blob: 8aeb5193676084137c376426eb8e42c57ef7fb28 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- ReductionRules.h - Reduction Rules -----------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Reduction Rules.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
15#define LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
16
17#include "Graph.h"
18#include "Math.h"
19#include "Solution.h"
20#include <cassert>
21#include <limits>
22
23namespace llvm {
24namespace PBQP {
25
26 /// \brief Reduce a node of degree one.
27 ///
28 /// Propagate costs from the given node, which must be of degree one, to its
29 /// neighbor. Notify the problem domain.
30 template <typename GraphT>
31 void applyR1(GraphT &G, typename GraphT::NodeId NId) {
32 using NodeId = typename GraphT::NodeId;
33 using EdgeId = typename GraphT::EdgeId;
34 using Vector = typename GraphT::Vector;
35 using Matrix = typename GraphT::Matrix;
36 using RawVector = typename GraphT::RawVector;
37
38 assert(G.getNodeDegree(NId) == 1 &&
39 "R1 applied to node with degree != 1.");
40
41 EdgeId EId = *G.adjEdgeIds(NId).begin();
42 NodeId MId = G.getEdgeOtherNodeId(EId, NId);
43
44 const Matrix &ECosts = G.getEdgeCosts(EId);
45 const Vector &XCosts = G.getNodeCosts(NId);
46 RawVector YCosts = G.getNodeCosts(MId);
47
48 // Duplicate a little to avoid transposing matrices.
49 if (NId == G.getEdgeNode1Id(EId)) {
50 for (unsigned j = 0; j < YCosts.getLength(); ++j) {
51 PBQPNum Min = ECosts[0][j] + XCosts[0];
52 for (unsigned i = 1; i < XCosts.getLength(); ++i) {
53 PBQPNum C = ECosts[i][j] + XCosts[i];
54 if (C < Min)
55 Min = C;
56 }
57 YCosts[j] += Min;
58 }
59 } else {
60 for (unsigned i = 0; i < YCosts.getLength(); ++i) {
61 PBQPNum Min = ECosts[i][0] + XCosts[0];
62 for (unsigned j = 1; j < XCosts.getLength(); ++j) {
63 PBQPNum C = ECosts[i][j] + XCosts[j];
64 if (C < Min)
65 Min = C;
66 }
67 YCosts[i] += Min;
68 }
69 }
70 G.setNodeCosts(MId, YCosts);
71 G.disconnectEdge(EId, MId);
72 }
73
74 template <typename GraphT>
75 void applyR2(GraphT &G, typename GraphT::NodeId NId) {
76 using NodeId = typename GraphT::NodeId;
77 using EdgeId = typename GraphT::EdgeId;
78 using Vector = typename GraphT::Vector;
79 using Matrix = typename GraphT::Matrix;
80 using RawMatrix = typename GraphT::RawMatrix;
81
82 assert(G.getNodeDegree(NId) == 2 &&
83 "R2 applied to node with degree != 2.");
84
85 const Vector &XCosts = G.getNodeCosts(NId);
86
87 typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin();
88 EdgeId YXEId = *AEItr,
89 ZXEId = *(++AEItr);
90
91 NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId),
92 ZNId = G.getEdgeOtherNodeId(ZXEId, NId);
93
94 bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId),
95 FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId);
96
97 const Matrix *YXECosts = FlipEdge1 ?
98 new Matrix(G.getEdgeCosts(YXEId).transpose()) :
99 &G.getEdgeCosts(YXEId);
100
101 const Matrix *ZXECosts = FlipEdge2 ?
102 new Matrix(G.getEdgeCosts(ZXEId).transpose()) :
103 &G.getEdgeCosts(ZXEId);
104
105 unsigned XLen = XCosts.getLength(),
106 YLen = YXECosts->getRows(),
107 ZLen = ZXECosts->getRows();
108
109 RawMatrix Delta(YLen, ZLen);
110
111 for (unsigned i = 0; i < YLen; ++i) {
112 for (unsigned j = 0; j < ZLen; ++j) {
113 PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0];
114 for (unsigned k = 1; k < XLen; ++k) {
115 PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k];
116 if (C < Min) {
117 Min = C;
118 }
119 }
120 Delta[i][j] = Min;
121 }
122 }
123
124 if (FlipEdge1)
125 delete YXECosts;
126
127 if (FlipEdge2)
128 delete ZXECosts;
129
130 EdgeId YZEId = G.findEdge(YNId, ZNId);
131
132 if (YZEId == G.invalidEdgeId()) {
133 YZEId = G.addEdge(YNId, ZNId, Delta);
134 } else {
135 const Matrix &YZECosts = G.getEdgeCosts(YZEId);
136 if (YNId == G.getEdgeNode1Id(YZEId)) {
137 G.updateEdgeCosts(YZEId, Delta + YZECosts);
138 } else {
139 G.updateEdgeCosts(YZEId, Delta.transpose() + YZECosts);
140 }
141 }
142
143 G.disconnectEdge(YXEId, YNId);
144 G.disconnectEdge(ZXEId, ZNId);
145
146 // TODO: Try to normalize newly added/modified edge.
147 }
148
149#ifndef NDEBUG
150 // Does this Cost vector have any register options ?
151 template <typename VectorT>
152 bool hasRegisterOptions(const VectorT &V) {
153 unsigned VL = V.getLength();
154
155 // An empty or spill only cost vector does not provide any register option.
156 if (VL <= 1)
157 return false;
158
159 // If there are registers in the cost vector, but all of them have infinite
160 // costs, then ... there is no available register.
161 for (unsigned i = 1; i < VL; ++i)
162 if (V[i] != std::numeric_limits<PBQP::PBQPNum>::infinity())
163 return true;
164
165 return false;
166 }
167#endif
168
169 // \brief Find a solution to a fully reduced graph by backpropagation.
170 //
171 // Given a graph and a reduction order, pop each node from the reduction
172 // order and greedily compute a minimum solution based on the node costs, and
173 // the dependent costs due to previously solved nodes.
174 //
175 // Note - This does not return the graph to its original (pre-reduction)
176 // state: the existing solvers destructively alter the node and edge
177 // costs. Given that, the backpropagate function doesn't attempt to
178 // replace the edges either, but leaves the graph in its reduced
179 // state.
180 template <typename GraphT, typename StackT>
181 Solution backpropagate(GraphT& G, StackT stack) {
182 using NodeId = GraphBase::NodeId;
183 using Matrix = typename GraphT::Matrix;
184 using RawVector = typename GraphT::RawVector;
185
186 Solution s;
187
188 while (!stack.empty()) {
189 NodeId NId = stack.back();
190 stack.pop_back();
191
192 RawVector v = G.getNodeCosts(NId);
193
194#ifndef NDEBUG
195 // Although a conservatively allocatable node can be allocated to a register,
196 // spilling it may provide a lower cost solution. Assert here that spilling
197 // is done by choice, not because there were no register available.
198 if (G.getNodeMetadata(NId).wasConservativelyAllocatable())
199 assert(hasRegisterOptions(v) && "A conservatively allocatable node "
200 "must have available register options");
201#endif
202
203 for (auto EId : G.adjEdgeIds(NId)) {
204 const Matrix& edgeCosts = G.getEdgeCosts(EId);
205 if (NId == G.getEdgeNode1Id(EId)) {
206 NodeId mId = G.getEdgeNode2Id(EId);
207 v += edgeCosts.getColAsVector(s.getSelection(mId));
208 } else {
209 NodeId mId = G.getEdgeNode1Id(EId);
210 v += edgeCosts.getRowAsVector(s.getSelection(mId));
211 }
212 }
213
214 s.setSelection(NId, v.minIndex());
215 }
216
217 return s;
218 }
219
220} // end namespace PBQP
221} // end namespace llvm
222
223#endif // LLVM_CODEGEN_PBQP_REDUCTIONRULES_H