Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/IR/Constants.h b/linux-x64/clang/include/llvm/IR/Constants.h
new file mode 100644
index 0000000..1a7596d
--- /dev/null
+++ b/linux-x64/clang/include/llvm/IR/Constants.h
@@ -0,0 +1,1299 @@
+//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// @file
+/// This file contains the declarations for the subclasses of Constant,
+/// which represent the different flavors of constant values that live in LLVM.
+/// Note that Constants are immutable (once created they never change) and are
+/// fully shared by structural equivalence. This means that two structurally
+/// equivalent constants will always have the same address. Constants are
+/// created on demand as needed and never deleted: thus clients don't have to
+/// worry about the lifetime of the objects.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_IR_CONSTANTS_H
+#define LLVM_IR_CONSTANTS_H
+
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/OperandTraits.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+
+namespace llvm {
+
+class ArrayType;
+class IntegerType;
+class PointerType;
+class SequentialType;
+class StructType;
+class VectorType;
+template <class ConstantClass> struct ConstantAggrKeyType;
+
+/// Base class for constants with no operands.
+///
+/// These constants have no operands; they represent their data directly.
+/// Since they can be in use by unrelated modules (and are never based on
+/// GlobalValues), it never makes sense to RAUW them.
+class ConstantData : public Constant {
+ friend class Constant;
+
+ Value *handleOperandChangeImpl(Value *From, Value *To) {
+ llvm_unreachable("Constant data does not have operands!");
+ }
+
+protected:
+ explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}
+
+ void *operator new(size_t s) { return User::operator new(s, 0); }
+
+public:
+ ConstantData(const ConstantData &) = delete;
+
+ /// Methods to support type inquiry through isa, cast, and dyn_cast.
+ static bool classof(const Value *V) {
+ return V->getValueID() >= ConstantDataFirstVal &&
+ V->getValueID() <= ConstantDataLastVal;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+/// This is the shared class of boolean and integer constants. This class
+/// represents both boolean and integral constants.
+/// @brief Class for constant integers.
+class ConstantInt final : public ConstantData {
+ friend class Constant;
+
+ APInt Val;
+
+ ConstantInt(IntegerType *Ty, const APInt& V);
+
+ void destroyConstantImpl();
+
+public:
+ ConstantInt(const ConstantInt &) = delete;
+
+ static ConstantInt *getTrue(LLVMContext &Context);
+ static ConstantInt *getFalse(LLVMContext &Context);
+ static Constant *getTrue(Type *Ty);
+ static Constant *getFalse(Type *Ty);
+
+ /// If Ty is a vector type, return a Constant with a splat of the given
+ /// value. Otherwise return a ConstantInt for the given value.
+ static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
+
+ /// Return a ConstantInt with the specified integer value for the specified
+ /// type. If the type is wider than 64 bits, the value will be zero-extended
+ /// to fit the type, unless isSigned is true, in which case the value will
+ /// be interpreted as a 64-bit signed integer and sign-extended to fit
+ /// the type.
+ /// @brief Get a ConstantInt for a specific value.
+ static ConstantInt *get(IntegerType *Ty, uint64_t V,
+ bool isSigned = false);
+
+ /// Return a ConstantInt with the specified value for the specified type. The
+ /// value V will be canonicalized to a an unsigned APInt. Accessing it with
+ /// either getSExtValue() or getZExtValue() will yield a correctly sized and
+ /// signed value for the type Ty.
+ /// @brief Get a ConstantInt for a specific signed value.
+ static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
+ static Constant *getSigned(Type *Ty, int64_t V);
+
+ /// Return a ConstantInt with the specified value and an implied Type. The
+ /// type is the integer type that corresponds to the bit width of the value.
+ static ConstantInt *get(LLVMContext &Context, const APInt &V);
+
+ /// Return a ConstantInt constructed from the string strStart with the given
+ /// radix.
+ static ConstantInt *get(IntegerType *Ty, StringRef Str,
+ uint8_t radix);
+
+ /// If Ty is a vector type, return a Constant with a splat of the given
+ /// value. Otherwise return a ConstantInt for the given value.
+ static Constant *get(Type* Ty, const APInt& V);
+
+ /// Return the constant as an APInt value reference. This allows clients to
+ /// obtain a full-precision copy of the value.
+ /// @brief Return the constant's value.
+ inline const APInt &getValue() const {
+ return Val;
+ }
+
+ /// getBitWidth - Return the bitwidth of this constant.
+ unsigned getBitWidth() const { return Val.getBitWidth(); }
+
+ /// Return the constant as a 64-bit unsigned integer value after it
+ /// has been zero extended as appropriate for the type of this constant. Note
+ /// that this method can assert if the value does not fit in 64 bits.
+ /// @brief Return the zero extended value.
+ inline uint64_t getZExtValue() const {
+ return Val.getZExtValue();
+ }
+
+ /// Return the constant as a 64-bit integer value after it has been sign
+ /// extended as appropriate for the type of this constant. Note that
+ /// this method can assert if the value does not fit in 64 bits.
+ /// @brief Return the sign extended value.
+ inline int64_t getSExtValue() const {
+ return Val.getSExtValue();
+ }
+
+ /// A helper method that can be used to determine if the constant contained
+ /// within is equal to a constant. This only works for very small values,
+ /// because this is all that can be represented with all types.
+ /// @brief Determine if this constant's value is same as an unsigned char.
+ bool equalsInt(uint64_t V) const {
+ return Val == V;
+ }
+
+ /// getType - Specialize the getType() method to always return an IntegerType,
+ /// which reduces the amount of casting needed in parts of the compiler.
+ ///
+ inline IntegerType *getType() const {
+ return cast<IntegerType>(Value::getType());
+ }
+
+ /// This static method returns true if the type Ty is big enough to
+ /// represent the value V. This can be used to avoid having the get method
+ /// assert when V is larger than Ty can represent. Note that there are two
+ /// versions of this method, one for unsigned and one for signed integers.
+ /// Although ConstantInt canonicalizes everything to an unsigned integer,
+ /// the signed version avoids callers having to convert a signed quantity
+ /// to the appropriate unsigned type before calling the method.
+ /// @returns true if V is a valid value for type Ty
+ /// @brief Determine if the value is in range for the given type.
+ static bool isValueValidForType(Type *Ty, uint64_t V);
+ static bool isValueValidForType(Type *Ty, int64_t V);
+
+ bool isNegative() const { return Val.isNegative(); }
+
+ /// This is just a convenience method to make client code smaller for a
+ /// common code. It also correctly performs the comparison without the
+ /// potential for an assertion from getZExtValue().
+ bool isZero() const {
+ return Val.isNullValue();
+ }
+
+ /// This is just a convenience method to make client code smaller for a
+ /// common case. It also correctly performs the comparison without the
+ /// potential for an assertion from getZExtValue().
+ /// @brief Determine if the value is one.
+ bool isOne() const {
+ return Val.isOneValue();
+ }
+
+ /// This function will return true iff every bit in this constant is set
+ /// to true.
+ /// @returns true iff this constant's bits are all set to true.
+ /// @brief Determine if the value is all ones.
+ bool isMinusOne() const {
+ return Val.isAllOnesValue();
+ }
+
+ /// This function will return true iff this constant represents the largest
+ /// value that may be represented by the constant's type.
+ /// @returns true iff this is the largest value that may be represented
+ /// by this type.
+ /// @brief Determine if the value is maximal.
+ bool isMaxValue(bool isSigned) const {
+ if (isSigned)
+ return Val.isMaxSignedValue();
+ else
+ return Val.isMaxValue();
+ }
+
+ /// This function will return true iff this constant represents the smallest
+ /// value that may be represented by this constant's type.
+ /// @returns true if this is the smallest value that may be represented by
+ /// this type.
+ /// @brief Determine if the value is minimal.
+ bool isMinValue(bool isSigned) const {
+ if (isSigned)
+ return Val.isMinSignedValue();
+ else
+ return Val.isMinValue();
+ }
+
+ /// This function will return true iff this constant represents a value with
+ /// active bits bigger than 64 bits or a value greater than the given uint64_t
+ /// value.
+ /// @returns true iff this constant is greater or equal to the given number.
+ /// @brief Determine if the value is greater or equal to the given number.
+ bool uge(uint64_t Num) const {
+ return Val.uge(Num);
+ }
+
+ /// getLimitedValue - If the value is smaller than the specified limit,
+ /// return it, otherwise return the limit value. This causes the value
+ /// to saturate to the limit.
+ /// @returns the min of the value of the constant and the specified value
+ /// @brief Get the constant's value with a saturation limit
+ uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
+ return Val.getLimitedValue(Limit);
+ }
+
+ /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantIntVal;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+/// ConstantFP - Floating Point Values [float, double]
+///
+class ConstantFP final : public ConstantData {
+ friend class Constant;
+
+ APFloat Val;
+
+ ConstantFP(Type *Ty, const APFloat& V);
+
+ void destroyConstantImpl();
+
+public:
+ ConstantFP(const ConstantFP &) = delete;
+
+ /// Floating point negation must be implemented with f(x) = -0.0 - x. This
+ /// method returns the negative zero constant for floating point or vector
+ /// floating point types; for all other types, it returns the null value.
+ static Constant *getZeroValueForNegation(Type *Ty);
+
+ /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
+ /// for the specified value in the specified type. This should only be used
+ /// for simple constant values like 2.0/1.0 etc, that are known-valid both as
+ /// host double and as the target format.
+ static Constant *get(Type* Ty, double V);
+
+ /// If Ty is a vector type, return a Constant with a splat of the given
+ /// value. Otherwise return a ConstantFP for the given value.
+ static Constant *get(Type *Ty, const APFloat &V);
+
+ static Constant *get(Type* Ty, StringRef Str);
+ static ConstantFP *get(LLVMContext &Context, const APFloat &V);
+ static Constant *getNaN(Type *Ty, bool Negative = false, unsigned type = 0);
+ static Constant *getNegativeZero(Type *Ty);
+ static Constant *getInfinity(Type *Ty, bool Negative = false);
+
+ /// Return true if Ty is big enough to represent V.
+ static bool isValueValidForType(Type *Ty, const APFloat &V);
+ inline const APFloat &getValueAPF() const { return Val; }
+
+ /// Return true if the value is positive or negative zero.
+ bool isZero() const { return Val.isZero(); }
+
+ /// Return true if the sign bit is set.
+ bool isNegative() const { return Val.isNegative(); }
+
+ /// Return true if the value is infinity
+ bool isInfinity() const { return Val.isInfinity(); }
+
+ /// Return true if the value is a NaN.
+ bool isNaN() const { return Val.isNaN(); }
+
+ /// We don't rely on operator== working on double values, as it returns true
+ /// for things that are clearly not equal, like -0.0 and 0.0.
+ /// As such, this method can be used to do an exact bit-for-bit comparison of
+ /// two floating point values. The version with a double operand is retained
+ /// because it's so convenient to write isExactlyValue(2.0), but please use
+ /// it only for simple constants.
+ bool isExactlyValue(const APFloat &V) const;
+
+ bool isExactlyValue(double V) const {
+ bool ignored;
+ APFloat FV(V);
+ FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
+ return isExactlyValue(FV);
+ }
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantFPVal;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+/// All zero aggregate value
+///
+class ConstantAggregateZero final : public ConstantData {
+ friend class Constant;
+
+ explicit ConstantAggregateZero(Type *Ty)
+ : ConstantData(Ty, ConstantAggregateZeroVal) {}
+
+ void destroyConstantImpl();
+
+public:
+ ConstantAggregateZero(const ConstantAggregateZero &) = delete;
+
+ static ConstantAggregateZero *get(Type *Ty);
+
+ /// If this CAZ has array or vector type, return a zero with the right element
+ /// type.
+ Constant *getSequentialElement() const;
+
+ /// If this CAZ has struct type, return a zero with the right element type for
+ /// the specified element.
+ Constant *getStructElement(unsigned Elt) const;
+
+ /// Return a zero of the right value for the specified GEP index if we can,
+ /// otherwise return null (e.g. if C is a ConstantExpr).
+ Constant *getElementValue(Constant *C) const;
+
+ /// Return a zero of the right value for the specified GEP index.
+ Constant *getElementValue(unsigned Idx) const;
+
+ /// Return the number of elements in the array, vector, or struct.
+ unsigned getNumElements() const;
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ ///
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantAggregateZeroVal;
+ }
+};
+
+/// Base class for aggregate constants (with operands).
+///
+/// These constants are aggregates of other constants, which are stored as
+/// operands.
+///
+/// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
+/// ConstantVector.
+///
+/// \note Some subclasses of \a ConstantData are semantically aggregates --
+/// such as \a ConstantDataArray -- but are not subclasses of this because they
+/// use operands.
+class ConstantAggregate : public Constant {
+protected:
+ ConstantAggregate(CompositeType *T, ValueTy VT, ArrayRef<Constant *> V);
+
+public:
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static bool classof(const Value *V) {
+ return V->getValueID() >= ConstantAggregateFirstVal &&
+ V->getValueID() <= ConstantAggregateLastVal;
+ }
+};
+
+template <>
+struct OperandTraits<ConstantAggregate>
+ : public VariadicOperandTraits<ConstantAggregate> {};
+
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)
+
+//===----------------------------------------------------------------------===//
+/// ConstantArray - Constant Array Declarations
+///
+class ConstantArray final : public ConstantAggregate {
+ friend struct ConstantAggrKeyType<ConstantArray>;
+ friend class Constant;
+
+ ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
+
+ void destroyConstantImpl();
+ Value *handleOperandChangeImpl(Value *From, Value *To);
+
+public:
+ // ConstantArray accessors
+ static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
+
+private:
+ static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
+
+public:
+ /// Specialize the getType() method to always return an ArrayType,
+ /// which reduces the amount of casting needed in parts of the compiler.
+ inline ArrayType *getType() const {
+ return cast<ArrayType>(Value::getType());
+ }
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantArrayVal;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Constant Struct Declarations
+//
+class ConstantStruct final : public ConstantAggregate {
+ friend struct ConstantAggrKeyType<ConstantStruct>;
+ friend class Constant;
+
+ ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
+
+ void destroyConstantImpl();
+ Value *handleOperandChangeImpl(Value *From, Value *To);
+
+public:
+ // ConstantStruct accessors
+ static Constant *get(StructType *T, ArrayRef<Constant*> V);
+
+ template <typename... Csts>
+ static typename std::enable_if<are_base_of<Constant, Csts...>::value,
+ Constant *>::type
+ get(StructType *T, Csts *... Vs) {
+ SmallVector<Constant *, 8> Values({Vs...});
+ return get(T, Values);
+ }
+
+ /// Return an anonymous struct that has the specified elements.
+ /// If the struct is possibly empty, then you must specify a context.
+ static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
+ return get(getTypeForElements(V, Packed), V);
+ }
+ static Constant *getAnon(LLVMContext &Ctx,
+ ArrayRef<Constant*> V, bool Packed = false) {
+ return get(getTypeForElements(Ctx, V, Packed), V);
+ }
+
+ /// Return an anonymous struct type to use for a constant with the specified
+ /// set of elements. The list must not be empty.
+ static StructType *getTypeForElements(ArrayRef<Constant*> V,
+ bool Packed = false);
+ /// This version of the method allows an empty list.
+ static StructType *getTypeForElements(LLVMContext &Ctx,
+ ArrayRef<Constant*> V,
+ bool Packed = false);
+
+ /// Specialization - reduce amount of casting.
+ inline StructType *getType() const {
+ return cast<StructType>(Value::getType());
+ }
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantStructVal;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+/// Constant Vector Declarations
+///
+class ConstantVector final : public ConstantAggregate {
+ friend struct ConstantAggrKeyType<ConstantVector>;
+ friend class Constant;
+
+ ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
+
+ void destroyConstantImpl();
+ Value *handleOperandChangeImpl(Value *From, Value *To);
+
+public:
+ // ConstantVector accessors
+ static Constant *get(ArrayRef<Constant*> V);
+
+private:
+ static Constant *getImpl(ArrayRef<Constant *> V);
+
+public:
+ /// Return a ConstantVector with the specified constant in each element.
+ static Constant *getSplat(unsigned NumElts, Constant *Elt);
+
+ /// Specialize the getType() method to always return a VectorType,
+ /// which reduces the amount of casting needed in parts of the compiler.
+ inline VectorType *getType() const {
+ return cast<VectorType>(Value::getType());
+ }
+
+ /// If this is a splat constant, meaning that all of the elements have the
+ /// same value, return that value. Otherwise return NULL.
+ Constant *getSplatValue() const;
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantVectorVal;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+/// A constant pointer value that points to null
+///
+class ConstantPointerNull final : public ConstantData {
+ friend class Constant;
+
+ explicit ConstantPointerNull(PointerType *T)
+ : ConstantData(T, Value::ConstantPointerNullVal) {}
+
+ void destroyConstantImpl();
+
+public:
+ ConstantPointerNull(const ConstantPointerNull &) = delete;
+
+ /// Static factory methods - Return objects of the specified value
+ static ConstantPointerNull *get(PointerType *T);
+
+ /// Specialize the getType() method to always return an PointerType,
+ /// which reduces the amount of casting needed in parts of the compiler.
+ inline PointerType *getType() const {
+ return cast<PointerType>(Value::getType());
+ }
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantPointerNullVal;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+/// ConstantDataSequential - A vector or array constant whose element type is a
+/// simple 1/2/4/8-byte integer or float/double, and whose elements are just
+/// simple data values (i.e. ConstantInt/ConstantFP). This Constant node has no
+/// operands because it stores all of the elements of the constant as densely
+/// packed data, instead of as Value*'s.
+///
+/// This is the common base class of ConstantDataArray and ConstantDataVector.
+///
+class ConstantDataSequential : public ConstantData {
+ friend class LLVMContextImpl;
+ friend class Constant;
+
+ /// A pointer to the bytes underlying this constant (which is owned by the
+ /// uniquing StringMap).
+ const char *DataElements;
+
+ /// This forms a link list of ConstantDataSequential nodes that have
+ /// the same value but different type. For example, 0,0,0,1 could be a 4
+ /// element array of i8, or a 1-element array of i32. They'll both end up in
+ /// the same StringMap bucket, linked up.
+ ConstantDataSequential *Next;
+
+ void destroyConstantImpl();
+
+protected:
+ explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
+ : ConstantData(ty, VT), DataElements(Data), Next(nullptr) {}
+ ~ConstantDataSequential() { delete Next; }
+
+ static Constant *getImpl(StringRef Bytes, Type *Ty);
+
+public:
+ ConstantDataSequential(const ConstantDataSequential &) = delete;
+
+ /// Return true if a ConstantDataSequential can be formed with a vector or
+ /// array of the specified element type.
+ /// ConstantDataArray only works with normal float and int types that are
+ /// stored densely in memory, not with things like i42 or x86_f80.
+ static bool isElementTypeCompatible(Type *Ty);
+
+ /// If this is a sequential container of integers (of any size), return the
+ /// specified element in the low bits of a uint64_t.
+ uint64_t getElementAsInteger(unsigned i) const;
+
+ /// If this is a sequential container of integers (of any size), return the
+ /// specified element as an APInt.
+ APInt getElementAsAPInt(unsigned i) const;
+
+ /// If this is a sequential container of floating point type, return the
+ /// specified element as an APFloat.
+ APFloat getElementAsAPFloat(unsigned i) const;
+
+ /// If this is an sequential container of floats, return the specified element
+ /// as a float.
+ float getElementAsFloat(unsigned i) const;
+
+ /// If this is an sequential container of doubles, return the specified
+ /// element as a double.
+ double getElementAsDouble(unsigned i) const;
+
+ /// Return a Constant for a specified index's element.
+ /// Note that this has to compute a new constant to return, so it isn't as
+ /// efficient as getElementAsInteger/Float/Double.
+ Constant *getElementAsConstant(unsigned i) const;
+
+ /// Specialize the getType() method to always return a SequentialType, which
+ /// reduces the amount of casting needed in parts of the compiler.
+ inline SequentialType *getType() const {
+ return cast<SequentialType>(Value::getType());
+ }
+
+ /// Return the element type of the array/vector.
+ Type *getElementType() const;
+
+ /// Return the number of elements in the array or vector.
+ unsigned getNumElements() const;
+
+ /// Return the size (in bytes) of each element in the array/vector.
+ /// The size of the elements is known to be a multiple of one byte.
+ uint64_t getElementByteSize() const;
+
+ /// This method returns true if this is an array of \p CharSize integers.
+ bool isString(unsigned CharSize = 8) const;
+
+ /// This method returns true if the array "isString", ends with a null byte,
+ /// and does not contains any other null bytes.
+ bool isCString() const;
+
+ /// If this array is isString(), then this method returns the array as a
+ /// StringRef. Otherwise, it asserts out.
+ StringRef getAsString() const {
+ assert(isString() && "Not a string");
+ return getRawDataValues();
+ }
+
+ /// If this array is isCString(), then this method returns the array (without
+ /// the trailing null byte) as a StringRef. Otherwise, it asserts out.
+ StringRef getAsCString() const {
+ assert(isCString() && "Isn't a C string");
+ StringRef Str = getAsString();
+ return Str.substr(0, Str.size()-1);
+ }
+
+ /// Return the raw, underlying, bytes of this data. Note that this is an
+ /// extremely tricky thing to work with, as it exposes the host endianness of
+ /// the data elements.
+ StringRef getRawDataValues() const;
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantDataArrayVal ||
+ V->getValueID() == ConstantDataVectorVal;
+ }
+
+private:
+ const char *getElementPointer(unsigned Elt) const;
+};
+
+//===----------------------------------------------------------------------===//
+/// An array constant whose element type is a simple 1/2/4/8-byte integer or
+/// float/double, and whose elements are just simple data values
+/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
+/// stores all of the elements of the constant as densely packed data, instead
+/// of as Value*'s.
+class ConstantDataArray final : public ConstantDataSequential {
+ friend class ConstantDataSequential;
+
+ explicit ConstantDataArray(Type *ty, const char *Data)
+ : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
+
+public:
+ ConstantDataArray(const ConstantDataArray &) = delete;
+
+ /// get() constructor - Return a constant with array type with an element
+ /// count and element type matching the ArrayRef passed in. Note that this
+ /// can return a ConstantAggregateZero object.
+ template <typename ElementTy>
+ static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) {
+ const char *Data = reinterpret_cast<const char *>(Elts.data());
+ Type *Ty =
+ ArrayType::get(Type::getScalarTy<ElementTy>(Context), Elts.size());
+ return getImpl(StringRef(Data, Elts.size() * sizeof(ElementTy)), Ty);
+ }
+
+ /// get() constructor - ArrayTy needs to be compatible with
+ /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>).
+ template <typename ArrayTy>
+ static Constant *get(LLVMContext &Context, ArrayTy &Elts) {
+ return ConstantDataArray::get(Context, makeArrayRef(Elts));
+ }
+
+ /// getFP() constructors - Return a constant with array type with an element
+ /// count and element type of float with precision matching the number of
+ /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
+ /// double for 64bits) Note that this can return a ConstantAggregateZero
+ /// object.
+ static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
+ static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
+ static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);
+
+ /// This method constructs a CDS and initializes it with a text string.
+ /// The default behavior (AddNull==true) causes a null terminator to
+ /// be placed at the end of the array (increasing the length of the string by
+ /// one more than the StringRef would normally indicate. Pass AddNull=false
+ /// to disable this behavior.
+ static Constant *getString(LLVMContext &Context, StringRef Initializer,
+ bool AddNull = true);
+
+ /// Specialize the getType() method to always return an ArrayType,
+ /// which reduces the amount of casting needed in parts of the compiler.
+ inline ArrayType *getType() const {
+ return cast<ArrayType>(Value::getType());
+ }
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantDataArrayVal;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+/// A vector constant whose element type is a simple 1/2/4/8-byte integer or
+/// float/double, and whose elements are just simple data values
+/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
+/// stores all of the elements of the constant as densely packed data, instead
+/// of as Value*'s.
+class ConstantDataVector final : public ConstantDataSequential {
+ friend class ConstantDataSequential;
+
+ explicit ConstantDataVector(Type *ty, const char *Data)
+ : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {}
+
+public:
+ ConstantDataVector(const ConstantDataVector &) = delete;
+
+ /// get() constructors - Return a constant with vector type with an element
+ /// count and element type matching the ArrayRef passed in. Note that this
+ /// can return a ConstantAggregateZero object.
+ static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
+ static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
+ static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
+ static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
+ static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
+ static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
+
+ /// getFP() constructors - Return a constant with vector type with an element
+ /// count and element type of float with the precision matching the number of
+ /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
+ /// double for 64bits) Note that this can return a ConstantAggregateZero
+ /// object.
+ static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
+ static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
+ static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);
+
+ /// Return a ConstantVector with the specified constant in each element.
+ /// The specified constant has to be a of a compatible type (i8/i16/
+ /// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
+ static Constant *getSplat(unsigned NumElts, Constant *Elt);
+
+ /// Returns true if this is a splat constant, meaning that all elements have
+ /// the same value.
+ bool isSplat() const;
+
+ /// If this is a splat constant, meaning that all of the elements have the
+ /// same value, return that value. Otherwise return NULL.
+ Constant *getSplatValue() const;
+
+ /// Specialize the getType() method to always return a VectorType,
+ /// which reduces the amount of casting needed in parts of the compiler.
+ inline VectorType *getType() const {
+ return cast<VectorType>(Value::getType());
+ }
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantDataVectorVal;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+/// A constant token which is empty
+///
+class ConstantTokenNone final : public ConstantData {
+ friend class Constant;
+
+ explicit ConstantTokenNone(LLVMContext &Context)
+ : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
+
+ void destroyConstantImpl();
+
+public:
+ ConstantTokenNone(const ConstantTokenNone &) = delete;
+
+ /// Return the ConstantTokenNone.
+ static ConstantTokenNone *get(LLVMContext &Context);
+
+ /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantTokenNoneVal;
+ }
+};
+
+/// The address of a basic block.
+///
+class BlockAddress final : public Constant {
+ friend class Constant;
+
+ BlockAddress(Function *F, BasicBlock *BB);
+
+ void *operator new(size_t s) { return User::operator new(s, 2); }
+
+ void destroyConstantImpl();
+ Value *handleOperandChangeImpl(Value *From, Value *To);
+
+public:
+ /// Return a BlockAddress for the specified function and basic block.
+ static BlockAddress *get(Function *F, BasicBlock *BB);
+
+ /// Return a BlockAddress for the specified basic block. The basic
+ /// block must be embedded into a function.
+ static BlockAddress *get(BasicBlock *BB);
+
+ /// Lookup an existing \c BlockAddress constant for the given BasicBlock.
+ ///
+ /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
+ static BlockAddress *lookup(const BasicBlock *BB);
+
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+
+ Function *getFunction() const { return (Function*)Op<0>().get(); }
+ BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static bool classof(const Value *V) {
+ return V->getValueID() == BlockAddressVal;
+ }
+};
+
+template <>
+struct OperandTraits<BlockAddress> :
+ public FixedNumOperandTraits<BlockAddress, 2> {
+};
+
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
+
+//===----------------------------------------------------------------------===//
+/// A constant value that is initialized with an expression using
+/// other constant values.
+///
+/// This class uses the standard Instruction opcodes to define the various
+/// constant expressions. The Opcode field for the ConstantExpr class is
+/// maintained in the Value::SubclassData field.
+class ConstantExpr : public Constant {
+ friend struct ConstantExprKeyType;
+ friend class Constant;
+
+ void destroyConstantImpl();
+ Value *handleOperandChangeImpl(Value *From, Value *To);
+
+protected:
+ ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
+ : Constant(ty, ConstantExprVal, Ops, NumOps) {
+ // Operation type (an Instruction opcode) is stored as the SubclassData.
+ setValueSubclassData(Opcode);
+ }
+
+public:
+ // Static methods to construct a ConstantExpr of different kinds. Note that
+ // these methods may return a object that is not an instance of the
+ // ConstantExpr class, because they will attempt to fold the constant
+ // expression into something simpler if possible.
+
+ /// getAlignOf constant expr - computes the alignment of a type in a target
+ /// independent way (Note: the return type is an i64).
+ static Constant *getAlignOf(Type *Ty);
+
+ /// getSizeOf constant expr - computes the (alloc) size of a type (in
+ /// address-units, not bits) in a target independent way (Note: the return
+ /// type is an i64).
+ ///
+ static Constant *getSizeOf(Type *Ty);
+
+ /// getOffsetOf constant expr - computes the offset of a struct field in a
+ /// target independent way (Note: the return type is an i64).
+ ///
+ static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
+
+ /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
+ /// which supports any aggregate type, and any Constant index.
+ ///
+ static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
+
+ static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
+ static Constant *getFNeg(Constant *C);
+ static Constant *getNot(Constant *C);
+ static Constant *getAdd(Constant *C1, Constant *C2,
+ bool HasNUW = false, bool HasNSW = false);
+ static Constant *getFAdd(Constant *C1, Constant *C2);
+ static Constant *getSub(Constant *C1, Constant *C2,
+ bool HasNUW = false, bool HasNSW = false);
+ static Constant *getFSub(Constant *C1, Constant *C2);
+ static Constant *getMul(Constant *C1, Constant *C2,
+ bool HasNUW = false, bool HasNSW = false);
+ static Constant *getFMul(Constant *C1, Constant *C2);
+ static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
+ static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
+ static Constant *getFDiv(Constant *C1, Constant *C2);
+ static Constant *getURem(Constant *C1, Constant *C2);
+ static Constant *getSRem(Constant *C1, Constant *C2);
+ static Constant *getFRem(Constant *C1, Constant *C2);
+ static Constant *getAnd(Constant *C1, Constant *C2);
+ static Constant *getOr(Constant *C1, Constant *C2);
+ static Constant *getXor(Constant *C1, Constant *C2);
+ static Constant *getShl(Constant *C1, Constant *C2,
+ bool HasNUW = false, bool HasNSW = false);
+ static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
+ static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
+ static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
+ static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
+ static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
+ static Constant *getFPTrunc(Constant *C, Type *Ty,
+ bool OnlyIfReduced = false);
+ static Constant *getFPExtend(Constant *C, Type *Ty,
+ bool OnlyIfReduced = false);
+ static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
+ static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
+ static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
+ static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
+ static Constant *getPtrToInt(Constant *C, Type *Ty,
+ bool OnlyIfReduced = false);
+ static Constant *getIntToPtr(Constant *C, Type *Ty,
+ bool OnlyIfReduced = false);
+ static Constant *getBitCast(Constant *C, Type *Ty,
+ bool OnlyIfReduced = false);
+ static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
+ bool OnlyIfReduced = false);
+
+ static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
+ static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
+
+ static Constant *getNSWAdd(Constant *C1, Constant *C2) {
+ return getAdd(C1, C2, false, true);
+ }
+
+ static Constant *getNUWAdd(Constant *C1, Constant *C2) {
+ return getAdd(C1, C2, true, false);
+ }
+
+ static Constant *getNSWSub(Constant *C1, Constant *C2) {
+ return getSub(C1, C2, false, true);
+ }
+
+ static Constant *getNUWSub(Constant *C1, Constant *C2) {
+ return getSub(C1, C2, true, false);
+ }
+
+ static Constant *getNSWMul(Constant *C1, Constant *C2) {
+ return getMul(C1, C2, false, true);
+ }
+
+ static Constant *getNUWMul(Constant *C1, Constant *C2) {
+ return getMul(C1, C2, true, false);
+ }
+
+ static Constant *getNSWShl(Constant *C1, Constant *C2) {
+ return getShl(C1, C2, false, true);
+ }
+
+ static Constant *getNUWShl(Constant *C1, Constant *C2) {
+ return getShl(C1, C2, true, false);
+ }
+
+ static Constant *getExactSDiv(Constant *C1, Constant *C2) {
+ return getSDiv(C1, C2, true);
+ }
+
+ static Constant *getExactUDiv(Constant *C1, Constant *C2) {
+ return getUDiv(C1, C2, true);
+ }
+
+ static Constant *getExactAShr(Constant *C1, Constant *C2) {
+ return getAShr(C1, C2, true);
+ }
+
+ static Constant *getExactLShr(Constant *C1, Constant *C2) {
+ return getLShr(C1, C2, true);
+ }
+
+ /// Return the identity for the given binary operation,
+ /// i.e. a constant C such that X op C = X and C op X = X for every X. It
+ /// returns null if the operator doesn't have an identity.
+ static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty);
+
+ /// Return the absorbing element for the given binary
+ /// operation, i.e. a constant C such that X op C = C and C op X = C for
+ /// every X. For example, this returns zero for integer multiplication.
+ /// It returns null if the operator doesn't have an absorbing element.
+ static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
+
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
+
+ /// \brief Convenience function for getting a Cast operation.
+ ///
+ /// \param ops The opcode for the conversion
+ /// \param C The constant to be converted
+ /// \param Ty The type to which the constant is converted
+ /// \param OnlyIfReduced see \a getWithOperands() docs.
+ static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
+ bool OnlyIfReduced = false);
+
+ // @brief Create a ZExt or BitCast cast constant expression
+ static Constant *getZExtOrBitCast(
+ Constant *C, ///< The constant to zext or bitcast
+ Type *Ty ///< The type to zext or bitcast C to
+ );
+
+ // @brief Create a SExt or BitCast cast constant expression
+ static Constant *getSExtOrBitCast(
+ Constant *C, ///< The constant to sext or bitcast
+ Type *Ty ///< The type to sext or bitcast C to
+ );
+
+ // @brief Create a Trunc or BitCast cast constant expression
+ static Constant *getTruncOrBitCast(
+ Constant *C, ///< The constant to trunc or bitcast
+ Type *Ty ///< The type to trunc or bitcast C to
+ );
+
+ /// @brief Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
+ /// expression.
+ static Constant *getPointerCast(
+ Constant *C, ///< The pointer value to be casted (operand 0)
+ Type *Ty ///< The type to which cast should be made
+ );
+
+ /// @brief Create a BitCast or AddrSpaceCast for a pointer type depending on
+ /// the address space.
+ static Constant *getPointerBitCastOrAddrSpaceCast(
+ Constant *C, ///< The constant to addrspacecast or bitcast
+ Type *Ty ///< The type to bitcast or addrspacecast C to
+ );
+
+ /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
+ static Constant *getIntegerCast(
+ Constant *C, ///< The integer constant to be casted
+ Type *Ty, ///< The integer type to cast to
+ bool isSigned ///< Whether C should be treated as signed or not
+ );
+
+ /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
+ static Constant *getFPCast(
+ Constant *C, ///< The integer constant to be casted
+ Type *Ty ///< The integer type to cast to
+ );
+
+ /// @brief Return true if this is a convert constant expression
+ bool isCast() const;
+
+ /// @brief Return true if this is a compare constant expression
+ bool isCompare() const;
+
+ /// @brief Return true if this is an insertvalue or extractvalue expression,
+ /// and the getIndices() method may be used.
+ bool hasIndices() const;
+
+ /// @brief Return true if this is a getelementptr expression and all
+ /// the index operands are compile-time known integers within the
+ /// corresponding notional static array extents. Note that this is
+ /// not equivalant to, a subset of, or a superset of the "inbounds"
+ /// property.
+ bool isGEPWithNoNotionalOverIndexing() const;
+
+ /// Select constant expr
+ ///
+ /// \param OnlyIfReducedTy see \a getWithOperands() docs.
+ static Constant *getSelect(Constant *C, Constant *V1, Constant *V2,
+ Type *OnlyIfReducedTy = nullptr);
+
+ /// get - Return a binary or shift operator constant expression,
+ /// folding if possible.
+ ///
+ /// \param OnlyIfReducedTy see \a getWithOperands() docs.
+ static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
+ unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
+
+ /// \brief Return an ICmp or FCmp comparison operator constant expression.
+ ///
+ /// \param OnlyIfReduced see \a getWithOperands() docs.
+ static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
+ bool OnlyIfReduced = false);
+
+ /// get* - Return some common constants without having to
+ /// specify the full Instruction::OPCODE identifier.
+ ///
+ static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
+ bool OnlyIfReduced = false);
+ static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
+ bool OnlyIfReduced = false);
+
+ /// Getelementptr form. Value* is only accepted for convenience;
+ /// all elements must be Constants.
+ ///
+ /// \param InRangeIndex the inrange index if present or None.
+ /// \param OnlyIfReducedTy see \a getWithOperands() docs.
+ static Constant *getGetElementPtr(Type *Ty, Constant *C,
+ ArrayRef<Constant *> IdxList,
+ bool InBounds = false,
+ Optional<unsigned> InRangeIndex = None,
+ Type *OnlyIfReducedTy = nullptr) {
+ return getGetElementPtr(
+ Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()),
+ InBounds, InRangeIndex, OnlyIfReducedTy);
+ }
+ static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx,
+ bool InBounds = false,
+ Optional<unsigned> InRangeIndex = None,
+ Type *OnlyIfReducedTy = nullptr) {
+ // This form of the function only exists to avoid ambiguous overload
+ // warnings about whether to convert Idx to ArrayRef<Constant *> or
+ // ArrayRef<Value *>.
+ return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex,
+ OnlyIfReducedTy);
+ }
+ static Constant *getGetElementPtr(Type *Ty, Constant *C,
+ ArrayRef<Value *> IdxList,
+ bool InBounds = false,
+ Optional<unsigned> InRangeIndex = None,
+ Type *OnlyIfReducedTy = nullptr);
+
+ /// Create an "inbounds" getelementptr. See the documentation for the
+ /// "inbounds" flag in LangRef.html for details.
+ static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
+ ArrayRef<Constant *> IdxList) {
+ return getGetElementPtr(Ty, C, IdxList, true);
+ }
+ static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
+ Constant *Idx) {
+ // This form of the function only exists to avoid ambiguous overload
+ // warnings about whether to convert Idx to ArrayRef<Constant *> or
+ // ArrayRef<Value *>.
+ return getGetElementPtr(Ty, C, Idx, true);
+ }
+ static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
+ ArrayRef<Value *> IdxList) {
+ return getGetElementPtr(Ty, C, IdxList, true);
+ }
+
+ static Constant *getExtractElement(Constant *Vec, Constant *Idx,
+ Type *OnlyIfReducedTy = nullptr);
+ static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
+ Type *OnlyIfReducedTy = nullptr);
+ static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask,
+ Type *OnlyIfReducedTy = nullptr);
+ static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
+ Type *OnlyIfReducedTy = nullptr);
+ static Constant *getInsertValue(Constant *Agg, Constant *Val,
+ ArrayRef<unsigned> Idxs,
+ Type *OnlyIfReducedTy = nullptr);
+
+ /// Return the opcode at the root of this constant expression
+ unsigned getOpcode() const { return getSubclassDataFromValue(); }
+
+ /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or
+ /// FCMP constant expression.
+ unsigned getPredicate() const;
+
+ /// Assert that this is an insertvalue or exactvalue
+ /// expression and return the list of indices.
+ ArrayRef<unsigned> getIndices() const;
+
+ /// Return a string representation for an opcode.
+ const char *getOpcodeName() const;
+
+ /// Return a constant expression identical to this one, but with the specified
+ /// operand set to the specified value.
+ Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
+
+ /// This returns the current constant expression with the operands replaced
+ /// with the specified values. The specified array must have the same number
+ /// of operands as our current one.
+ Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
+ return getWithOperands(Ops, getType());
+ }
+
+ /// Get the current expression with the operands replaced.
+ ///
+ /// Return the current constant expression with the operands replaced with \c
+ /// Ops and the type with \c Ty. The new operands must have the same number
+ /// as the current ones.
+ ///
+ /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
+ /// gets constant-folded, the type changes, or the expression is otherwise
+ /// canonicalized. This parameter should almost always be \c false.
+ Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
+ bool OnlyIfReduced = false,
+ Type *SrcTy = nullptr) const;
+
+ /// Returns an Instruction which implements the same operation as this
+ /// ConstantExpr. The instruction is not linked to any basic block.
+ ///
+ /// A better approach to this could be to have a constructor for Instruction
+ /// which would take a ConstantExpr parameter, but that would have spread
+ /// implementation details of ConstantExpr outside of Constants.cpp, which
+ /// would make it harder to remove ConstantExprs altogether.
+ Instruction *getAsInstruction();
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static bool classof(const Value *V) {
+ return V->getValueID() == ConstantExprVal;
+ }
+
+private:
+ // Shadow Value::setValueSubclassData with a private forwarding method so that
+ // subclasses cannot accidentally use it.
+ void setValueSubclassData(unsigned short D) {
+ Value::setValueSubclassData(D);
+ }
+};
+
+template <>
+struct OperandTraits<ConstantExpr> :
+ public VariadicOperandTraits<ConstantExpr, 1> {
+};
+
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
+
+//===----------------------------------------------------------------------===//
+/// 'undef' values are things that do not have specified contents.
+/// These are used for a variety of purposes, including global variable
+/// initializers and operands to instructions. 'undef' values can occur with
+/// any first-class type.
+///
+/// Undef values aren't exactly constants; if they have multiple uses, they
+/// can appear to have different bit patterns at each use. See
+/// LangRef.html#undefvalues for details.
+///
+class UndefValue final : public ConstantData {
+ friend class Constant;
+
+ explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
+
+ void destroyConstantImpl();
+
+public:
+ UndefValue(const UndefValue &) = delete;
+
+ /// Static factory methods - Return an 'undef' object of the specified type.
+ static UndefValue *get(Type *T);
+
+ /// If this Undef has array or vector type, return a undef with the right
+ /// element type.
+ UndefValue *getSequentialElement() const;
+
+ /// If this undef has struct type, return a undef with the right element type
+ /// for the specified element.
+ UndefValue *getStructElement(unsigned Elt) const;
+
+ /// Return an undef of the right value for the specified GEP index if we can,
+ /// otherwise return null (e.g. if C is a ConstantExpr).
+ UndefValue *getElementValue(Constant *C) const;
+
+ /// Return an undef of the right value for the specified GEP index.
+ UndefValue *getElementValue(unsigned Idx) const;
+
+ /// Return the number of elements in the array, vector, or struct.
+ unsigned getNumElements() const;
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast:
+ static bool classof(const Value *V) {
+ return V->getValueID() == UndefValueVal;
+ }
+};
+
+} // end namespace llvm
+
+#endif // LLVM_IR_CONSTANTS_H