Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/CodeGen/PBQP/ReductionRules.h b/linux-x64/clang/include/llvm/CodeGen/PBQP/ReductionRules.h
new file mode 100644
index 0000000..8aeb519
--- /dev/null
+++ b/linux-x64/clang/include/llvm/CodeGen/PBQP/ReductionRules.h
@@ -0,0 +1,223 @@
+//===- ReductionRules.h - Reduction Rules -----------------------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Reduction Rules.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
+#define LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
+
+#include "Graph.h"
+#include "Math.h"
+#include "Solution.h"
+#include <cassert>
+#include <limits>
+
+namespace llvm {
+namespace PBQP {
+
+  /// \brief Reduce a node of degree one.
+  ///
+  /// Propagate costs from the given node, which must be of degree one, to its
+  /// neighbor. Notify the problem domain.
+  template <typename GraphT>
+  void applyR1(GraphT &G, typename GraphT::NodeId NId) {
+    using NodeId = typename GraphT::NodeId;
+    using EdgeId = typename GraphT::EdgeId;
+    using Vector = typename GraphT::Vector;
+    using Matrix = typename GraphT::Matrix;
+    using RawVector = typename GraphT::RawVector;
+
+    assert(G.getNodeDegree(NId) == 1 &&
+           "R1 applied to node with degree != 1.");
+
+    EdgeId EId = *G.adjEdgeIds(NId).begin();
+    NodeId MId = G.getEdgeOtherNodeId(EId, NId);
+
+    const Matrix &ECosts = G.getEdgeCosts(EId);
+    const Vector &XCosts = G.getNodeCosts(NId);
+    RawVector YCosts = G.getNodeCosts(MId);
+
+    // Duplicate a little to avoid transposing matrices.
+    if (NId == G.getEdgeNode1Id(EId)) {
+      for (unsigned j = 0; j < YCosts.getLength(); ++j) {
+        PBQPNum Min = ECosts[0][j] + XCosts[0];
+        for (unsigned i = 1; i < XCosts.getLength(); ++i) {
+          PBQPNum C = ECosts[i][j] + XCosts[i];
+          if (C < Min)
+            Min = C;
+        }
+        YCosts[j] += Min;
+      }
+    } else {
+      for (unsigned i = 0; i < YCosts.getLength(); ++i) {
+        PBQPNum Min = ECosts[i][0] + XCosts[0];
+        for (unsigned j = 1; j < XCosts.getLength(); ++j) {
+          PBQPNum C = ECosts[i][j] + XCosts[j];
+          if (C < Min)
+            Min = C;
+        }
+        YCosts[i] += Min;
+      }
+    }
+    G.setNodeCosts(MId, YCosts);
+    G.disconnectEdge(EId, MId);
+  }
+
+  template <typename GraphT>
+  void applyR2(GraphT &G, typename GraphT::NodeId NId) {
+    using NodeId = typename GraphT::NodeId;
+    using EdgeId = typename GraphT::EdgeId;
+    using Vector = typename GraphT::Vector;
+    using Matrix = typename GraphT::Matrix;
+    using RawMatrix = typename GraphT::RawMatrix;
+
+    assert(G.getNodeDegree(NId) == 2 &&
+           "R2 applied to node with degree != 2.");
+
+    const Vector &XCosts = G.getNodeCosts(NId);
+
+    typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin();
+    EdgeId YXEId = *AEItr,
+           ZXEId = *(++AEItr);
+
+    NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId),
+           ZNId = G.getEdgeOtherNodeId(ZXEId, NId);
+
+    bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId),
+         FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId);
+
+    const Matrix *YXECosts = FlipEdge1 ?
+      new Matrix(G.getEdgeCosts(YXEId).transpose()) :
+      &G.getEdgeCosts(YXEId);
+
+    const Matrix *ZXECosts = FlipEdge2 ?
+      new Matrix(G.getEdgeCosts(ZXEId).transpose()) :
+      &G.getEdgeCosts(ZXEId);
+
+    unsigned XLen = XCosts.getLength(),
+      YLen = YXECosts->getRows(),
+      ZLen = ZXECosts->getRows();
+
+    RawMatrix Delta(YLen, ZLen);
+
+    for (unsigned i = 0; i < YLen; ++i) {
+      for (unsigned j = 0; j < ZLen; ++j) {
+        PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0];
+        for (unsigned k = 1; k < XLen; ++k) {
+          PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k];
+          if (C < Min) {
+            Min = C;
+          }
+        }
+        Delta[i][j] = Min;
+      }
+    }
+
+    if (FlipEdge1)
+      delete YXECosts;
+
+    if (FlipEdge2)
+      delete ZXECosts;
+
+    EdgeId YZEId = G.findEdge(YNId, ZNId);
+
+    if (YZEId == G.invalidEdgeId()) {
+      YZEId = G.addEdge(YNId, ZNId, Delta);
+    } else {
+      const Matrix &YZECosts = G.getEdgeCosts(YZEId);
+      if (YNId == G.getEdgeNode1Id(YZEId)) {
+        G.updateEdgeCosts(YZEId, Delta + YZECosts);
+      } else {
+        G.updateEdgeCosts(YZEId, Delta.transpose() + YZECosts);
+      }
+    }
+
+    G.disconnectEdge(YXEId, YNId);
+    G.disconnectEdge(ZXEId, ZNId);
+
+    // TODO: Try to normalize newly added/modified edge.
+  }
+
+#ifndef NDEBUG
+  // Does this Cost vector have any register options ?
+  template <typename VectorT>
+  bool hasRegisterOptions(const VectorT &V) {
+    unsigned VL = V.getLength();
+
+    // An empty or spill only cost vector does not provide any register option.
+    if (VL <= 1)
+      return false;
+
+    // If there are registers in the cost vector, but all of them have infinite
+    // costs, then ... there is no available register.
+    for (unsigned i = 1; i < VL; ++i)
+      if (V[i] != std::numeric_limits<PBQP::PBQPNum>::infinity())
+        return true;
+
+    return false;
+  }
+#endif
+
+  // \brief Find a solution to a fully reduced graph by backpropagation.
+  //
+  // Given a graph and a reduction order, pop each node from the reduction
+  // order and greedily compute a minimum solution based on the node costs, and
+  // the dependent costs due to previously solved nodes.
+  //
+  // Note - This does not return the graph to its original (pre-reduction)
+  //        state: the existing solvers destructively alter the node and edge
+  //        costs. Given that, the backpropagate function doesn't attempt to
+  //        replace the edges either, but leaves the graph in its reduced
+  //        state.
+  template <typename GraphT, typename StackT>
+  Solution backpropagate(GraphT& G, StackT stack) {
+    using NodeId = GraphBase::NodeId;
+    using Matrix = typename GraphT::Matrix;
+    using RawVector = typename GraphT::RawVector;
+
+    Solution s;
+
+    while (!stack.empty()) {
+      NodeId NId = stack.back();
+      stack.pop_back();
+
+      RawVector v = G.getNodeCosts(NId);
+
+#ifndef NDEBUG
+      // Although a conservatively allocatable node can be allocated to a register,
+      // spilling it may provide a lower cost solution. Assert here that spilling
+      // is done by choice, not because there were no register available.
+      if (G.getNodeMetadata(NId).wasConservativelyAllocatable())
+        assert(hasRegisterOptions(v) && "A conservatively allocatable node "
+                                        "must have available register options");
+#endif
+
+      for (auto EId : G.adjEdgeIds(NId)) {
+        const Matrix& edgeCosts = G.getEdgeCosts(EId);
+        if (NId == G.getEdgeNode1Id(EId)) {
+          NodeId mId = G.getEdgeNode2Id(EId);
+          v += edgeCosts.getColAsVector(s.getSelection(mId));
+        } else {
+          NodeId mId = G.getEdgeNode1Id(EId);
+          v += edgeCosts.getRowAsVector(s.getSelection(mId));
+        }
+      }
+
+      s.setSelection(NId, v.minIndex());
+    }
+
+    return s;
+  }
+
+} // end namespace PBQP
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_PBQP_REDUCTIONRULES_H