min of the value of the constant and the specified value
250 /// @brief Get the constant's value with a saturation limit
251 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
252 return Val.getLimitedValue(Limit);
253 }
254
255 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
256 static bool classof(const Value *V) {
257 return V->getValueID() == ConstantIntVal;
258 }
259};
260
261//===----------------------------------------------------------------------===//
262/// ConstantFP - Floating Point Values [float, double]
263///
264class ConstantFP final : public ConstantData {
265 friend class Constant;
266
267 APFloat Val;
268
269 ConstantFP(Type *Ty, const APFloat& V);
270
271 void destroyConstantImpl();
272
273public:
274 ConstantFP(const ConstantFP &) = delete;
275
276 /// Floating point negation must be implemented with f(x) = -0.0 - x. This
277 /// method returns the negative zero constant for floating point or vector
278 /// floating point types; for all other types, it returns the null value.
279 static Constant *getZeroValueForNegation(Type *Ty);
280
281 /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
282 /// for the specified value in the specified type. This should only be used
283 /// for simple constant values like 2.0/1.0 etc, that are known-valid both as
284 /// host double and as the target format.
285 static Constant *get(Type* Ty, double V);
286
287 /// If Ty is a vector type, return a Constant with a splat of the given
288 /// value. Otherwise return a ConstantFP for the given value.
289 static Constant *get(Type *Ty, const APFloat &V);
290
291 static Constant *get(Type* Ty, StringRef Str);
292 static ConstantFP *get(LLVMContext &Context, const APFloat &V);
293 static Constant *getNaN(Type *Ty, bool Negative = false, unsigned type = 0);
294 static Constant *getNegativeZero(Type *Ty);
295 static Constant *getInfinity(Type *Ty, bool Negative = false);
296
297 /// Return true if Ty is big enough to represent V.
298 static bool isValueValidForType(Type *Ty, const APFloat &V);
299 inline const APFloat &getValueAPF() const { return Val; }
300
301 /// Return true if the value is positive or negative zero.
302 bool isZero() const { return Val.isZero(); }
303
304 /// Return true if the sign bit is set.
305 bool isNegative() const { return Val.isNegative(); }
306
307 /// Return true if the value is infinity
308 bool isInfinity() const { return Val.isInfinity(); }
309
310 /// Return true if the value is a NaN.
311 bool isNaN() const { return Val.isNaN(); }
312
313 /// We don't rely on operator== working on double values, as it returns true
314 /// for things that are clearly not equal, like -0.0 and 0.0.
315 /// As such, this method can be used to do an exact bit-for-bit comparison of
316 /// two floating point values. The version with a double operand is retained
317 /// because it's so convenient to write isExactlyValue(2.0), but please use
318 /// it only for simple constants.
319 bool isExactlyValue(const APFloat &V) const;
320
321 bool isExactlyValue(double V) const {
322 bool ignored;
323 APFloat FV(V);
324 FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
325 return isExactlyValue(FV);
326 }
327
328 /// Methods for support type inquiry through isa, cast, and dyn_cast:
329 static bool classof(const Value *V) {
330 return V->getValueID() == ConstantFPVal;
331 }
332};
333
334//===----------------------------------------------------------------------===//
335/// All zero aggregate value
336///
337class ConstantAggregateZero final : public ConstantData {
338 friend class Constant;
339
340 explicit ConstantAggregateZero(Type *Ty)
341 : ConstantData(Ty, ConstantAggregateZeroVal) {}
342
343 void destroyConstantImpl();
344
345public:
346 ConstantAggregateZero(const ConstantAggregateZero &) = delete;
347
348 static ConstantAggregateZero *get(Type *Ty);
349
350 /// If this CAZ has array or vector type, return a zero with the right element
351 /// type.
352 Constant *getSequentialElement() const;
353
354 /// If this CAZ has struct type, return a zero with the right element type for
355 /// the specified element.
356 Constant *getStructElement(unsigned Elt) const;
357
358 /// Return a zero of the right value for the specified GEP index if we can,
359 /// otherwise return null (e.g. if C is a ConstantExpr).
360 Constant *getElementValue(Constant *C) const;
361
362 /// Return a zero of the right value for the specified GEP index.
363 Constant *getElementValue(unsigned Idx) const;
364
365 /// Return the number of elements in the array, vector, or struct.
366 unsigned getNumElements() const;
367
368 /// Methods for support type inquiry through isa, cast, and dyn_cast:
369 ///
370 static bool classof(const Value *V) {
371 return V->getValueID() == ConstantAggregateZeroVal;
372 }
373};
374
375/// Base class for aggregate constants (with operands).
376///
377/// These constants are aggregates of other constants, which are stored as
378/// operands.
379///
380/// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
381/// ConstantVector.
382///
383/// \note Some subclasses of \a ConstantData are semantically aggregates --
384/// such as \a ConstantDataArray -- but are not subclasses of this because they
385/// use operands.
386class ConstantAggregate : public Constant {
387protected:
388 ConstantAggregate(CompositeType *T, ValueTy VT, ArrayRef<Constant *> V);
389
390public:
391 /// Transparently provide more efficient getOperand methods.
392 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
393
394 /// Methods for support type inquiry through isa, cast, and dyn_cast:
395 static bool classof(const Value *V) {
396 return V->getValueID() >= ConstantAggregateFirstVal &&
397 V->getValueID() <= ConstantAggregateLastVal;
398 }
399};
400
401template <>
402struct OperandTraits<ConstantAggregate>
403 : public VariadicOperandTraits<ConstantAggregate> {};
404
405DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)
406
407//===----------------------------------------------------------------------===//
408/// ConstantArray - Constant Array Declarations
409///
410class ConstantArray final : public ConstantAggregate {
411 friend struct ConstantAggrKeyType<ConstantArray>;
412 friend class Constant;
413
414 ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
415
416 void destroyConstantImpl();
417 Value *handleOperandChangeImpl(Value *From, Value *To);
418
419public:
420 // ConstantArray accessors
421 static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
422
423private:
424 static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
425
426public:
427 /// Specialize the getType() method to always return an ArrayType,
428 /// which reduces the amount of casting needed in parts of the compiler.
429 inline ArrayType *getType() const {
430 return cast<ArrayType>(Value::getType());
431 }
432
433 /// Methods for support type inquiry through isa, cast, and dyn_cast:
434 static bool classof(const Value *V) {
435 return V->getValueID() == ConstantArrayVal;
436 }
437};
438
439//===----------------------------------------------------------------------===//
440// Constant Struct Declarations
441//
442class ConstantStruct final : public ConstantAggregate {
443 friend struct ConstantAggrKeyType<ConstantStruct>;
444 friend class Constant;
445
446 ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
447
448 void destroyConstantImpl();
449 Value *handleOperandChangeImpl(Value *From, Value *To);
450
451public:
452 // ConstantStruct accessors
453 static Constant *get(StructType *T, ArrayRef<Constant*> V);
454
455 template <typename... Csts>
456 static typename std::enable_if<are_base_of<Constant, Csts...>::value,
457 Constant *>::type
458 get(StructType *T, Csts *... Vs) {
459 SmallVector<Constant *, 8> Values({Vs...});
460 return get(T, Values);
461 }
462
463 /// Return an anonymous struct that has the specified elements.
464 /// If the struct is possibly empty, then you must specify a context.
465 static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
466 return get(getTypeForElements(V, Packed), V);
467 }
468 static Constant *getAnon(LLVMContext &Ctx,
469 ArrayRef<Constant*> V, bool Packed = false) {
470 return get(getTypeForElements(Ctx, V, Packed), V);
471 }
472
473 /// Return an anonymous struct type to use for a constant with the specified
474 /// set of elements. The list must not be empty.
475 static StructType *getTypeForElements(ArrayRef<Constant*> V,
476 bool Packed = false);
477 /// This version of the method allows an empty list.
478 static StructType *getTypeForElements(LLVMContext &Ctx,
479 ArrayRef<Constant*> V,
480 bool Packed = false);
481
482 /// Specialization - reduce amount of casting.
483 inline StructType *getType() const {
484 return cast<StructType>(Value::getType());
485 }
486
487 /// Methods for support type inquiry through isa, cast, and dyn_cast:
488 static bool classof(const Value *V) {
489 return V->getValueID() == ConstantStructVal;
490 }
491};
492
493//===----------------------------------------------------------------------===//
494/// Constant Vector Declarations
495///
496class ConstantVector final : public ConstantAggregate {
497 friend struct ConstantAggrKeyType<ConstantVector>;
498 friend class Constant;
499
500 ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
501
502 void destroyConstantImpl();
503 Value *handleOperandChangeImpl(Value *From, Value *To);
504
505public:
506 // ConstantVector accessors
507 static Constant *get(ArrayRef<Constant*> V);
508
509private:
510 static Constant *getImpl(ArrayRef<Constant *> V);
511
512public:
513 /// Return a ConstantVector with the specified constant in each element.
514 static Constant *getSplat(unsigned NumElts, Constant *Elt);
515
516 /// Specialize the getType() method to always return a VectorType,
517 /// which reduces the amount of casting needed in parts of the compiler.
518 inline VectorType *getType() const {
519 return cast<VectorType>(Value::getType());
520 }
521
522 /// If this is a splat constant, meaning that all of the elements have the
523 /// same value, return that value. Otherwise return NULL.
524 Constant *getSplatValue() const;
525
526 /// Methods for support type inquiry through isa, cast, and dyn_cast:
527 static bool classof(const Value *V) {
528 return V->getValueID() == ConstantVectorVal;
529 }
530};
531
532//===----------------------------------------------------------------------===//
533/// A constant pointer value that points to null
534///
535class ConstantPointerNull final : public ConstantData {
536 friend class Constant;
537
538 explicit ConstantPointerNull(PointerType *T)
539 : ConstantData(T, Value::ConstantPointerNullVal) {}
540
541 void destroyConstantImpl();
542
543public:
544 ConstantPointerNull(const ConstantPointerNull &) = delete;
545
546 /// Static factory methods - Return objects of the specified value
547 static ConstantPointerNull *get(PointerType *T);
548
549 /// Specialize the getType() method to always return an PointerType,
550 /// which reduces the amount of casting needed in parts of the compiler.
551 inline PointerType *getType() const {
552 return cast<PointerType>(Value::getType());
553 }
554
555 /// Methods for support type inquiry through isa, cast, and dyn_cast:
556 static bool classof(const Value *V) {
557 return V->getValueID() == ConstantPointerNullVal;
558 }
559};
560
561//===----------------------------------------------------------------------===//
562/// ConstantDataSequential - A vector or array constant whose element type is a
563/// simple 1/2/4/8-byte integer or float/double, and whose elements are just
564/// simple data values (i.e. ConstantInt/ConstantFP). This Constant node has no
565/// operands because it stores all of the elements of the constant as densely
566/// packed data, instead of as Value*'s.
567///
568/// This is the common base class of ConstantDataArray and ConstantDataVector.
569///
570class ConstantDataSequential : public ConstantData {
571 friend class LLVMContextImpl;
572 friend class Constant;
573
574 /// A pointer to the bytes underlying this constant (which is owned by the
575 /// uniquing StringMap).
576 const char *DataElements;
577
578 /// This forms a link list of ConstantDataSequential nodes that have
579 /// the same value but different type. For example, 0,0,0,1 could be a 4
580 /// element array of i8, or a 1-element array of i32. They'll both end up in
581 /// the same StringMap bucket, linked up.
582 ConstantDataSequential *Next;
583
584 void destroyConstantImpl();
585
586protected:
587 explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
588 : ConstantData(ty, VT), DataElements(Data), Next(nullptr) {}
589 ~ConstantDataSequential() { delete Next; }
590
591 static Constant *getImpl(StringRef Bytes, Type *Ty);
592
593public:
594 ConstantDataSequential(const ConstantDataSequential &) = delete;
595
596 /// Return true if a ConstantDataSequential can be formed with a vector or
597 /// array of the specified element type.
598 /// ConstantDataArray only works with normal float and int types that are
599 /// stored densely in memory, not with things like i42 or x86_f80.
600 static bool isElementTypeCompatible(Type *Ty);
601
602 /// If this is a sequential container of integers (of any size), return the
603 /// specified element in the low bits of a uint64_t.
604 uint64_t getElementAsInteger(unsigned i) const;
605
606 /// If this is a sequential container of integers (of any size), return the
607 /// specified element as an APInt.
608 APInt getElementAsAPInt(unsigned i) const;
609
610 /// If this is a sequential container of floating point type, return the
611 /// specified element as an APFloat.
612 APFloat getElementAsAPFloat(unsigned i) const;
613
614 /// If this is an sequential container of floats, return the specified element
615 /// as a float.
616 float getElementAsFloat(unsigned i) const;
617
618 /// If this is an sequential container of doubles, return the specified
619 /// element as a double.
620 double getElementAsDouble(unsigned i) const;
621
622 /// Return a Constant for a specified index's element.
623 /// Note that this has to compute a new constant to return, so it isn't as
624 /// efficient as getElementAsInteger/Float/Double.
625 Constant *getElementAsConstant(unsigned i) const;
626
627 /// Specialize the getType() method to always return a SequentialType, which
628 /// reduces the amount of casting needed in parts of the compiler.
629 inline SequentialType *getType() const {
630 return cast<SequentialType>(Value::getType());
631 }
632
633 /// Return the element type of the array/vector.
634 Type *getElementType() const;
635
636 /// Return the number of elements in the array or vector.
637 unsigned getNumElements() const;
638
639 /// Return the size (in bytes) of each element in the array/vector.
640 /// The size of the elements is known to be a multiple of one byte.
641 uint64_t getElementByteSize() const;
642
643 /// This method returns true if this is an array of \p CharSize integers.
644 bool isString(unsigned CharSize = 8) const;
645
646 /// This method returns true if the array "isString", ends with a null byte,
647 /// and does not contains any other null bytes.
648 bool isCString() const;
649
650 /// If this array is isString(), then this method returns the array as a
651 /// StringRef. Otherwise, it asserts out.
652 StringRef getAsString() const {
653 assert(isString() && "Not a string");
654 return getRawDataValues();
655 }
656
657 /// If this array is isCString(), then this method returns the array (without
658 /// the trailing null byte) as a StringRef. Otherwise, it asserts out.
659 StringRef getAsCString() const {
660 assert(isCString() && "Isn't a C string");
661 StringRef Str = getAsString();
662 return Str.substr(0, Str.size()-1);
663 }
664
665 /// Return the raw, underlying, bytes of this data. Note that this is an
666 /// extremely tricky thing to work with, as it exposes the host endianness of
667 /// the data elements.
668 StringRef getRawDataValues() const;
669
670 /// Methods for support type inquiry through isa, cast, and dyn_cast:
671 static bool classof(const Value *V) {
672 return V->getValueID() == ConstantDataArrayVal ||
673 V->getValueID() == ConstantDataVectorVal;
674 }
675
676private:
677 const char *getElementPointer(unsigned Elt) const;
678};
679
680//===----------------------------------------------------------------------===//
681/// An array constant whose element type is a simple 1/2/4/8-byte integer or
682/// float/double, and whose elements are just simple data values
683/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
684/// stores all of the elements of the constant as densely packed data, instead
685/// of as Value*'s.
686class ConstantDataArray final : public ConstantDataSequential {
687 friend class ConstantDataSequential;
688
689 explicit ConstantDataArray(Type *ty, const char *Data)
690 : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
691
692public:
693 ConstantDataArray(const ConstantDataArray &) = delete;
694
695 /// get() constructor - Return a constant with array type with an element
696 /// count and element type matching the ArrayRef passed in. Note that this
697 /// can return a ConstantAggregateZero object.
698 template <typename ElementTy>
699 static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) {
700 const char *Data = reinterpret_cast<const char *>(Elts.data());
701 Type *Ty =
702 ArrayType::get(Type::getScalarTy<ElementTy>(Context), Elts.size());
703 return getImpl(StringRef(Data, Elts.size() * sizeof(ElementTy)), Ty);
704 }
705
706 /// get() constructor - ArrayTy needs to be compatible with
707 /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>).
708 template <typename ArrayTy>
709 static Constant *get(LLVMContext &Context, ArrayTy &Elts) {
710 return ConstantDataArray::get(Context, makeArrayRef(Elts));
711 }
712
713 /// getFP() constructors - Return a constant with array type with an element
714 /// count and element type of float with precision matching the number of
715 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
716 /// double for 64bits) Note that this can return a ConstantAggregateZero
717 /// object.
718 static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
719 static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
720 static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);
721
722 /// This method constructs a CDS and initializes it with a text string.
723 /// The default behavior (AddNull==true) causes a null terminator to
724 /// be placed at the end of the array (increasing the length of the string by
725 /// one more than the StringRef would normally indicate. Pass AddNull=false
726 /// to disable this behavior.
727 static Constant *getString(LLVMContext &Context, StringRef Initializer,
728 bool AddNull = true);
729
730 /// Specialize the getType() method to always return an ArrayType,
731 /// which reduces the amount of casting needed in parts of the compiler.
732 inline ArrayType *getType() const {
733 return cast<ArrayType>(Value::getType());
734 }
735
736 /// Methods for support type inquiry through isa, cast, and dyn_cast:
737 static bool classof(const Value *V) {
738 return V->getValueID() == ConstantDataArrayVal;
739 }
740};
741
742//===----------------------------------------------------------------------===//
743/// A vector constant whose element type is a simple 1/2/4/8-byte integer or
744/// float/double, and whose elements are just simple data values
745/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
746/// stores all of the elements of the constant as densely packed data, instead
747/// of as Value*'s.
748class ConstantDataVector final : public ConstantDataSequential {
749 friend class ConstantDataSequential;
750
751 explicit ConstantDataVector(Type *ty, const char *Data)
752 : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {}
753
754public:
755 ConstantDataVector(const ConstantDataVector &) = delete;
756
757 /// get() constructors - Return a constant with vector type with an element
758 /// count and element type matching the ArrayRef passed in. Note that this
759 /// can return a ConstantAggregateZero object.
760 static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
761 static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
762 static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
763 static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
764 static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
765 static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
766
767 /// getFP() constructors - Return a constant with vector type with an element
768 /// count and element type of float with the precision matching the number of
769 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
770 /// double for 64bits) Note that this can return a ConstantAggregateZero
771 /// object.
772 static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
773 static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
774 static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);
775
776 /// Return a ConstantVector with the specified constant in each element.
777 /// The specified constant has to be a of a compatible type (i8/i16/
778 /// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
779 static Constant *getSplat(unsigned NumElts, Constant *Elt);
780
781 /// Returns true if this is a splat constant, meaning that all elements have
782 /// the same value.
783 bool isSplat() const;
784
785 /// If this is a splat constant, meaning that all of the elements have the
786 /// same value, return that value. Otherwise return NULL.
787 Constant *getSplatValue() const;
788
789 /// Specialize the getType() method to always return a VectorType,
790 /// which reduces the amount of casting needed in parts of the compiler.
791 inline VectorType *getType() const {
792 return cast<VectorType>(Value::getType());
793 }
794
795 /// Methods for support type inquiry through isa, cast, and dyn_cast:
796 static bool classof(const Value *V) {
797 return V->getValueID() == ConstantDataVectorVal;
798 }
799};
800
801//===----------------------------------------------------------------------===//
802/// A constant token which is empty
803///
804class ConstantTokenNone final : public ConstantData {
805 friend class Constant;
806
807 explicit ConstantTokenNone(LLVMContext &Context)
808 : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
809
810 void destroyConstantImpl();
811
812public:
813 ConstantTokenNone(const ConstantTokenNone &) = delete;
814
815 /// Return the ConstantTokenNone.
816 static ConstantTokenNone *get(LLVMContext &Context);
817
818 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
819 static bool classof(const Value *V) {
820 return V->getValueID() == ConstantTokenNoneVal;
821 }
822};
823
824/// The address of a basic block.
825///
826class BlockAddress final : public Constant {
827 friend class Constant;
828
829 BlockAddress(Function *F, BasicBlock *BB);
830
831 void *operator new(size_t s) { return User::operator new(s, 2); }
832
833 void destroyConstantImpl();
834 Value *handleOperandChangeImpl(Value *From, Value *To);
835
836public:
837 /// Return a BlockAddress for the specified function and basic block.
838 static BlockAddress *get(Function *F, BasicBlock *BB);
839
840 /// Return a BlockAddress for the specified basic block. The basic
841 /// block must be embedded into a function.
842 static BlockAddress *get(BasicBlock *BB);
843
844 /// Lookup an existing \c BlockAddress constant for the given BasicBlock.
845 ///
846 /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
847 static BlockAddress *lookup(const BasicBlock *BB);
848
849 /// Transparently provide more efficient getOperand methods.
850 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
851
852 Function *getFunction() const { return (Function*)Op<0>().get(); }
853 BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
854
855 /// Methods for support type inquiry through isa, cast, and dyn_cast:
856 static bool classof(const Value *V) {
857 return V->getValueID() == BlockAddressVal;
858 }
859};
860
861template <>
862struct OperandTraits<BlockAddress> :
863 public FixedNumOperandTraits<BlockAddress, 2> {
864};
865
866DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
867
868//===----------------------------------------------------------------------===//
869/// A constant value that is initialized with an expression using
870/// other constant values.
871///
872/// This class uses the standard Instruction opcodes to define the various
873/// constant expressions. The Opcode field for the ConstantExpr class is
874/// maintained in the Value::SubclassData field.
875class ConstantExpr : public Constant {
876 friend struct ConstantExprKeyType;
877 friend class Constant;
878
879 void destroyConstantImpl();
880 Value *handleOperandChangeImpl(Value *From, Value *To);
881
882protected:
883 ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
884 : Constant(ty, ConstantExprVal, Ops, NumOps) {
885 // Operation type (an Instruction opcode) is stored as the SubclassData.
886 setValueSubclassData(Opcode);
887 }
888
889public:
890 // Static methods to construct a ConstantExpr of different kinds. Note that
891 // these methods may return a object that is not an instance of the
892 // ConstantExpr class, because they will attempt to fold the constant
893 // expression into something simpler if possible.
894
895 /// getAlignOf constant expr - computes the alignment of a type in a target
896 /// independent way (Note: the return type is an i64).
897 static Constant *getAlignOf(Type *Ty);
898
899 /// getSizeOf constant expr - computes the (alloc) size of a type (in
900 /// address-units, not bits) in a target independent way (Note: the return
901 /// type is an i64).
902 ///
903 static Constant *getSizeOf(Type *Ty);
904
905 /// getOffsetOf constant expr - computes the offset of a struct field in a
906 /// target independent way (Note: the return type is an i64).
907 ///
908 static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
909
910 /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
911 /// which supports any aggregate type, and any Constant index.
912 ///
913 static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
914
915 static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
916 static Constant *getFNeg(Constant *C);
917 static Constant *getNot(Constant *C);
918 static Constant *getAdd(Constant *C1, Constant *C2,
919 bool HasNUW = false, bool HasNSW = false);
920 static Constant *getFAdd(Constant *C1, Constant *C2);
921 static Constant *getSub(Constant *C1, Constant *C2,
922 bool HasNUW = false, bool HasNSW = false);
923 static Constant *getFSub(Constant *C1, Constant *C2);
924 static Constant *getMul(Constant *C1, Constant *C2,
925 bool HasNUW = false, bool HasNSW = false);
926 static Constant *getFMul(Constant *C1, Constant *C2);
927 static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
928 static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
929 static Constant *getFDiv(Constant *C1, Constant *C2);
930 static Constant *getURem(Constant *C1, Constant *C2);
931 static Constant *getSRem(Constant *C1, Constant *C2);
932 static Constant *getFRem(Constant *C1, Constant *C2);
933 static Constant *getAnd(Constant *C1, Constant *C2);
934 static Constant *getOr(Constant *C1, Constant *C2);
935 static Constant *getXor(Constant *C1, Constant *C2);
936 static Constant *getShl(Constant *C1, Constant *C2,
937 bool HasNUW = false, bool HasNSW = false);
938 static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
939 static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
940 static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
941 static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
942 static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
943 static Constant *getFPTrunc(Constant *C, Type *Ty,
944 bool OnlyIfReduced = false);
945 static Constant *getFPExtend(Constant *C, Type *Ty,
946 bool OnlyIfReduced = false);
947 static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
948 static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
949 static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
950 static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
951 static Constant *getPtrToInt(Constant *C, Type *Ty,
952 bool OnlyIfReduced = false);
953 static Constant *getIntToPtr(Constant *C, Type *Ty,
954 bool OnlyIfReduced = false);
955 static Constant *getBitCast(Constant *C, Type *Ty,
956 bool OnlyIfReduced = false);
957 static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
958 bool OnlyIfReduced = false);
959
960 static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
961 static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
962
963 static Constant *getNSWAdd(Constant *C1, Constant *C2) {
964 return getAdd(C1, C2, false, true);
965 }
966
967 static Constant *getNUWAdd(Constant *C1, Constant *C2) {
968 return getAdd(C1, C2, true, false);
969 }
970
971 static Constant *getNSWSub(Constant *C1, Constant *C2) {
972 return getSub(C1, C2, false, true);
973 }
974
975 static Constant *getNUWSub(Constant *C1, Constant *C2) {
976 return getSub(C1, C2, true, false);
977 }
978
979 static Constant *getNSWMul(Constant *C1, Constant *C2) {
980 return getMul(C1, C2, false, true);
981 }
982
983 static Constant *getNUWMul(Constant *C1, Constant *C2) {
984 return getMul(C1, C2, true, false);
985 }
986
987 static Constant *getNSWShl(Constant *C1, Constant *C2) {
988 return getShl(C1, C2, false, true);
989 }
990
991 static Constant *getNUWShl(Constant *C1, Constant *C2) {
992 return getShl(C1, C2, true, false);
993 }
994
995 static Constant *getExactSDiv(Constant *C1, Constant *C2) {
996 return getSDiv(C1, C2, true);
997 }
998
999 static Constant *getExactUDiv(Constant *C1, Constant *C2) {
1000 return getUDiv(C1, C2, true);
1001 }
1002
1003 static Constant *getExactAShr(Constant *C1, Constant *C2) {
1004 return getAShr(C1, C2, true);
1005 }
1006
1007 static Constant *getExactLShr(Constant *C1, Constant *C2) {
1008 return getLShr(C1, C2, true);
1009 }
1010
1011 /// Return the identity for the given binary operation,
1012 /// i.e. a constant C such that X op C = X and C op X = X for every X. It
1013 /// returns null if the operator doesn't have an identity.
1014 static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty);
1015
1016 /// Return the absorbing element for the given binary
1017 /// operation, i.e. a constant C such that X op C = C and C op X = C for
1018 /// every X. For example, this returns zero for integer multiplication.
1019 /// It returns null if the operator doesn't have an absorbing element.
1020 static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
1021
1022 /// Transparently provide more efficient getOperand methods.
1023 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
1024
1025 /// \brief Convenience function for getting a Cast operation.
1026 ///
1027 /// \param ops The opcode for the conversion
1028 /// \param C The constant to be converted
1029 /// \param Ty The type to which the constant is converted
1030 /// \param OnlyIfReduced see \a getWithOperands() docs.
1031 static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
1032 bool OnlyIfReduced = false);
1033
1034 // @brief Create a ZExt or BitCast cast constant expression
1035 static Constant *getZExtOrBitCast(
1036 Constant *C, ///< The constant to zext or bitcast
1037 Type *Ty ///< The type to zext or bitcast C to
1038 );
1039
1040 // @brief Create a SExt or BitCast cast constant expression
1041 static Constant *getSExtOrBitCast(
1042 Constant *C, ///< The constant to sext or bitcast
1043 Type *Ty ///< The type to sext or bitcast C to
1044 );
1045
1046 // @brief Create a Trunc or BitCast cast constant expression
1047 static Constant *getTruncOrBitCast(
1048 Constant *C, ///< The constant to trunc or bitcast
1049 Type *Ty ///< The type to trunc or bitcast C to
1050 );
1051
1052 /// @brief Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
1053 /// expression.
1054 static Constant *getPointerCast(
1055 Constant *C, ///< The pointer value to be casted (operand 0)
1056 Type *Ty ///< The type to which cast should be made
1057 );
1058
1059 /// @brief Create a BitCast or AddrSpaceCast for a pointer type depending on
1060 /// the address space.
1061 static Constant *getPointerBitCastOrAddrSpaceCast(
1062 Constant *C, ///< The constant to addrspacecast or bitcast
1063 Type *Ty ///< The type to bitcast or addrspacecast C to
1064 );
1065
1066 /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
1067 static Constant *getIntegerCast(
1068 Constant *C, ///< The integer constant to be casted
1069 Type *Ty, ///< The integer type to cast to
1070 bool isSigned ///< Whether C should be treated as signed or not
1071 );
1072
1073 /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
1074 static Constant *getFPCast(
1075 Constant *C, ///< The integer constant to be casted
1076 Type *Ty ///< The integer type to cast to
1077 );
1078
1079 /// @brief Return true if this is a convert constant expression
1080 bool isCast() const;
1081
1082 /// @brief Return true if this is a compare constant expression
1083 bool isCompare() const;
1084
1085 /// @brief Return true if this is an insertvalue or extractvalue expression,
1086 /// and the getIndices() method may be used.
1087 bool hasIndices() const;
1088
1089 /// @brief Return true if this is a getelementptr expression and all
1090 /// the index operands are compile-time known integers within the
1091 /// corresponding notional static array extents. Note that this is
1092 /// not equivalant to, a subset of, or a superset of the "inbounds"
1093 /// property.
1094 bool isGEPWithNoNotionalOverIndexing() const;
1095
1096 /// Select constant expr
1097 ///
1098 /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1099 static Constant *getSelect(Constant *C, Constant *V1, Constant *V2,
1100 Type *OnlyIfReducedTy = nullptr);
1101
1102 /// get - Return a binary or shift operator constant expression,
1103 /// folding if possible.
1104 ///
1105 /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1106 static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
1107 unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
1108
1109 /// \brief Return an ICmp or FCmp comparison operator constant expression.
1110 ///
1111 /// \param OnlyIfReduced see \a getWithOperands() docs.
1112 static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
1113 bool OnlyIfReduced = false);
1114
1115 /// get* - Return some common constants without having to
1116 /// specify the full Instruction::OPCODE identifier.
1117 ///
1118 static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
1119 bool OnlyIfReduced = false);
1120 static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
1121 bool OnlyIfReduced = false);
1122
1123 /// Getelementptr form. Value* is only accepted for convenience;
1124 /// all elements must be Constants.
1125 ///
1126 /// \param InRangeIndex the inrange index if present or None.
1127 /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1128 static Constant *getGetElementPtr(Type *Ty, Constant *C,
1129 ArrayRef<Constant *> IdxList,
1130 bool InBounds = false,
1131 Optional<unsigned> InRangeIndex = None,
1132 Type *OnlyIfReducedTy = nullptr) {
1133 return getGetElementPtr(
1134 Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()),
1135 InBounds, InRangeIndex, OnlyIfReducedTy);
1136 }
1137 static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx,
1138 bool InBounds = false,
1139 Optional<unsigned> InRangeIndex = None,
1140 Type *OnlyIfReducedTy = nullptr) {
1141 // This form of the function only exists to avoid ambiguous overload
1142 // warnings about whether to convert Idx to ArrayRef<Constant *> or
1143 // ArrayRef<Value *>.
1144 return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex,
1145 OnlyIfReducedTy);
1146 }
1147 static Constant *getGetElementPtr(Type *Ty, Constant *C,
1148 ArrayRef<Value *> IdxList,
1149 bool InBounds = false,
1150 Optional<unsigned> InRangeIndex = None,
1151 Type *OnlyIfReducedTy = nullptr);
1152
1153 /// Create an "inbounds" getelementptr. See the documentation for the
1154 /// "inbounds" flag in LangRef.html for details.
1155 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1156 ArrayRef<Constant *> IdxList) {
1157 return getGetElementPtr(Ty, C, IdxList, true);
1158 }
1159 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1160 Constant *Idx) {
1161 // This form of the function only exists to avoid ambiguous overload
1162 // warnings about whether to convert Idx to ArrayRef<Constant *> or
1163 // ArrayRef<Value *>.
1164 return getGetElementPtr(Ty, C, Idx, true);
1165 }
1166 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1167 ArrayRef<Value *> IdxList) {
1168 return getGetElementPtr(Ty, C, IdxList, true);
1169 }
1170
1171 static Constant *getExtractElement(Constant *Vec, Constant *Idx,
1172 Type *OnlyIfReducedTy = nullptr);
1173 static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
1174 Type *OnlyIfReducedTy = nullptr);
1175 static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask,
1176 Type *OnlyIfReducedTy = nullptr);
1177 static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
1178 Type *OnlyIfReducedTy = nullptr);
1179 static Constant *getInsertValue(Constant *Agg, Constant *Val,
1180 ArrayRef<unsigned> Idxs,
1181 Type *OnlyIfReducedTy = nullptr);
1182
1183 /// Return the opcode at the root of this constant expression
1184 unsigned getOpcode() const { return getSubclassDataFromValue(); }
1185
1186 /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or
1187 /// FCMP constant expression.
1188 unsigned getPredicate() const;
1189
1190 /// Assert that this is an insertvalue or exactvalue
1191 /// expression and return the list of indices.
1192 ArrayRef<unsigned> getIndices() const;
1193
1194 /// Return a string representation for an opcode.
1195 const char *getOpcodeName() const;
1196
1197 /// Return a constant expression identical to this one, but with the specified
1198 /// operand set to the specified value.
1199 Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
1200
1201 /// This returns the current constant expression with the operands replaced
1202 /// with the specified values. The specified array must have the same number
1203 /// of operands as our current one.
1204 Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
1205 return getWithOperands(Ops, getType());
1206 }
1207
1208 /// Get the current expression with the operands replaced.
1209 ///
1210 /// Return the current constant expression with the operands replaced with \c
1211 /// Ops and the type with \c Ty. The new operands must have the same number
1212 /// as the current ones.
1213 ///
1214 /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
1215 /// gets constant-folded, the type changes, or the expression is otherwise
1216 /// canonicalized. This parameter should almost always be \c false.
1217 Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1218 bool OnlyIfReduced = false,
1219 Type *SrcTy = nullptr) const;
1220
1221 /// Returns an Instruction which implements the same operation as this
1222 /// ConstantExpr. The instruction is not linked to any basic block.
1223 ///
1224 /// A better approach to this could be to have a constructor for Instruction
1225 /// which would take a ConstantExpr parameter, but that would have spread
1226 /// implementation details of ConstantExpr outside of Constants.cpp, which
1227 /// would make it harder to remove ConstantExprs altogether.
1228 Instruction *getAsInstruction();
1229
1230 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1231 static bool classof(const Value *V) {
1232 return V->getValueID() == ConstantExprVal;
1233 }
1234
1235private:
1236 // Shadow Value::setValueSubclassData with a private forwarding method so that
1237 // subclasses cannot accidentally use it.
1238 void setValueSubclassData(unsigned short D) {
1239 Value::setValueSubclassData(D);
1240 }
1241};
1242
1243template <>
1244struct OperandTraits<ConstantExpr> :
1245 public VariadicOperandTraits<ConstantExpr, 1> {
1246};
1247
1248DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
1249
1250//===----------------------------------------------------------------------===//
1251/// 'undef' values are things that do not have specified contents.
1252/// These are used for a variety of purposes, including global variable
1253/// initializers and operands to instructions. 'undef' values can occur with
1254/// any first-class type.
1255///
1256/// Undef values aren't exactly constants; if they have multiple uses, they
1257/// can appear to have different bit patterns at each use. See
1258/// LangRef.html#undefvalues for details.
1259///
1260class UndefValue final : public ConstantData {
1261 friend class Constant;
1262
1263 explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
1264
1265 void destroyConstantImpl();
1266
1267public:
1268 UndefValue(const UndefValue &) = delete;
1269
1270 /// Static factory methods - Return an 'undef' object of the specified type.
1271 static UndefValue *get(Type *T);
1272
1273 /// If this Undef has array or vector type, return a undef with the right
1274 /// element type.
1275 UndefValue *getSequentialElement() const;
1276
1277 /// If this undef has struct type, return a undef with the right element type
1278 /// for the specified element.
1279 UndefValue *getStructElement(unsigned Elt) const;
1280
1281 /// Return an undef of the right value for the specified GEP index if we can,
1282 /// otherwise return null (e.g. if C is a ConstantExpr).
1283 UndefValue *getElementValue(Constant *C) const;
1284
1285 /// Return an undef of the right value for the specified GEP index.
1286 UndefValue *getElementValue(unsigned Idx) const;
1287
1288 /// Return the number of elements in the array, vector, or struct.
1289 unsigned getNumElements() const;
1290
1291 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1292 static bool classof(const Value *V) {
1293 return V->getValueID() == UndefValueVal;
1294 }
1295};
1296
1297} // end namespace llvm
1298
1299#endif // LLVM_IR_CONSTANTS_H