Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/CodeGen/PBQP/CostAllocator.h b/linux-x64/clang/include/llvm/CodeGen/PBQP/CostAllocator.h
new file mode 100644
index 0000000..bde451a
--- /dev/null
+++ b/linux-x64/clang/include/llvm/CodeGen/PBQP/CostAllocator.h
@@ -0,0 +1,135 @@
+//===- CostAllocator.h - PBQP Cost Allocator --------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Defines classes conforming to the PBQP cost value manager concept.
+//
+// Cost value managers are memory managers for PBQP cost values (vectors and
+// matrices). Since PBQP graphs can grow very large (E.g. hundreds of thousands
+// of edges on the largest function in SPEC2006).
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_COSTALLOCATOR_H
+#define LLVM_CODEGEN_PBQP_COSTALLOCATOR_H
+
+#include "llvm/ADT/DenseSet.h"
+#include <algorithm>
+#include <cstdint>
+#include <memory>
+
+namespace llvm {
+namespace PBQP {
+
+template <typename ValueT> class ValuePool {
+public:
+ using PoolRef = std::shared_ptr<const ValueT>;
+
+private:
+ class PoolEntry : public std::enable_shared_from_this<PoolEntry> {
+ public:
+ template <typename ValueKeyT>
+ PoolEntry(ValuePool &Pool, ValueKeyT Value)
+ : Pool(Pool), Value(std::move(Value)) {}
+
+ ~PoolEntry() { Pool.removeEntry(this); }
+
+ const ValueT &getValue() const { return Value; }
+
+ private:
+ ValuePool &Pool;
+ ValueT Value;
+ };
+
+ class PoolEntryDSInfo {
+ public:
+ static inline PoolEntry *getEmptyKey() { return nullptr; }
+
+ static inline PoolEntry *getTombstoneKey() {
+ return reinterpret_cast<PoolEntry *>(static_cast<uintptr_t>(1));
+ }
+
+ template <typename ValueKeyT>
+ static unsigned getHashValue(const ValueKeyT &C) {
+ return hash_value(C);
+ }
+
+ static unsigned getHashValue(PoolEntry *P) {
+ return getHashValue(P->getValue());
+ }
+
+ static unsigned getHashValue(const PoolEntry *P) {
+ return getHashValue(P->getValue());
+ }
+
+ template <typename ValueKeyT1, typename ValueKeyT2>
+ static bool isEqual(const ValueKeyT1 &C1, const ValueKeyT2 &C2) {
+ return C1 == C2;
+ }
+
+ template <typename ValueKeyT>
+ static bool isEqual(const ValueKeyT &C, PoolEntry *P) {
+ if (P == getEmptyKey() || P == getTombstoneKey())
+ return false;
+ return isEqual(C, P->getValue());
+ }
+
+ static bool isEqual(PoolEntry *P1, PoolEntry *P2) {
+ if (P1 == getEmptyKey() || P1 == getTombstoneKey())
+ return P1 == P2;
+ return isEqual(P1->getValue(), P2);
+ }
+ };
+
+ using EntrySetT = DenseSet<PoolEntry *, PoolEntryDSInfo>;
+
+ EntrySetT EntrySet;
+
+ void removeEntry(PoolEntry *P) { EntrySet.erase(P); }
+
+public:
+ template <typename ValueKeyT> PoolRef getValue(ValueKeyT ValueKey) {
+ typename EntrySetT::iterator I = EntrySet.find_as(ValueKey);
+
+ if (I != EntrySet.end())
+ return PoolRef((*I)->shared_from_this(), &(*I)->getValue());
+
+ auto P = std::make_shared<PoolEntry>(*this, std::move(ValueKey));
+ EntrySet.insert(P.get());
+ return PoolRef(std::move(P), &P->getValue());
+ }
+};
+
+template <typename VectorT, typename MatrixT> class PoolCostAllocator {
+private:
+ using VectorCostPool = ValuePool<VectorT>;
+ using MatrixCostPool = ValuePool<MatrixT>;
+
+public:
+ using Vector = VectorT;
+ using Matrix = MatrixT;
+ using VectorPtr = typename VectorCostPool::PoolRef;
+ using MatrixPtr = typename MatrixCostPool::PoolRef;
+
+ template <typename VectorKeyT> VectorPtr getVector(VectorKeyT v) {
+ return VectorPool.getValue(std::move(v));
+ }
+
+ template <typename MatrixKeyT> MatrixPtr getMatrix(MatrixKeyT m) {
+ return MatrixPool.getValue(std::move(m));
+ }
+
+private:
+ VectorCostPool VectorPool;
+ MatrixCostPool MatrixPool;
+};
+
+} // end namespace PBQP
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_PBQP_COSTALLOCATOR_H
diff --git a/linux-x64/clang/include/llvm/CodeGen/PBQP/Graph.h b/linux-x64/clang/include/llvm/CodeGen/PBQP/Graph.h
new file mode 100644
index 0000000..e94878c
--- /dev/null
+++ b/linux-x64/clang/include/llvm/CodeGen/PBQP/Graph.h
@@ -0,0 +1,675 @@
+//===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// PBQP Graph class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_GRAPH_H
+#define LLVM_CODEGEN_PBQP_GRAPH_H
+
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+#include <cassert>
+#include <iterator>
+#include <limits>
+#include <vector>
+
+namespace llvm {
+namespace PBQP {
+
+ class GraphBase {
+ public:
+ using NodeId = unsigned;
+ using EdgeId = unsigned;
+
+ /// @brief Returns a value representing an invalid (non-existent) node.
+ static NodeId invalidNodeId() {
+ return std::numeric_limits<NodeId>::max();
+ }
+
+ /// @brief Returns a value representing an invalid (non-existent) edge.
+ static EdgeId invalidEdgeId() {
+ return std::numeric_limits<EdgeId>::max();
+ }
+ };
+
+ /// PBQP Graph class.
+ /// Instances of this class describe PBQP problems.
+ ///
+ template <typename SolverT>
+ class Graph : public GraphBase {
+ private:
+ using CostAllocator = typename SolverT::CostAllocator;
+
+ public:
+ using RawVector = typename SolverT::RawVector;
+ using RawMatrix = typename SolverT::RawMatrix;
+ using Vector = typename SolverT::Vector;
+ using Matrix = typename SolverT::Matrix;
+ using VectorPtr = typename CostAllocator::VectorPtr;
+ using MatrixPtr = typename CostAllocator::MatrixPtr;
+ using NodeMetadata = typename SolverT::NodeMetadata;
+ using EdgeMetadata = typename SolverT::EdgeMetadata;
+ using GraphMetadata = typename SolverT::GraphMetadata;
+
+ private:
+ class NodeEntry {
+ public:
+ using AdjEdgeList = std::vector<EdgeId>;
+ using AdjEdgeIdx = AdjEdgeList::size_type;
+ using AdjEdgeItr = AdjEdgeList::const_iterator;
+
+ NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {}
+
+ static AdjEdgeIdx getInvalidAdjEdgeIdx() {
+ return std::numeric_limits<AdjEdgeIdx>::max();
+ }
+
+ AdjEdgeIdx addAdjEdgeId(EdgeId EId) {
+ AdjEdgeIdx Idx = AdjEdgeIds.size();
+ AdjEdgeIds.push_back(EId);
+ return Idx;
+ }
+
+ void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) {
+ // Swap-and-pop for fast removal.
+ // 1) Update the adj index of the edge currently at back().
+ // 2) Move last Edge down to Idx.
+ // 3) pop_back()
+ // If Idx == size() - 1 then the setAdjEdgeIdx and swap are
+ // redundant, but both operations are cheap.
+ G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx);
+ AdjEdgeIds[Idx] = AdjEdgeIds.back();
+ AdjEdgeIds.pop_back();
+ }
+
+ const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; }
+
+ VectorPtr Costs;
+ NodeMetadata Metadata;
+
+ private:
+ AdjEdgeList AdjEdgeIds;
+ };
+
+ class EdgeEntry {
+ public:
+ EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs)
+ : Costs(std::move(Costs)) {
+ NIds[0] = N1Id;
+ NIds[1] = N2Id;
+ ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx();
+ ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx();
+ }
+
+ void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) {
+ assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() &&
+ "Edge already connected to NIds[NIdx].");
+ NodeEntry &N = G.getNode(NIds[NIdx]);
+ ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId);
+ }
+
+ void connect(Graph &G, EdgeId ThisEdgeId) {
+ connectToN(G, ThisEdgeId, 0);
+ connectToN(G, ThisEdgeId, 1);
+ }
+
+ void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) {
+ if (NId == NIds[0])
+ ThisEdgeAdjIdxs[0] = NewIdx;
+ else {
+ assert(NId == NIds[1] && "Edge not connected to NId");
+ ThisEdgeAdjIdxs[1] = NewIdx;
+ }
+ }
+
+ void disconnectFromN(Graph &G, unsigned NIdx) {
+ assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() &&
+ "Edge not connected to NIds[NIdx].");
+ NodeEntry &N = G.getNode(NIds[NIdx]);
+ N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]);
+ ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx();
+ }
+
+ void disconnectFrom(Graph &G, NodeId NId) {
+ if (NId == NIds[0])
+ disconnectFromN(G, 0);
+ else {
+ assert(NId == NIds[1] && "Edge does not connect NId");
+ disconnectFromN(G, 1);
+ }
+ }
+
+ NodeId getN1Id() const { return NIds[0]; }
+ NodeId getN2Id() const { return NIds[1]; }
+
+ MatrixPtr Costs;
+ EdgeMetadata Metadata;
+
+ private:
+ NodeId NIds[2];
+ typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2];
+ };
+
+ // ----- MEMBERS -----
+
+ GraphMetadata Metadata;
+ CostAllocator CostAlloc;
+ SolverT *Solver = nullptr;
+
+ using NodeVector = std::vector<NodeEntry>;
+ using FreeNodeVector = std::vector<NodeId>;
+ NodeVector Nodes;
+ FreeNodeVector FreeNodeIds;
+
+ using EdgeVector = std::vector<EdgeEntry>;
+ using FreeEdgeVector = std::vector<EdgeId>;
+ EdgeVector Edges;
+ FreeEdgeVector FreeEdgeIds;
+
+ Graph(const Graph &Other) {}
+
+ // ----- INTERNAL METHODS -----
+
+ NodeEntry &getNode(NodeId NId) {
+ assert(NId < Nodes.size() && "Out of bound NodeId");
+ return Nodes[NId];
+ }
+ const NodeEntry &getNode(NodeId NId) const {
+ assert(NId < Nodes.size() && "Out of bound NodeId");
+ return Nodes[NId];
+ }
+
+ EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; }
+ const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; }
+
+ NodeId addConstructedNode(NodeEntry N) {
+ NodeId NId = 0;
+ if (!FreeNodeIds.empty()) {
+ NId = FreeNodeIds.back();
+ FreeNodeIds.pop_back();
+ Nodes[NId] = std::move(N);
+ } else {
+ NId = Nodes.size();
+ Nodes.push_back(std::move(N));
+ }
+ return NId;
+ }
+
+ EdgeId addConstructedEdge(EdgeEntry E) {
+ assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() &&
+ "Attempt to add duplicate edge.");
+ EdgeId EId = 0;
+ if (!FreeEdgeIds.empty()) {
+ EId = FreeEdgeIds.back();
+ FreeEdgeIds.pop_back();
+ Edges[EId] = std::move(E);
+ } else {
+ EId = Edges.size();
+ Edges.push_back(std::move(E));
+ }
+
+ EdgeEntry &NE = getEdge(EId);
+
+ // Add the edge to the adjacency sets of its nodes.
+ NE.connect(*this, EId);
+ return EId;
+ }
+
+ void operator=(const Graph &Other) {}
+
+ public:
+ using AdjEdgeItr = typename NodeEntry::AdjEdgeItr;
+
+ class NodeItr {
+ public:
+ using iterator_category = std::forward_iterator_tag;
+ using value_type = NodeId;
+ using difference_type = int;
+ using pointer = NodeId *;
+ using reference = NodeId &;
+
+ NodeItr(NodeId CurNId, const Graph &G)
+ : CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) {
+ this->CurNId = findNextInUse(CurNId); // Move to first in-use node id
+ }
+
+ bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; }
+ bool operator!=(const NodeItr &O) const { return !(*this == O); }
+ NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; }
+ NodeId operator*() const { return CurNId; }
+
+ private:
+ NodeId findNextInUse(NodeId NId) const {
+ while (NId < EndNId && is_contained(FreeNodeIds, NId)) {
+ ++NId;
+ }
+ return NId;
+ }
+
+ NodeId CurNId, EndNId;
+ const FreeNodeVector &FreeNodeIds;
+ };
+
+ class EdgeItr {
+ public:
+ EdgeItr(EdgeId CurEId, const Graph &G)
+ : CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) {
+ this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id
+ }
+
+ bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; }
+ bool operator!=(const EdgeItr &O) const { return !(*this == O); }
+ EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; }
+ EdgeId operator*() const { return CurEId; }
+
+ private:
+ EdgeId findNextInUse(EdgeId EId) const {
+ while (EId < EndEId && is_contained(FreeEdgeIds, EId)) {
+ ++EId;
+ }
+ return EId;
+ }
+
+ EdgeId CurEId, EndEId;
+ const FreeEdgeVector &FreeEdgeIds;
+ };
+
+ class NodeIdSet {
+ public:
+ NodeIdSet(const Graph &G) : G(G) {}
+
+ NodeItr begin() const { return NodeItr(0, G); }
+ NodeItr end() const { return NodeItr(G.Nodes.size(), G); }
+
+ bool empty() const { return G.Nodes.empty(); }
+
+ typename NodeVector::size_type size() const {
+ return G.Nodes.size() - G.FreeNodeIds.size();
+ }
+
+ private:
+ const Graph& G;
+ };
+
+ class EdgeIdSet {
+ public:
+ EdgeIdSet(const Graph &G) : G(G) {}
+
+ EdgeItr begin() const { return EdgeItr(0, G); }
+ EdgeItr end() const { return EdgeItr(G.Edges.size(), G); }
+
+ bool empty() const { return G.Edges.empty(); }
+
+ typename NodeVector::size_type size() const {
+ return G.Edges.size() - G.FreeEdgeIds.size();
+ }
+
+ private:
+ const Graph& G;
+ };
+
+ class AdjEdgeIdSet {
+ public:
+ AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {}
+
+ typename NodeEntry::AdjEdgeItr begin() const {
+ return NE.getAdjEdgeIds().begin();
+ }
+
+ typename NodeEntry::AdjEdgeItr end() const {
+ return NE.getAdjEdgeIds().end();
+ }
+
+ bool empty() const { return NE.getAdjEdgeIds().empty(); }
+
+ typename NodeEntry::AdjEdgeList::size_type size() const {
+ return NE.getAdjEdgeIds().size();
+ }
+
+ private:
+ const NodeEntry &NE;
+ };
+
+ /// @brief Construct an empty PBQP graph.
+ Graph() = default;
+
+ /// @brief Construct an empty PBQP graph with the given graph metadata.
+ Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {}
+
+ /// @brief Get a reference to the graph metadata.
+ GraphMetadata& getMetadata() { return Metadata; }
+
+ /// @brief Get a const-reference to the graph metadata.
+ const GraphMetadata& getMetadata() const { return Metadata; }
+
+ /// @brief Lock this graph to the given solver instance in preparation
+ /// for running the solver. This method will call solver.handleAddNode for
+ /// each node in the graph, and handleAddEdge for each edge, to give the
+ /// solver an opportunity to set up any requried metadata.
+ void setSolver(SolverT &S) {
+ assert(!Solver && "Solver already set. Call unsetSolver().");
+ Solver = &S;
+ for (auto NId : nodeIds())
+ Solver->handleAddNode(NId);
+ for (auto EId : edgeIds())
+ Solver->handleAddEdge(EId);
+ }
+
+ /// @brief Release from solver instance.
+ void unsetSolver() {
+ assert(Solver && "Solver not set.");
+ Solver = nullptr;
+ }
+
+ /// @brief Add a node with the given costs.
+ /// @param Costs Cost vector for the new node.
+ /// @return Node iterator for the added node.
+ template <typename OtherVectorT>
+ NodeId addNode(OtherVectorT Costs) {
+ // Get cost vector from the problem domain
+ VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
+ NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts));
+ if (Solver)
+ Solver->handleAddNode(NId);
+ return NId;
+ }
+
+ /// @brief Add a node bypassing the cost allocator.
+ /// @param Costs Cost vector ptr for the new node (must be convertible to
+ /// VectorPtr).
+ /// @return Node iterator for the added node.
+ ///
+ /// This method allows for fast addition of a node whose costs don't need
+ /// to be passed through the cost allocator. The most common use case for
+ /// this is when duplicating costs from an existing node (when using a
+ /// pooling allocator). These have already been uniqued, so we can avoid
+ /// re-constructing and re-uniquing them by attaching them directly to the
+ /// new node.
+ template <typename OtherVectorPtrT>
+ NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) {
+ NodeId NId = addConstructedNode(NodeEntry(Costs));
+ if (Solver)
+ Solver->handleAddNode(NId);
+ return NId;
+ }
+
+ /// @brief Add an edge between the given nodes with the given costs.
+ /// @param N1Id First node.
+ /// @param N2Id Second node.
+ /// @param Costs Cost matrix for new edge.
+ /// @return Edge iterator for the added edge.
+ template <typename OtherVectorT>
+ EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) {
+ assert(getNodeCosts(N1Id).getLength() == Costs.getRows() &&
+ getNodeCosts(N2Id).getLength() == Costs.getCols() &&
+ "Matrix dimensions mismatch.");
+ // Get cost matrix from the problem domain.
+ MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
+ EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts));
+ if (Solver)
+ Solver->handleAddEdge(EId);
+ return EId;
+ }
+
+ /// @brief Add an edge bypassing the cost allocator.
+ /// @param N1Id First node.
+ /// @param N2Id Second node.
+ /// @param Costs Cost matrix for new edge.
+ /// @return Edge iterator for the added edge.
+ ///
+ /// This method allows for fast addition of an edge whose costs don't need
+ /// to be passed through the cost allocator. The most common use case for
+ /// this is when duplicating costs from an existing edge (when using a
+ /// pooling allocator). These have already been uniqued, so we can avoid
+ /// re-constructing and re-uniquing them by attaching them directly to the
+ /// new edge.
+ template <typename OtherMatrixPtrT>
+ NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id,
+ OtherMatrixPtrT Costs) {
+ assert(getNodeCosts(N1Id).getLength() == Costs->getRows() &&
+ getNodeCosts(N2Id).getLength() == Costs->getCols() &&
+ "Matrix dimensions mismatch.");
+ // Get cost matrix from the problem domain.
+ EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs));
+ if (Solver)
+ Solver->handleAddEdge(EId);
+ return EId;
+ }
+
+ /// @brief Returns true if the graph is empty.
+ bool empty() const { return NodeIdSet(*this).empty(); }
+
+ NodeIdSet nodeIds() const { return NodeIdSet(*this); }
+ EdgeIdSet edgeIds() const { return EdgeIdSet(*this); }
+
+ AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); }
+
+ /// @brief Get the number of nodes in the graph.
+ /// @return Number of nodes in the graph.
+ unsigned getNumNodes() const { return NodeIdSet(*this).size(); }
+
+ /// @brief Get the number of edges in the graph.
+ /// @return Number of edges in the graph.
+ unsigned getNumEdges() const { return EdgeIdSet(*this).size(); }
+
+ /// @brief Set a node's cost vector.
+ /// @param NId Node to update.
+ /// @param Costs New costs to set.
+ template <typename OtherVectorT>
+ void setNodeCosts(NodeId NId, OtherVectorT Costs) {
+ VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
+ if (Solver)
+ Solver->handleSetNodeCosts(NId, *AllocatedCosts);
+ getNode(NId).Costs = AllocatedCosts;
+ }
+
+ /// @brief Get a VectorPtr to a node's cost vector. Rarely useful - use
+ /// getNodeCosts where possible.
+ /// @param NId Node id.
+ /// @return VectorPtr to node cost vector.
+ ///
+ /// This method is primarily useful for duplicating costs quickly by
+ /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
+ /// getNodeCosts when dealing with node cost values.
+ const VectorPtr& getNodeCostsPtr(NodeId NId) const {
+ return getNode(NId).Costs;
+ }
+
+ /// @brief Get a node's cost vector.
+ /// @param NId Node id.
+ /// @return Node cost vector.
+ const Vector& getNodeCosts(NodeId NId) const {
+ return *getNodeCostsPtr(NId);
+ }
+
+ NodeMetadata& getNodeMetadata(NodeId NId) {
+ return getNode(NId).Metadata;
+ }
+
+ const NodeMetadata& getNodeMetadata(NodeId NId) const {
+ return getNode(NId).Metadata;
+ }
+
+ typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const {
+ return getNode(NId).getAdjEdgeIds().size();
+ }
+
+ /// @brief Update an edge's cost matrix.
+ /// @param EId Edge id.
+ /// @param Costs New cost matrix.
+ template <typename OtherMatrixT>
+ void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) {
+ MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
+ if (Solver)
+ Solver->handleUpdateCosts(EId, *AllocatedCosts);
+ getEdge(EId).Costs = AllocatedCosts;
+ }
+
+ /// @brief Get a MatrixPtr to a node's cost matrix. Rarely useful - use
+ /// getEdgeCosts where possible.
+ /// @param EId Edge id.
+ /// @return MatrixPtr to edge cost matrix.
+ ///
+ /// This method is primarily useful for duplicating costs quickly by
+ /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
+ /// getEdgeCosts when dealing with edge cost values.
+ const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const {
+ return getEdge(EId).Costs;
+ }
+
+ /// @brief Get an edge's cost matrix.
+ /// @param EId Edge id.
+ /// @return Edge cost matrix.
+ const Matrix& getEdgeCosts(EdgeId EId) const {
+ return *getEdge(EId).Costs;
+ }
+
+ EdgeMetadata& getEdgeMetadata(EdgeId EId) {
+ return getEdge(EId).Metadata;
+ }
+
+ const EdgeMetadata& getEdgeMetadata(EdgeId EId) const {
+ return getEdge(EId).Metadata;
+ }
+
+ /// @brief Get the first node connected to this edge.
+ /// @param EId Edge id.
+ /// @return The first node connected to the given edge.
+ NodeId getEdgeNode1Id(EdgeId EId) const {
+ return getEdge(EId).getN1Id();
+ }
+
+ /// @brief Get the second node connected to this edge.
+ /// @param EId Edge id.
+ /// @return The second node connected to the given edge.
+ NodeId getEdgeNode2Id(EdgeId EId) const {
+ return getEdge(EId).getN2Id();
+ }
+
+ /// @brief Get the "other" node connected to this edge.
+ /// @param EId Edge id.
+ /// @param NId Node id for the "given" node.
+ /// @return The iterator for the "other" node connected to this edge.
+ NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) {
+ EdgeEntry &E = getEdge(EId);
+ if (E.getN1Id() == NId) {
+ return E.getN2Id();
+ } // else
+ return E.getN1Id();
+ }
+
+ /// @brief Get the edge connecting two nodes.
+ /// @param N1Id First node id.
+ /// @param N2Id Second node id.
+ /// @return An id for edge (N1Id, N2Id) if such an edge exists,
+ /// otherwise returns an invalid edge id.
+ EdgeId findEdge(NodeId N1Id, NodeId N2Id) {
+ for (auto AEId : adjEdgeIds(N1Id)) {
+ if ((getEdgeNode1Id(AEId) == N2Id) ||
+ (getEdgeNode2Id(AEId) == N2Id)) {
+ return AEId;
+ }
+ }
+ return invalidEdgeId();
+ }
+
+ /// @brief Remove a node from the graph.
+ /// @param NId Node id.
+ void removeNode(NodeId NId) {
+ if (Solver)
+ Solver->handleRemoveNode(NId);
+ NodeEntry &N = getNode(NId);
+ // TODO: Can this be for-each'd?
+ for (AdjEdgeItr AEItr = N.adjEdgesBegin(),
+ AEEnd = N.adjEdgesEnd();
+ AEItr != AEEnd;) {
+ EdgeId EId = *AEItr;
+ ++AEItr;
+ removeEdge(EId);
+ }
+ FreeNodeIds.push_back(NId);
+ }
+
+ /// @brief Disconnect an edge from the given node.
+ ///
+ /// Removes the given edge from the adjacency list of the given node.
+ /// This operation leaves the edge in an 'asymmetric' state: It will no
+ /// longer appear in an iteration over the given node's (NId's) edges, but
+ /// will appear in an iteration over the 'other', unnamed node's edges.
+ ///
+ /// This does not correspond to any normal graph operation, but exists to
+ /// support efficient PBQP graph-reduction based solvers. It is used to
+ /// 'effectively' remove the unnamed node from the graph while the solver
+ /// is performing the reduction. The solver will later call reconnectNode
+ /// to restore the edge in the named node's adjacency list.
+ ///
+ /// Since the degree of a node is the number of connected edges,
+ /// disconnecting an edge from a node 'u' will cause the degree of 'u' to
+ /// drop by 1.
+ ///
+ /// A disconnected edge WILL still appear in an iteration over the graph
+ /// edges.
+ ///
+ /// A disconnected edge should not be removed from the graph, it should be
+ /// reconnected first.
+ ///
+ /// A disconnected edge can be reconnected by calling the reconnectEdge
+ /// method.
+ void disconnectEdge(EdgeId EId, NodeId NId) {
+ if (Solver)
+ Solver->handleDisconnectEdge(EId, NId);
+
+ EdgeEntry &E = getEdge(EId);
+ E.disconnectFrom(*this, NId);
+ }
+
+ /// @brief Convenience method to disconnect all neighbours from the given
+ /// node.
+ void disconnectAllNeighborsFromNode(NodeId NId) {
+ for (auto AEId : adjEdgeIds(NId))
+ disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId));
+ }
+
+ /// @brief Re-attach an edge to its nodes.
+ ///
+ /// Adds an edge that had been previously disconnected back into the
+ /// adjacency set of the nodes that the edge connects.
+ void reconnectEdge(EdgeId EId, NodeId NId) {
+ EdgeEntry &E = getEdge(EId);
+ E.connectTo(*this, EId, NId);
+ if (Solver)
+ Solver->handleReconnectEdge(EId, NId);
+ }
+
+ /// @brief Remove an edge from the graph.
+ /// @param EId Edge id.
+ void removeEdge(EdgeId EId) {
+ if (Solver)
+ Solver->handleRemoveEdge(EId);
+ EdgeEntry &E = getEdge(EId);
+ E.disconnect();
+ FreeEdgeIds.push_back(EId);
+ Edges[EId].invalidate();
+ }
+
+ /// @brief Remove all nodes and edges from the graph.
+ void clear() {
+ Nodes.clear();
+ FreeNodeIds.clear();
+ Edges.clear();
+ FreeEdgeIds.clear();
+ }
+ };
+
+} // end namespace PBQP
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_PBQP_GRAPH_HPP
diff --git a/linux-x64/clang/include/llvm/CodeGen/PBQP/Math.h b/linux-x64/clang/include/llvm/CodeGen/PBQP/Math.h
new file mode 100644
index 0000000..ba405e8
--- /dev/null
+++ b/linux-x64/clang/include/llvm/CodeGen/PBQP/Math.h
@@ -0,0 +1,292 @@
+//===- Math.h - PBQP Vector and Matrix classes ------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_MATH_H
+#define LLVM_CODEGEN_PBQP_MATH_H
+
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+#include <cassert>
+#include <functional>
+#include <memory>
+
+namespace llvm {
+namespace PBQP {
+
+using PBQPNum = float;
+
+/// \brief PBQP Vector class.
+class Vector {
+ friend hash_code hash_value(const Vector &);
+
+public:
+ /// \brief Construct a PBQP vector of the given size.
+ explicit Vector(unsigned Length)
+ : Length(Length), Data(llvm::make_unique<PBQPNum []>(Length)) {}
+
+ /// \brief Construct a PBQP vector with initializer.
+ Vector(unsigned Length, PBQPNum InitVal)
+ : Length(Length), Data(llvm::make_unique<PBQPNum []>(Length)) {
+ std::fill(Data.get(), Data.get() + Length, InitVal);
+ }
+
+ /// \brief Copy construct a PBQP vector.
+ Vector(const Vector &V)
+ : Length(V.Length), Data(llvm::make_unique<PBQPNum []>(Length)) {
+ std::copy(V.Data.get(), V.Data.get() + Length, Data.get());
+ }
+
+ /// \brief Move construct a PBQP vector.
+ Vector(Vector &&V)
+ : Length(V.Length), Data(std::move(V.Data)) {
+ V.Length = 0;
+ }
+
+ /// \brief Comparison operator.
+ bool operator==(const Vector &V) const {
+ assert(Length != 0 && Data && "Invalid vector");
+ if (Length != V.Length)
+ return false;
+ return std::equal(Data.get(), Data.get() + Length, V.Data.get());
+ }
+
+ /// \brief Return the length of the vector
+ unsigned getLength() const {
+ assert(Length != 0 && Data && "Invalid vector");
+ return Length;
+ }
+
+ /// \brief Element access.
+ PBQPNum& operator[](unsigned Index) {
+ assert(Length != 0 && Data && "Invalid vector");
+ assert(Index < Length && "Vector element access out of bounds.");
+ return Data[Index];
+ }
+
+ /// \brief Const element access.
+ const PBQPNum& operator[](unsigned Index) const {
+ assert(Length != 0 && Data && "Invalid vector");
+ assert(Index < Length && "Vector element access out of bounds.");
+ return Data[Index];
+ }
+
+ /// \brief Add another vector to this one.
+ Vector& operator+=(const Vector &V) {
+ assert(Length != 0 && Data && "Invalid vector");
+ assert(Length == V.Length && "Vector length mismatch.");
+ std::transform(Data.get(), Data.get() + Length, V.Data.get(), Data.get(),
+ std::plus<PBQPNum>());
+ return *this;
+ }
+
+ /// \brief Returns the index of the minimum value in this vector
+ unsigned minIndex() const {
+ assert(Length != 0 && Data && "Invalid vector");
+ return std::min_element(Data.get(), Data.get() + Length) - Data.get();
+ }
+
+private:
+ unsigned Length;
+ std::unique_ptr<PBQPNum []> Data;
+};
+
+/// \brief Return a hash_value for the given vector.
+inline hash_code hash_value(const Vector &V) {
+ unsigned *VBegin = reinterpret_cast<unsigned*>(V.Data.get());
+ unsigned *VEnd = reinterpret_cast<unsigned*>(V.Data.get() + V.Length);
+ return hash_combine(V.Length, hash_combine_range(VBegin, VEnd));
+}
+
+/// \brief Output a textual representation of the given vector on the given
+/// output stream.
+template <typename OStream>
+OStream& operator<<(OStream &OS, const Vector &V) {
+ assert((V.getLength() != 0) && "Zero-length vector badness.");
+
+ OS << "[ " << V[0];
+ for (unsigned i = 1; i < V.getLength(); ++i)
+ OS << ", " << V[i];
+ OS << " ]";
+
+ return OS;
+}
+
+/// \brief PBQP Matrix class
+class Matrix {
+private:
+ friend hash_code hash_value(const Matrix &);
+
+public:
+ /// \brief Construct a PBQP Matrix with the given dimensions.
+ Matrix(unsigned Rows, unsigned Cols) :
+ Rows(Rows), Cols(Cols), Data(llvm::make_unique<PBQPNum []>(Rows * Cols)) {
+ }
+
+ /// \brief Construct a PBQP Matrix with the given dimensions and initial
+ /// value.
+ Matrix(unsigned Rows, unsigned Cols, PBQPNum InitVal)
+ : Rows(Rows), Cols(Cols),
+ Data(llvm::make_unique<PBQPNum []>(Rows * Cols)) {
+ std::fill(Data.get(), Data.get() + (Rows * Cols), InitVal);
+ }
+
+ /// \brief Copy construct a PBQP matrix.
+ Matrix(const Matrix &M)
+ : Rows(M.Rows), Cols(M.Cols),
+ Data(llvm::make_unique<PBQPNum []>(Rows * Cols)) {
+ std::copy(M.Data.get(), M.Data.get() + (Rows * Cols), Data.get());
+ }
+
+ /// \brief Move construct a PBQP matrix.
+ Matrix(Matrix &&M)
+ : Rows(M.Rows), Cols(M.Cols), Data(std::move(M.Data)) {
+ M.Rows = M.Cols = 0;
+ }
+
+ /// \brief Comparison operator.
+ bool operator==(const Matrix &M) const {
+ assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
+ if (Rows != M.Rows || Cols != M.Cols)
+ return false;
+ return std::equal(Data.get(), Data.get() + (Rows * Cols), M.Data.get());
+ }
+
+ /// \brief Return the number of rows in this matrix.
+ unsigned getRows() const {
+ assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
+ return Rows;
+ }
+
+ /// \brief Return the number of cols in this matrix.
+ unsigned getCols() const {
+ assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
+ return Cols;
+ }
+
+ /// \brief Matrix element access.
+ PBQPNum* operator[](unsigned R) {
+ assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
+ assert(R < Rows && "Row out of bounds.");
+ return Data.get() + (R * Cols);
+ }
+
+ /// \brief Matrix element access.
+ const PBQPNum* operator[](unsigned R) const {
+ assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
+ assert(R < Rows && "Row out of bounds.");
+ return Data.get() + (R * Cols);
+ }
+
+ /// \brief Returns the given row as a vector.
+ Vector getRowAsVector(unsigned R) const {
+ assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
+ Vector V(Cols);
+ for (unsigned C = 0; C < Cols; ++C)
+ V[C] = (*this)[R][C];
+ return V;
+ }
+
+ /// \brief Returns the given column as a vector.
+ Vector getColAsVector(unsigned C) const {
+ assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
+ Vector V(Rows);
+ for (unsigned R = 0; R < Rows; ++R)
+ V[R] = (*this)[R][C];
+ return V;
+ }
+
+ /// \brief Matrix transpose.
+ Matrix transpose() const {
+ assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
+ Matrix M(Cols, Rows);
+ for (unsigned r = 0; r < Rows; ++r)
+ for (unsigned c = 0; c < Cols; ++c)
+ M[c][r] = (*this)[r][c];
+ return M;
+ }
+
+ /// \brief Add the given matrix to this one.
+ Matrix& operator+=(const Matrix &M) {
+ assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
+ assert(Rows == M.Rows && Cols == M.Cols &&
+ "Matrix dimensions mismatch.");
+ std::transform(Data.get(), Data.get() + (Rows * Cols), M.Data.get(),
+ Data.get(), std::plus<PBQPNum>());
+ return *this;
+ }
+
+ Matrix operator+(const Matrix &M) {
+ assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
+ Matrix Tmp(*this);
+ Tmp += M;
+ return Tmp;
+ }
+
+private:
+ unsigned Rows, Cols;
+ std::unique_ptr<PBQPNum []> Data;
+};
+
+/// \brief Return a hash_code for the given matrix.
+inline hash_code hash_value(const Matrix &M) {
+ unsigned *MBegin = reinterpret_cast<unsigned*>(M.Data.get());
+ unsigned *MEnd =
+ reinterpret_cast<unsigned*>(M.Data.get() + (M.Rows * M.Cols));
+ return hash_combine(M.Rows, M.Cols, hash_combine_range(MBegin, MEnd));
+}
+
+/// \brief Output a textual representation of the given matrix on the given
+/// output stream.
+template <typename OStream>
+OStream& operator<<(OStream &OS, const Matrix &M) {
+ assert((M.getRows() != 0) && "Zero-row matrix badness.");
+ for (unsigned i = 0; i < M.getRows(); ++i)
+ OS << M.getRowAsVector(i) << "\n";
+ return OS;
+}
+
+template <typename Metadata>
+class MDVector : public Vector {
+public:
+ MDVector(const Vector &v) : Vector(v), md(*this) {}
+ MDVector(Vector &&v) : Vector(std::move(v)), md(*this) { }
+
+ const Metadata& getMetadata() const { return md; }
+
+private:
+ Metadata md;
+};
+
+template <typename Metadata>
+inline hash_code hash_value(const MDVector<Metadata> &V) {
+ return hash_value(static_cast<const Vector&>(V));
+}
+
+template <typename Metadata>
+class MDMatrix : public Matrix {
+public:
+ MDMatrix(const Matrix &m) : Matrix(m), md(*this) {}
+ MDMatrix(Matrix &&m) : Matrix(std::move(m)), md(*this) { }
+
+ const Metadata& getMetadata() const { return md; }
+
+private:
+ Metadata md;
+};
+
+template <typename Metadata>
+inline hash_code hash_value(const MDMatrix<Metadata> &M) {
+ return hash_value(static_cast<const Matrix&>(M));
+}
+
+} // end namespace PBQP
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_PBQP_MATH_H
diff --git a/linux-x64/clang/include/llvm/CodeGen/PBQP/ReductionRules.h b/linux-x64/clang/include/llvm/CodeGen/PBQP/ReductionRules.h
new file mode 100644
index 0000000..8aeb519
--- /dev/null
+++ b/linux-x64/clang/include/llvm/CodeGen/PBQP/ReductionRules.h
@@ -0,0 +1,223 @@
+//===- ReductionRules.h - Reduction Rules -----------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Reduction Rules.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
+#define LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
+
+#include "Graph.h"
+#include "Math.h"
+#include "Solution.h"
+#include <cassert>
+#include <limits>
+
+namespace llvm {
+namespace PBQP {
+
+ /// \brief Reduce a node of degree one.
+ ///
+ /// Propagate costs from the given node, which must be of degree one, to its
+ /// neighbor. Notify the problem domain.
+ template <typename GraphT>
+ void applyR1(GraphT &G, typename GraphT::NodeId NId) {
+ using NodeId = typename GraphT::NodeId;
+ using EdgeId = typename GraphT::EdgeId;
+ using Vector = typename GraphT::Vector;
+ using Matrix = typename GraphT::Matrix;
+ using RawVector = typename GraphT::RawVector;
+
+ assert(G.getNodeDegree(NId) == 1 &&
+ "R1 applied to node with degree != 1.");
+
+ EdgeId EId = *G.adjEdgeIds(NId).begin();
+ NodeId MId = G.getEdgeOtherNodeId(EId, NId);
+
+ const Matrix &ECosts = G.getEdgeCosts(EId);
+ const Vector &XCosts = G.getNodeCosts(NId);
+ RawVector YCosts = G.getNodeCosts(MId);
+
+ // Duplicate a little to avoid transposing matrices.
+ if (NId == G.getEdgeNode1Id(EId)) {
+ for (unsigned j = 0; j < YCosts.getLength(); ++j) {
+ PBQPNum Min = ECosts[0][j] + XCosts[0];
+ for (unsigned i = 1; i < XCosts.getLength(); ++i) {
+ PBQPNum C = ECosts[i][j] + XCosts[i];
+ if (C < Min)
+ Min = C;
+ }
+ YCosts[j] += Min;
+ }
+ } else {
+ for (unsigned i = 0; i < YCosts.getLength(); ++i) {
+ PBQPNum Min = ECosts[i][0] + XCosts[0];
+ for (unsigned j = 1; j < XCosts.getLength(); ++j) {
+ PBQPNum C = ECosts[i][j] + XCosts[j];
+ if (C < Min)
+ Min = C;
+ }
+ YCosts[i] += Min;
+ }
+ }
+ G.setNodeCosts(MId, YCosts);
+ G.disconnectEdge(EId, MId);
+ }
+
+ template <typename GraphT>
+ void applyR2(GraphT &G, typename GraphT::NodeId NId) {
+ using NodeId = typename GraphT::NodeId;
+ using EdgeId = typename GraphT::EdgeId;
+ using Vector = typename GraphT::Vector;
+ using Matrix = typename GraphT::Matrix;
+ using RawMatrix = typename GraphT::RawMatrix;
+
+ assert(G.getNodeDegree(NId) == 2 &&
+ "R2 applied to node with degree != 2.");
+
+ const Vector &XCosts = G.getNodeCosts(NId);
+
+ typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin();
+ EdgeId YXEId = *AEItr,
+ ZXEId = *(++AEItr);
+
+ NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId),
+ ZNId = G.getEdgeOtherNodeId(ZXEId, NId);
+
+ bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId),
+ FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId);
+
+ const Matrix *YXECosts = FlipEdge1 ?
+ new Matrix(G.getEdgeCosts(YXEId).transpose()) :
+ &G.getEdgeCosts(YXEId);
+
+ const Matrix *ZXECosts = FlipEdge2 ?
+ new Matrix(G.getEdgeCosts(ZXEId).transpose()) :
+ &G.getEdgeCosts(ZXEId);
+
+ unsigned XLen = XCosts.getLength(),
+ YLen = YXECosts->getRows(),
+ ZLen = ZXECosts->getRows();
+
+ RawMatrix Delta(YLen, ZLen);
+
+ for (unsigned i = 0; i < YLen; ++i) {
+ for (unsigned j = 0; j < ZLen; ++j) {
+ PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0];
+ for (unsigned k = 1; k < XLen; ++k) {
+ PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k];
+ if (C < Min) {
+ Min = C;
+ }
+ }
+ Delta[i][j] = Min;
+ }
+ }
+
+ if (FlipEdge1)
+ delete YXECosts;
+
+ if (FlipEdge2)
+ delete ZXECosts;
+
+ EdgeId YZEId = G.findEdge(YNId, ZNId);
+
+ if (YZEId == G.invalidEdgeId()) {
+ YZEId = G.addEdge(YNId, ZNId, Delta);
+ } else {
+ const Matrix &YZECosts = G.getEdgeCosts(YZEId);
+ if (YNId == G.getEdgeNode1Id(YZEId)) {
+ G.updateEdgeCosts(YZEId, Delta + YZECosts);
+ } else {
+ G.updateEdgeCosts(YZEId, Delta.transpose() + YZECosts);
+ }
+ }
+
+ G.disconnectEdge(YXEId, YNId);
+ G.disconnectEdge(ZXEId, ZNId);
+
+ // TODO: Try to normalize newly added/modified edge.
+ }
+
+#ifndef NDEBUG
+ // Does this Cost vector have any register options ?
+ template <typename VectorT>
+ bool hasRegisterOptions(const VectorT &V) {
+ unsigned VL = V.getLength();
+
+ // An empty or spill only cost vector does not provide any register option.
+ if (VL <= 1)
+ return false;
+
+ // If there are registers in the cost vector, but all of them have infinite
+ // costs, then ... there is no available register.
+ for (unsigned i = 1; i < VL; ++i)
+ if (V[i] != std::numeric_limits<PBQP::PBQPNum>::infinity())
+ return true;
+
+ return false;
+ }
+#endif
+
+ // \brief Find a solution to a fully reduced graph by backpropagation.
+ //
+ // Given a graph and a reduction order, pop each node from the reduction
+ // order and greedily compute a minimum solution based on the node costs, and
+ // the dependent costs due to previously solved nodes.
+ //
+ // Note - This does not return the graph to its original (pre-reduction)
+ // state: the existing solvers destructively alter the node and edge
+ // costs. Given that, the backpropagate function doesn't attempt to
+ // replace the edges either, but leaves the graph in its reduced
+ // state.
+ template <typename GraphT, typename StackT>
+ Solution backpropagate(GraphT& G, StackT stack) {
+ using NodeId = GraphBase::NodeId;
+ using Matrix = typename GraphT::Matrix;
+ using RawVector = typename GraphT::RawVector;
+
+ Solution s;
+
+ while (!stack.empty()) {
+ NodeId NId = stack.back();
+ stack.pop_back();
+
+ RawVector v = G.getNodeCosts(NId);
+
+#ifndef NDEBUG
+ // Although a conservatively allocatable node can be allocated to a register,
+ // spilling it may provide a lower cost solution. Assert here that spilling
+ // is done by choice, not because there were no register available.
+ if (G.getNodeMetadata(NId).wasConservativelyAllocatable())
+ assert(hasRegisterOptions(v) && "A conservatively allocatable node "
+ "must have available register options");
+#endif
+
+ for (auto EId : G.adjEdgeIds(NId)) {
+ const Matrix& edgeCosts = G.getEdgeCosts(EId);
+ if (NId == G.getEdgeNode1Id(EId)) {
+ NodeId mId = G.getEdgeNode2Id(EId);
+ v += edgeCosts.getColAsVector(s.getSelection(mId));
+ } else {
+ NodeId mId = G.getEdgeNode1Id(EId);
+ v += edgeCosts.getRowAsVector(s.getSelection(mId));
+ }
+ }
+
+ s.setSelection(NId, v.minIndex());
+ }
+
+ return s;
+ }
+
+} // end namespace PBQP
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
diff --git a/linux-x64/clang/include/llvm/CodeGen/PBQP/Solution.h b/linux-x64/clang/include/llvm/CodeGen/PBQP/Solution.h
new file mode 100644
index 0000000..6a24727
--- /dev/null
+++ b/linux-x64/clang/include/llvm/CodeGen/PBQP/Solution.h
@@ -0,0 +1,56 @@
+//===- Solution.h - PBQP Solution -------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// PBQP Solution class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_SOLUTION_H
+#define LLVM_CODEGEN_PBQP_SOLUTION_H
+
+#include "llvm/CodeGen/PBQP/Graph.h"
+#include <cassert>
+#include <map>
+
+namespace llvm {
+namespace PBQP {
+
+ /// \brief Represents a solution to a PBQP problem.
+ ///
+ /// To get the selection for each node in the problem use the getSelection method.
+ class Solution {
+ private:
+ using SelectionsMap = std::map<GraphBase::NodeId, unsigned>;
+ SelectionsMap selections;
+
+ public:
+ /// \brief Initialise an empty solution.
+ Solution() = default;
+
+ /// \brief Set the selection for a given node.
+ /// @param nodeId Node id.
+ /// @param selection Selection for nodeId.
+ void setSelection(GraphBase::NodeId nodeId, unsigned selection) {
+ selections[nodeId] = selection;
+ }
+
+ /// \brief Get a node's selection.
+ /// @param nodeId Node id.
+ /// @return The selection for nodeId;
+ unsigned getSelection(GraphBase::NodeId nodeId) const {
+ SelectionsMap::const_iterator sItr = selections.find(nodeId);
+ assert(sItr != selections.end() && "No selection for node.");
+ return sItr->second;
+ }
+ };
+
+} // end namespace PBQP
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_PBQP_SOLUTION_H