Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame^] | 1 | //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | /// |
| 10 | /// \file |
| 11 | /// \brief |
| 12 | /// This file declares a class to represent arbitrary precision floating point |
| 13 | /// values and provide a variety of arithmetic operations on them. |
| 14 | /// |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #ifndef LLVM_ADT_APFLOAT_H |
| 18 | #define LLVM_ADT_APFLOAT_H |
| 19 | |
| 20 | #include "llvm/ADT/APInt.h" |
| 21 | #include "llvm/ADT/ArrayRef.h" |
| 22 | #include "llvm/Support/ErrorHandling.h" |
| 23 | #include <memory> |
| 24 | |
| 25 | #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \ |
| 26 | do { \ |
| 27 | if (usesLayout<IEEEFloat>(getSemantics())) \ |
| 28 | return U.IEEE.METHOD_CALL; \ |
| 29 | if (usesLayout<DoubleAPFloat>(getSemantics())) \ |
| 30 | return U.Double.METHOD_CALL; \ |
| 31 | llvm_unreachable("Unexpected semantics"); \ |
| 32 | } while (false) |
| 33 | |
| 34 | namespace llvm { |
| 35 | |
| 36 | struct fltSemantics; |
| 37 | class APSInt; |
| 38 | class StringRef; |
| 39 | class APFloat; |
| 40 | class raw_ostream; |
| 41 | |
| 42 | template <typename T> class SmallVectorImpl; |
| 43 | |
| 44 | /// Enum that represents what fraction of the LSB truncated bits of an fp number |
| 45 | /// represent. |
| 46 | /// |
| 47 | /// This essentially combines the roles of guard and sticky bits. |
| 48 | enum lostFraction { // Example of truncated bits: |
| 49 | lfExactlyZero, // 000000 |
| 50 | lfLessThanHalf, // 0xxxxx x's not all zero |
| 51 | lfExactlyHalf, // 100000 |
| 52 | lfMoreThanHalf // 1xxxxx x's not all zero |
| 53 | }; |
| 54 | |
| 55 | /// A self-contained host- and target-independent arbitrary-precision |
| 56 | /// floating-point software implementation. |
| 57 | /// |
| 58 | /// APFloat uses bignum integer arithmetic as provided by static functions in |
| 59 | /// the APInt class. The library will work with bignum integers whose parts are |
| 60 | /// any unsigned type at least 16 bits wide, but 64 bits is recommended. |
| 61 | /// |
| 62 | /// Written for clarity rather than speed, in particular with a view to use in |
| 63 | /// the front-end of a cross compiler so that target arithmetic can be correctly |
| 64 | /// performed on the host. Performance should nonetheless be reasonable, |
| 65 | /// particularly for its intended use. It may be useful as a base |
| 66 | /// implementation for a run-time library during development of a faster |
| 67 | /// target-specific one. |
| 68 | /// |
| 69 | /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all |
| 70 | /// implemented operations. Currently implemented operations are add, subtract, |
| 71 | /// multiply, divide, fused-multiply-add, conversion-to-float, |
| 72 | /// conversion-to-integer and conversion-from-integer. New rounding modes |
| 73 | /// (e.g. away from zero) can be added with three or four lines of code. |
| 74 | /// |
| 75 | /// Four formats are built-in: IEEE single precision, double precision, |
| 76 | /// quadruple precision, and x87 80-bit extended double (when operating with |
| 77 | /// full extended precision). Adding a new format that obeys IEEE semantics |
| 78 | /// only requires adding two lines of code: a declaration and definition of the |
| 79 | /// format. |
| 80 | /// |
| 81 | /// All operations return the status of that operation as an exception bit-mask, |
| 82 | /// so multiple operations can be done consecutively with their results or-ed |
| 83 | /// together. The returned status can be useful for compiler diagnostics; e.g., |
| 84 | /// inexact, underflow and overflow can be easily diagnosed on constant folding, |
| 85 | /// and compiler optimizers can determine what exceptions would be raised by |
| 86 | /// folding operations and optimize, or perhaps not optimize, accordingly. |
| 87 | /// |
| 88 | /// At present, underflow tininess is detected after rounding; it should be |
| 89 | /// straight forward to add support for the before-rounding case too. |
| 90 | /// |
| 91 | /// The library reads hexadecimal floating point numbers as per C99, and |
| 92 | /// correctly rounds if necessary according to the specified rounding mode. |
| 93 | /// Syntax is required to have been validated by the caller. It also converts |
| 94 | /// floating point numbers to hexadecimal text as per the C99 %a and %A |
| 95 | /// conversions. The output precision (or alternatively the natural minimal |
| 96 | /// precision) can be specified; if the requested precision is less than the |
| 97 | /// natural precision the output is correctly rounded for the specified rounding |
| 98 | /// mode. |
| 99 | /// |
| 100 | /// It also reads decimal floating point numbers and correctly rounds according |
| 101 | /// to the specified rounding mode. |
| 102 | /// |
| 103 | /// Conversion to decimal text is not currently implemented. |
| 104 | /// |
| 105 | /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit |
| 106 | /// signed exponent, and the significand as an array of integer parts. After |
| 107 | /// normalization of a number of precision P the exponent is within the range of |
| 108 | /// the format, and if the number is not denormal the P-th bit of the |
| 109 | /// significand is set as an explicit integer bit. For denormals the most |
| 110 | /// significant bit is shifted right so that the exponent is maintained at the |
| 111 | /// format's minimum, so that the smallest denormal has just the least |
| 112 | /// significant bit of the significand set. The sign of zeroes and infinities |
| 113 | /// is significant; the exponent and significand of such numbers is not stored, |
| 114 | /// but has a known implicit (deterministic) value: 0 for the significands, 0 |
| 115 | /// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and |
| 116 | /// significand are deterministic, although not really meaningful, and preserved |
| 117 | /// in non-conversion operations. The exponent is implicitly all 1 bits. |
| 118 | /// |
| 119 | /// APFloat does not provide any exception handling beyond default exception |
| 120 | /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause |
| 121 | /// by encoding Signaling NaNs with the first bit of its trailing significand as |
| 122 | /// 0. |
| 123 | /// |
| 124 | /// TODO |
| 125 | /// ==== |
| 126 | /// |
| 127 | /// Some features that may or may not be worth adding: |
| 128 | /// |
| 129 | /// Binary to decimal conversion (hard). |
| 130 | /// |
| 131 | /// Optional ability to detect underflow tininess before rounding. |
| 132 | /// |
| 133 | /// New formats: x87 in single and double precision mode (IEEE apart from |
| 134 | /// extended exponent range) (hard). |
| 135 | /// |
| 136 | /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward. |
| 137 | /// |
| 138 | |
| 139 | // This is the common type definitions shared by APFloat and its internal |
| 140 | // implementation classes. This struct should not define any non-static data |
| 141 | // members. |
| 142 | struct APFloatBase { |
| 143 | typedef APInt::WordType integerPart; |
| 144 | static const unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD; |
| 145 | |
| 146 | /// A signed type to represent a floating point numbers unbiased exponent. |
| 147 | typedef signed short ExponentType; |
| 148 | |
| 149 | /// \name Floating Point Semantics. |
| 150 | /// @{ |
| 151 | |
| 152 | static const fltSemantics &IEEEhalf() LLVM_READNONE; |
| 153 | static const fltSemantics &IEEEsingle() LLVM_READNONE; |
| 154 | static const fltSemantics &IEEEdouble() LLVM_READNONE; |
| 155 | static const fltSemantics &IEEEquad() LLVM_READNONE; |
| 156 | static const fltSemantics &PPCDoubleDouble() LLVM_READNONE; |
| 157 | static const fltSemantics &x87DoubleExtended() LLVM_READNONE; |
| 158 | |
| 159 | /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with |
| 160 | /// anything real. |
| 161 | static const fltSemantics &Bogus() LLVM_READNONE; |
| 162 | |
| 163 | /// @} |
| 164 | |
| 165 | /// IEEE-754R 5.11: Floating Point Comparison Relations. |
| 166 | enum cmpResult { |
| 167 | cmpLessThan, |
| 168 | cmpEqual, |
| 169 | cmpGreaterThan, |
| 170 | cmpUnordered |
| 171 | }; |
| 172 | |
| 173 | /// IEEE-754R 4.3: Rounding-direction attributes. |
| 174 | enum roundingMode { |
| 175 | rmNearestTiesToEven, |
| 176 | rmTowardPositive, |
| 177 | rmTowardNegative, |
| 178 | rmTowardZero, |
| 179 | rmNearestTiesToAway |
| 180 | }; |
| 181 | |
| 182 | /// IEEE-754R 7: Default exception handling. |
| 183 | /// |
| 184 | /// opUnderflow or opOverflow are always returned or-ed with opInexact. |
| 185 | enum opStatus { |
| 186 | opOK = 0x00, |
| 187 | opInvalidOp = 0x01, |
| 188 | opDivByZero = 0x02, |
| 189 | opOverflow = 0x04, |
| 190 | opUnderflow = 0x08, |
| 191 | opInexact = 0x10 |
| 192 | }; |
| 193 | |
| 194 | /// Category of internally-represented number. |
| 195 | enum fltCategory { |
| 196 | fcInfinity, |
| 197 | fcNaN, |
| 198 | fcNormal, |
| 199 | fcZero |
| 200 | }; |
| 201 | |
| 202 | /// Convenience enum used to construct an uninitialized APFloat. |
| 203 | enum uninitializedTag { |
| 204 | uninitialized |
| 205 | }; |
| 206 | |
| 207 | /// Enumeration of \c ilogb error results. |
| 208 | enum IlogbErrorKinds { |
| 209 | IEK_Zero = INT_MIN + 1, |
| 210 | IEK_NaN = INT_MIN, |
| 211 | IEK_Inf = INT_MAX |
| 212 | }; |
| 213 | |
| 214 | static unsigned int semanticsPrecision(const fltSemantics &); |
| 215 | static ExponentType semanticsMinExponent(const fltSemantics &); |
| 216 | static ExponentType semanticsMaxExponent(const fltSemantics &); |
| 217 | static unsigned int semanticsSizeInBits(const fltSemantics &); |
| 218 | |
| 219 | /// Returns the size of the floating point number (in bits) in the given |
| 220 | /// semantics. |
| 221 | static unsigned getSizeInBits(const fltSemantics &Sem); |
| 222 | }; |
| 223 | |
| 224 | namespace detail { |
| 225 | |
| 226 | class IEEEFloat final : public APFloatBase { |
| 227 | public: |
| 228 | /// \name Constructors |
| 229 | /// @{ |
| 230 | |
| 231 | IEEEFloat(const fltSemantics &); // Default construct to 0.0 |
| 232 | IEEEFloat(const fltSemantics &, integerPart); |
| 233 | IEEEFloat(const fltSemantics &, uninitializedTag); |
| 234 | IEEEFloat(const fltSemantics &, const APInt &); |
| 235 | explicit IEEEFloat(double d); |
| 236 | explicit IEEEFloat(float f); |
| 237 | IEEEFloat(const IEEEFloat &); |
| 238 | IEEEFloat(IEEEFloat &&); |
| 239 | ~IEEEFloat(); |
| 240 | |
| 241 | /// @} |
| 242 | |
| 243 | /// Returns whether this instance allocated memory. |
| 244 | bool needsCleanup() const { return partCount() > 1; } |
| 245 | |
| 246 | /// \name Convenience "constructors" |
| 247 | /// @{ |
| 248 | |
| 249 | /// @} |
| 250 | |
| 251 | /// \name Arithmetic |
| 252 | /// @{ |
| 253 | |
| 254 | opStatus add(const IEEEFloat &, roundingMode); |
| 255 | opStatus subtract(const IEEEFloat &, roundingMode); |
| 256 | opStatus multiply(const IEEEFloat &, roundingMode); |
| 257 | opStatus divide(const IEEEFloat &, roundingMode); |
| 258 | /// IEEE remainder. |
| 259 | opStatus remainder(const IEEEFloat &); |
| 260 | /// C fmod, or llvm frem. |
| 261 | opStatus mod(const IEEEFloat &); |
| 262 | opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode); |
| 263 | opStatus roundToIntegral(roundingMode); |
| 264 | /// IEEE-754R 5.3.1: nextUp/nextDown. |
| 265 | opStatus next(bool nextDown); |
| 266 | |
| 267 | /// @} |
| 268 | |
| 269 | /// \name Sign operations. |
| 270 | /// @{ |
| 271 | |
| 272 | void changeSign(); |
| 273 | |
| 274 | /// @} |
| 275 | |
| 276 | /// \name Conversions |
| 277 | /// @{ |
| 278 | |
| 279 | opStatus convert(const fltSemantics &, roundingMode, bool *); |
| 280 | opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool, |
| 281 | roundingMode, bool *) const; |
| 282 | opStatus convertFromAPInt(const APInt &, bool, roundingMode); |
| 283 | opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int, |
| 284 | bool, roundingMode); |
| 285 | opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int, |
| 286 | bool, roundingMode); |
| 287 | opStatus convertFromString(StringRef, roundingMode); |
| 288 | APInt bitcastToAPInt() const; |
| 289 | double convertToDouble() const; |
| 290 | float convertToFloat() const; |
| 291 | |
| 292 | /// @} |
| 293 | |
| 294 | /// The definition of equality is not straightforward for floating point, so |
| 295 | /// we won't use operator==. Use one of the following, or write whatever it |
| 296 | /// is you really mean. |
| 297 | bool operator==(const IEEEFloat &) const = delete; |
| 298 | |
| 299 | /// IEEE comparison with another floating point number (NaNs compare |
| 300 | /// unordered, 0==-0). |
| 301 | cmpResult compare(const IEEEFloat &) const; |
| 302 | |
| 303 | /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0). |
| 304 | bool bitwiseIsEqual(const IEEEFloat &) const; |
| 305 | |
| 306 | /// Write out a hexadecimal representation of the floating point value to DST, |
| 307 | /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d. |
| 308 | /// Return the number of characters written, excluding the terminating NUL. |
| 309 | unsigned int convertToHexString(char *dst, unsigned int hexDigits, |
| 310 | bool upperCase, roundingMode) const; |
| 311 | |
| 312 | /// \name IEEE-754R 5.7.2 General operations. |
| 313 | /// @{ |
| 314 | |
| 315 | /// IEEE-754R isSignMinus: Returns true if and only if the current value is |
| 316 | /// negative. |
| 317 | /// |
| 318 | /// This applies to zeros and NaNs as well. |
| 319 | bool isNegative() const { return sign; } |
| 320 | |
| 321 | /// IEEE-754R isNormal: Returns true if and only if the current value is normal. |
| 322 | /// |
| 323 | /// This implies that the current value of the float is not zero, subnormal, |
| 324 | /// infinite, or NaN following the definition of normality from IEEE-754R. |
| 325 | bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } |
| 326 | |
| 327 | /// Returns true if and only if the current value is zero, subnormal, or |
| 328 | /// normal. |
| 329 | /// |
| 330 | /// This means that the value is not infinite or NaN. |
| 331 | bool isFinite() const { return !isNaN() && !isInfinity(); } |
| 332 | |
| 333 | /// Returns true if and only if the float is plus or minus zero. |
| 334 | bool isZero() const { return category == fcZero; } |
| 335 | |
| 336 | /// IEEE-754R isSubnormal(): Returns true if and only if the float is a |
| 337 | /// denormal. |
| 338 | bool isDenormal() const; |
| 339 | |
| 340 | /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity. |
| 341 | bool isInfinity() const { return category == fcInfinity; } |
| 342 | |
| 343 | /// Returns true if and only if the float is a quiet or signaling NaN. |
| 344 | bool isNaN() const { return category == fcNaN; } |
| 345 | |
| 346 | /// Returns true if and only if the float is a signaling NaN. |
| 347 | bool isSignaling() const; |
| 348 | |
| 349 | /// @} |
| 350 | |
| 351 | /// \name Simple Queries |
| 352 | /// @{ |
| 353 | |
| 354 | fltCategory getCategory() const { return category; } |
| 355 | const fltSemantics &getSemantics() const { return *semantics; } |
| 356 | bool isNonZero() const { return category != fcZero; } |
| 357 | bool isFiniteNonZero() const { return isFinite() && !isZero(); } |
| 358 | bool isPosZero() const { return isZero() && !isNegative(); } |
| 359 | bool isNegZero() const { return isZero() && isNegative(); } |
| 360 | |
| 361 | /// Returns true if and only if the number has the smallest possible non-zero |
| 362 | /// magnitude in the current semantics. |
| 363 | bool isSmallest() const; |
| 364 | |
| 365 | /// Returns true if and only if the number has the largest possible finite |
| 366 | /// magnitude in the current semantics. |
| 367 | bool isLargest() const; |
| 368 | |
| 369 | /// Returns true if and only if the number is an exact integer. |
| 370 | bool isInteger() const; |
| 371 | |
| 372 | /// @} |
| 373 | |
| 374 | IEEEFloat &operator=(const IEEEFloat &); |
| 375 | IEEEFloat &operator=(IEEEFloat &&); |
| 376 | |
| 377 | /// Overload to compute a hash code for an APFloat value. |
| 378 | /// |
| 379 | /// Note that the use of hash codes for floating point values is in general |
| 380 | /// frought with peril. Equality is hard to define for these values. For |
| 381 | /// example, should negative and positive zero hash to different codes? Are |
| 382 | /// they equal or not? This hash value implementation specifically |
| 383 | /// emphasizes producing different codes for different inputs in order to |
| 384 | /// be used in canonicalization and memoization. As such, equality is |
| 385 | /// bitwiseIsEqual, and 0 != -0. |
| 386 | friend hash_code hash_value(const IEEEFloat &Arg); |
| 387 | |
| 388 | /// Converts this value into a decimal string. |
| 389 | /// |
| 390 | /// \param FormatPrecision The maximum number of digits of |
| 391 | /// precision to output. If there are fewer digits available, |
| 392 | /// zero padding will not be used unless the value is |
| 393 | /// integral and small enough to be expressed in |
| 394 | /// FormatPrecision digits. 0 means to use the natural |
| 395 | /// precision of the number. |
| 396 | /// \param FormatMaxPadding The maximum number of zeros to |
| 397 | /// consider inserting before falling back to scientific |
| 398 | /// notation. 0 means to always use scientific notation. |
| 399 | /// |
| 400 | /// \param TruncateZero Indicate whether to remove the trailing zero in |
| 401 | /// fraction part or not. Also setting this parameter to false forcing |
| 402 | /// producing of output more similar to default printf behavior. |
| 403 | /// Specifically the lower e is used as exponent delimiter and exponent |
| 404 | /// always contains no less than two digits. |
| 405 | /// |
| 406 | /// Number Precision MaxPadding Result |
| 407 | /// ------ --------- ---------- ------ |
| 408 | /// 1.01E+4 5 2 10100 |
| 409 | /// 1.01E+4 4 2 1.01E+4 |
| 410 | /// 1.01E+4 5 1 1.01E+4 |
| 411 | /// 1.01E-2 5 2 0.0101 |
| 412 | /// 1.01E-2 4 2 0.0101 |
| 413 | /// 1.01E-2 4 1 1.01E-2 |
| 414 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0, |
| 415 | unsigned FormatMaxPadding = 3, bool TruncateZero = true) const; |
| 416 | |
| 417 | /// If this value has an exact multiplicative inverse, store it in inv and |
| 418 | /// return true. |
| 419 | bool getExactInverse(APFloat *inv) const; |
| 420 | |
| 421 | /// Returns the exponent of the internal representation of the APFloat. |
| 422 | /// |
| 423 | /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)). |
| 424 | /// For special APFloat values, this returns special error codes: |
| 425 | /// |
| 426 | /// NaN -> \c IEK_NaN |
| 427 | /// 0 -> \c IEK_Zero |
| 428 | /// Inf -> \c IEK_Inf |
| 429 | /// |
| 430 | friend int ilogb(const IEEEFloat &Arg); |
| 431 | |
| 432 | /// Returns: X * 2^Exp for integral exponents. |
| 433 | friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode); |
| 434 | |
| 435 | friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode); |
| 436 | |
| 437 | /// \name Special value setters. |
| 438 | /// @{ |
| 439 | |
| 440 | void makeLargest(bool Neg = false); |
| 441 | void makeSmallest(bool Neg = false); |
| 442 | void makeNaN(bool SNaN = false, bool Neg = false, |
| 443 | const APInt *fill = nullptr); |
| 444 | void makeInf(bool Neg = false); |
| 445 | void makeZero(bool Neg = false); |
| 446 | void makeQuiet(); |
| 447 | |
| 448 | /// Returns the smallest (by magnitude) normalized finite number in the given |
| 449 | /// semantics. |
| 450 | /// |
| 451 | /// \param Negative - True iff the number should be negative |
| 452 | void makeSmallestNormalized(bool Negative = false); |
| 453 | |
| 454 | /// @} |
| 455 | |
| 456 | cmpResult compareAbsoluteValue(const IEEEFloat &) const; |
| 457 | |
| 458 | private: |
| 459 | /// \name Simple Queries |
| 460 | /// @{ |
| 461 | |
| 462 | integerPart *significandParts(); |
| 463 | const integerPart *significandParts() const; |
| 464 | unsigned int partCount() const; |
| 465 | |
| 466 | /// @} |
| 467 | |
| 468 | /// \name Significand operations. |
| 469 | /// @{ |
| 470 | |
| 471 | integerPart addSignificand(const IEEEFloat &); |
| 472 | integerPart subtractSignificand(const IEEEFloat &, integerPart); |
| 473 | lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract); |
| 474 | lostFraction multiplySignificand(const IEEEFloat &, const IEEEFloat *); |
| 475 | lostFraction divideSignificand(const IEEEFloat &); |
| 476 | void incrementSignificand(); |
| 477 | void initialize(const fltSemantics *); |
| 478 | void shiftSignificandLeft(unsigned int); |
| 479 | lostFraction shiftSignificandRight(unsigned int); |
| 480 | unsigned int significandLSB() const; |
| 481 | unsigned int significandMSB() const; |
| 482 | void zeroSignificand(); |
| 483 | /// Return true if the significand excluding the integral bit is all ones. |
| 484 | bool isSignificandAllOnes() const; |
| 485 | /// Return true if the significand excluding the integral bit is all zeros. |
| 486 | bool isSignificandAllZeros() const; |
| 487 | |
| 488 | /// @} |
| 489 | |
| 490 | /// \name Arithmetic on special values. |
| 491 | /// @{ |
| 492 | |
| 493 | opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract); |
| 494 | opStatus divideSpecials(const IEEEFloat &); |
| 495 | opStatus multiplySpecials(const IEEEFloat &); |
| 496 | opStatus modSpecials(const IEEEFloat &); |
| 497 | |
| 498 | /// @} |
| 499 | |
| 500 | /// \name Miscellany |
| 501 | /// @{ |
| 502 | |
| 503 | bool convertFromStringSpecials(StringRef str); |
| 504 | opStatus normalize(roundingMode, lostFraction); |
| 505 | opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract); |
| 506 | opStatus handleOverflow(roundingMode); |
| 507 | bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const; |
| 508 | opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>, |
| 509 | unsigned int, bool, roundingMode, |
| 510 | bool *) const; |
| 511 | opStatus convertFromUnsignedParts(const integerPart *, unsigned int, |
| 512 | roundingMode); |
| 513 | opStatus convertFromHexadecimalString(StringRef, roundingMode); |
| 514 | opStatus convertFromDecimalString(StringRef, roundingMode); |
| 515 | char *convertNormalToHexString(char *, unsigned int, bool, |
| 516 | roundingMode) const; |
| 517 | opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int, |
| 518 | roundingMode); |
| 519 | |
| 520 | /// @} |
| 521 | |
| 522 | APInt convertHalfAPFloatToAPInt() const; |
| 523 | APInt convertFloatAPFloatToAPInt() const; |
| 524 | APInt convertDoubleAPFloatToAPInt() const; |
| 525 | APInt convertQuadrupleAPFloatToAPInt() const; |
| 526 | APInt convertF80LongDoubleAPFloatToAPInt() const; |
| 527 | APInt convertPPCDoubleDoubleAPFloatToAPInt() const; |
| 528 | void initFromAPInt(const fltSemantics *Sem, const APInt &api); |
| 529 | void initFromHalfAPInt(const APInt &api); |
| 530 | void initFromFloatAPInt(const APInt &api); |
| 531 | void initFromDoubleAPInt(const APInt &api); |
| 532 | void initFromQuadrupleAPInt(const APInt &api); |
| 533 | void initFromF80LongDoubleAPInt(const APInt &api); |
| 534 | void initFromPPCDoubleDoubleAPInt(const APInt &api); |
| 535 | |
| 536 | void assign(const IEEEFloat &); |
| 537 | void copySignificand(const IEEEFloat &); |
| 538 | void freeSignificand(); |
| 539 | |
| 540 | /// Note: this must be the first data member. |
| 541 | /// The semantics that this value obeys. |
| 542 | const fltSemantics *semantics; |
| 543 | |
| 544 | /// A binary fraction with an explicit integer bit. |
| 545 | /// |
| 546 | /// The significand must be at least one bit wider than the target precision. |
| 547 | union Significand { |
| 548 | integerPart part; |
| 549 | integerPart *parts; |
| 550 | } significand; |
| 551 | |
| 552 | /// The signed unbiased exponent of the value. |
| 553 | ExponentType exponent; |
| 554 | |
| 555 | /// What kind of floating point number this is. |
| 556 | /// |
| 557 | /// Only 2 bits are required, but VisualStudio incorrectly sign extends it. |
| 558 | /// Using the extra bit keeps it from failing under VisualStudio. |
| 559 | fltCategory category : 3; |
| 560 | |
| 561 | /// Sign bit of the number. |
| 562 | unsigned int sign : 1; |
| 563 | }; |
| 564 | |
| 565 | hash_code hash_value(const IEEEFloat &Arg); |
| 566 | int ilogb(const IEEEFloat &Arg); |
| 567 | IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode); |
| 568 | IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM); |
| 569 | |
| 570 | // This mode implements more precise float in terms of two APFloats. |
| 571 | // The interface and layout is designed for arbitray underlying semantics, |
| 572 | // though currently only PPCDoubleDouble semantics are supported, whose |
| 573 | // corresponding underlying semantics are IEEEdouble. |
| 574 | class DoubleAPFloat final : public APFloatBase { |
| 575 | // Note: this must be the first data member. |
| 576 | const fltSemantics *Semantics; |
| 577 | std::unique_ptr<APFloat[]> Floats; |
| 578 | |
| 579 | opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c, |
| 580 | const APFloat &cc, roundingMode RM); |
| 581 | |
| 582 | opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS, |
| 583 | DoubleAPFloat &Out, roundingMode RM); |
| 584 | |
| 585 | public: |
| 586 | DoubleAPFloat(const fltSemantics &S); |
| 587 | DoubleAPFloat(const fltSemantics &S, uninitializedTag); |
| 588 | DoubleAPFloat(const fltSemantics &S, integerPart); |
| 589 | DoubleAPFloat(const fltSemantics &S, const APInt &I); |
| 590 | DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second); |
| 591 | DoubleAPFloat(const DoubleAPFloat &RHS); |
| 592 | DoubleAPFloat(DoubleAPFloat &&RHS); |
| 593 | |
| 594 | DoubleAPFloat &operator=(const DoubleAPFloat &RHS); |
| 595 | |
| 596 | DoubleAPFloat &operator=(DoubleAPFloat &&RHS) { |
| 597 | if (this != &RHS) { |
| 598 | this->~DoubleAPFloat(); |
| 599 | new (this) DoubleAPFloat(std::move(RHS)); |
| 600 | } |
| 601 | return *this; |
| 602 | } |
| 603 | |
| 604 | bool needsCleanup() const { return Floats != nullptr; } |
| 605 | |
| 606 | APFloat &getFirst() { return Floats[0]; } |
| 607 | const APFloat &getFirst() const { return Floats[0]; } |
| 608 | APFloat &getSecond() { return Floats[1]; } |
| 609 | const APFloat &getSecond() const { return Floats[1]; } |
| 610 | |
| 611 | opStatus add(const DoubleAPFloat &RHS, roundingMode RM); |
| 612 | opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM); |
| 613 | opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM); |
| 614 | opStatus divide(const DoubleAPFloat &RHS, roundingMode RM); |
| 615 | opStatus remainder(const DoubleAPFloat &RHS); |
| 616 | opStatus mod(const DoubleAPFloat &RHS); |
| 617 | opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand, |
| 618 | const DoubleAPFloat &Addend, roundingMode RM); |
| 619 | opStatus roundToIntegral(roundingMode RM); |
| 620 | void changeSign(); |
| 621 | cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const; |
| 622 | |
| 623 | fltCategory getCategory() const; |
| 624 | bool isNegative() const; |
| 625 | |
| 626 | void makeInf(bool Neg); |
| 627 | void makeZero(bool Neg); |
| 628 | void makeLargest(bool Neg); |
| 629 | void makeSmallest(bool Neg); |
| 630 | void makeSmallestNormalized(bool Neg); |
| 631 | void makeNaN(bool SNaN, bool Neg, const APInt *fill); |
| 632 | |
| 633 | cmpResult compare(const DoubleAPFloat &RHS) const; |
| 634 | bool bitwiseIsEqual(const DoubleAPFloat &RHS) const; |
| 635 | APInt bitcastToAPInt() const; |
| 636 | opStatus convertFromString(StringRef, roundingMode); |
| 637 | opStatus next(bool nextDown); |
| 638 | |
| 639 | opStatus convertToInteger(MutableArrayRef<integerPart> Input, |
| 640 | unsigned int Width, bool IsSigned, roundingMode RM, |
| 641 | bool *IsExact) const; |
| 642 | opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM); |
| 643 | opStatus convertFromSignExtendedInteger(const integerPart *Input, |
| 644 | unsigned int InputSize, bool IsSigned, |
| 645 | roundingMode RM); |
| 646 | opStatus convertFromZeroExtendedInteger(const integerPart *Input, |
| 647 | unsigned int InputSize, bool IsSigned, |
| 648 | roundingMode RM); |
| 649 | unsigned int convertToHexString(char *DST, unsigned int HexDigits, |
| 650 | bool UpperCase, roundingMode RM) const; |
| 651 | |
| 652 | bool isDenormal() const; |
| 653 | bool isSmallest() const; |
| 654 | bool isLargest() const; |
| 655 | bool isInteger() const; |
| 656 | |
| 657 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision, |
| 658 | unsigned FormatMaxPadding, bool TruncateZero = true) const; |
| 659 | |
| 660 | bool getExactInverse(APFloat *inv) const; |
| 661 | |
| 662 | friend int ilogb(const DoubleAPFloat &Arg); |
| 663 | friend DoubleAPFloat scalbn(DoubleAPFloat X, int Exp, roundingMode); |
| 664 | friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode); |
| 665 | friend hash_code hash_value(const DoubleAPFloat &Arg); |
| 666 | }; |
| 667 | |
| 668 | hash_code hash_value(const DoubleAPFloat &Arg); |
| 669 | |
| 670 | } // End detail namespace |
| 671 | |
| 672 | // This is a interface class that is currently forwarding functionalities from |
| 673 | // detail::IEEEFloat. |
| 674 | class APFloat : public APFloatBase { |
| 675 | typedef detail::IEEEFloat IEEEFloat; |
| 676 | typedef detail::DoubleAPFloat DoubleAPFloat; |
| 677 | |
| 678 | static_assert(std::is_standard_layout<IEEEFloat>::value, ""); |
| 679 | |
| 680 | union Storage { |
| 681 | const fltSemantics *semantics; |
| 682 | IEEEFloat IEEE; |
| 683 | DoubleAPFloat Double; |
| 684 | |
| 685 | explicit Storage(IEEEFloat F, const fltSemantics &S); |
| 686 | explicit Storage(DoubleAPFloat F, const fltSemantics &S) |
| 687 | : Double(std::move(F)) { |
| 688 | assert(&S == &PPCDoubleDouble()); |
| 689 | } |
| 690 | |
| 691 | template <typename... ArgTypes> |
| 692 | Storage(const fltSemantics &Semantics, ArgTypes &&... Args) { |
| 693 | if (usesLayout<IEEEFloat>(Semantics)) { |
| 694 | new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...); |
| 695 | return; |
| 696 | } |
| 697 | if (usesLayout<DoubleAPFloat>(Semantics)) { |
| 698 | new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...); |
| 699 | return; |
| 700 | } |
| 701 | llvm_unreachable("Unexpected semantics"); |
| 702 | } |
| 703 | |
| 704 | ~Storage() { |
| 705 | if (usesLayout<IEEEFloat>(*semantics)) { |
| 706 | IEEE.~IEEEFloat(); |
| 707 | return; |
| 708 | } |
| 709 | if (usesLayout<DoubleAPFloat>(*semantics)) { |
| 710 | Double.~DoubleAPFloat(); |
| 711 | return; |
| 712 | } |
| 713 | llvm_unreachable("Unexpected semantics"); |
| 714 | } |
| 715 | |
| 716 | Storage(const Storage &RHS) { |
| 717 | if (usesLayout<IEEEFloat>(*RHS.semantics)) { |
| 718 | new (this) IEEEFloat(RHS.IEEE); |
| 719 | return; |
| 720 | } |
| 721 | if (usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
| 722 | new (this) DoubleAPFloat(RHS.Double); |
| 723 | return; |
| 724 | } |
| 725 | llvm_unreachable("Unexpected semantics"); |
| 726 | } |
| 727 | |
| 728 | Storage(Storage &&RHS) { |
| 729 | if (usesLayout<IEEEFloat>(*RHS.semantics)) { |
| 730 | new (this) IEEEFloat(std::move(RHS.IEEE)); |
| 731 | return; |
| 732 | } |
| 733 | if (usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
| 734 | new (this) DoubleAPFloat(std::move(RHS.Double)); |
| 735 | return; |
| 736 | } |
| 737 | llvm_unreachable("Unexpected semantics"); |
| 738 | } |
| 739 | |
| 740 | Storage &operator=(const Storage &RHS) { |
| 741 | if (usesLayout<IEEEFloat>(*semantics) && |
| 742 | usesLayout<IEEEFloat>(*RHS.semantics)) { |
| 743 | IEEE = RHS.IEEE; |
| 744 | } else if (usesLayout<DoubleAPFloat>(*semantics) && |
| 745 | usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
| 746 | Double = RHS.Double; |
| 747 | } else if (this != &RHS) { |
| 748 | this->~Storage(); |
| 749 | new (this) Storage(RHS); |
| 750 | } |
| 751 | return *this; |
| 752 | } |
| 753 | |
| 754 | Storage &operator=(Storage &&RHS) { |
| 755 | if (usesLayout<IEEEFloat>(*semantics) && |
| 756 | usesLayout<IEEEFloat>(*RHS.semantics)) { |
| 757 | IEEE = std::move(RHS.IEEE); |
| 758 | } else if (usesLayout<DoubleAPFloat>(*semantics) && |
| 759 | usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
| 760 | Double = std::move(RHS.Double); |
| 761 | } else if (this != &RHS) { |
| 762 | this->~Storage(); |
| 763 | new (this) Storage(std::move(RHS)); |
| 764 | } |
| 765 | return *this; |
| 766 | } |
| 767 | } U; |
| 768 | |
| 769 | template <typename T> static bool usesLayout(const fltSemantics &Semantics) { |
| 770 | static_assert(std::is_same<T, IEEEFloat>::value || |
| 771 | std::is_same<T, DoubleAPFloat>::value, ""); |
| 772 | if (std::is_same<T, DoubleAPFloat>::value) { |
| 773 | return &Semantics == &PPCDoubleDouble(); |
| 774 | } |
| 775 | return &Semantics != &PPCDoubleDouble(); |
| 776 | } |
| 777 | |
| 778 | IEEEFloat &getIEEE() { |
| 779 | if (usesLayout<IEEEFloat>(*U.semantics)) |
| 780 | return U.IEEE; |
| 781 | if (usesLayout<DoubleAPFloat>(*U.semantics)) |
| 782 | return U.Double.getFirst().U.IEEE; |
| 783 | llvm_unreachable("Unexpected semantics"); |
| 784 | } |
| 785 | |
| 786 | const IEEEFloat &getIEEE() const { |
| 787 | if (usesLayout<IEEEFloat>(*U.semantics)) |
| 788 | return U.IEEE; |
| 789 | if (usesLayout<DoubleAPFloat>(*U.semantics)) |
| 790 | return U.Double.getFirst().U.IEEE; |
| 791 | llvm_unreachable("Unexpected semantics"); |
| 792 | } |
| 793 | |
| 794 | void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); } |
| 795 | |
| 796 | void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); } |
| 797 | |
| 798 | void makeNaN(bool SNaN, bool Neg, const APInt *fill) { |
| 799 | APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill)); |
| 800 | } |
| 801 | |
| 802 | void makeLargest(bool Neg) { |
| 803 | APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg)); |
| 804 | } |
| 805 | |
| 806 | void makeSmallest(bool Neg) { |
| 807 | APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg)); |
| 808 | } |
| 809 | |
| 810 | void makeSmallestNormalized(bool Neg) { |
| 811 | APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg)); |
| 812 | } |
| 813 | |
| 814 | // FIXME: This is due to clang 3.3 (or older version) always checks for the |
| 815 | // default constructor in an array aggregate initialization, even if no |
| 816 | // elements in the array is default initialized. |
| 817 | APFloat() : U(IEEEdouble()) { |
| 818 | llvm_unreachable("This is a workaround for old clang."); |
| 819 | } |
| 820 | |
| 821 | explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {} |
| 822 | explicit APFloat(DoubleAPFloat F, const fltSemantics &S) |
| 823 | : U(std::move(F), S) {} |
| 824 | |
| 825 | cmpResult compareAbsoluteValue(const APFloat &RHS) const { |
| 826 | assert(&getSemantics() == &RHS.getSemantics() && |
| 827 | "Should only compare APFloats with the same semantics"); |
| 828 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 829 | return U.IEEE.compareAbsoluteValue(RHS.U.IEEE); |
| 830 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 831 | return U.Double.compareAbsoluteValue(RHS.U.Double); |
| 832 | llvm_unreachable("Unexpected semantics"); |
| 833 | } |
| 834 | |
| 835 | public: |
| 836 | APFloat(const fltSemantics &Semantics) : U(Semantics) {} |
| 837 | APFloat(const fltSemantics &Semantics, StringRef S); |
| 838 | APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {} |
| 839 | // TODO: Remove this constructor. This isn't faster than the first one. |
| 840 | APFloat(const fltSemantics &Semantics, uninitializedTag) |
| 841 | : U(Semantics, uninitialized) {} |
| 842 | APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {} |
| 843 | explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {} |
| 844 | explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {} |
| 845 | APFloat(const APFloat &RHS) = default; |
| 846 | APFloat(APFloat &&RHS) = default; |
| 847 | |
| 848 | ~APFloat() = default; |
| 849 | |
| 850 | bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); } |
| 851 | |
| 852 | /// Factory for Positive and Negative Zero. |
| 853 | /// |
| 854 | /// \param Negative True iff the number should be negative. |
| 855 | static APFloat getZero(const fltSemantics &Sem, bool Negative = false) { |
| 856 | APFloat Val(Sem, uninitialized); |
| 857 | Val.makeZero(Negative); |
| 858 | return Val; |
| 859 | } |
| 860 | |
| 861 | /// Factory for Positive and Negative Infinity. |
| 862 | /// |
| 863 | /// \param Negative True iff the number should be negative. |
| 864 | static APFloat getInf(const fltSemantics &Sem, bool Negative = false) { |
| 865 | APFloat Val(Sem, uninitialized); |
| 866 | Val.makeInf(Negative); |
| 867 | return Val; |
| 868 | } |
| 869 | |
| 870 | /// Factory for NaN values. |
| 871 | /// |
| 872 | /// \param Negative - True iff the NaN generated should be negative. |
| 873 | /// \param type - The unspecified fill bits for creating the NaN, 0 by |
| 874 | /// default. The value is truncated as necessary. |
| 875 | static APFloat getNaN(const fltSemantics &Sem, bool Negative = false, |
| 876 | unsigned type = 0) { |
| 877 | if (type) { |
| 878 | APInt fill(64, type); |
| 879 | return getQNaN(Sem, Negative, &fill); |
| 880 | } else { |
| 881 | return getQNaN(Sem, Negative, nullptr); |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | /// Factory for QNaN values. |
| 886 | static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false, |
| 887 | const APInt *payload = nullptr) { |
| 888 | APFloat Val(Sem, uninitialized); |
| 889 | Val.makeNaN(false, Negative, payload); |
| 890 | return Val; |
| 891 | } |
| 892 | |
| 893 | /// Factory for SNaN values. |
| 894 | static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false, |
| 895 | const APInt *payload = nullptr) { |
| 896 | APFloat Val(Sem, uninitialized); |
| 897 | Val.makeNaN(true, Negative, payload); |
| 898 | return Val; |
| 899 | } |
| 900 | |
| 901 | /// Returns the largest finite number in the given semantics. |
| 902 | /// |
| 903 | /// \param Negative - True iff the number should be negative |
| 904 | static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) { |
| 905 | APFloat Val(Sem, uninitialized); |
| 906 | Val.makeLargest(Negative); |
| 907 | return Val; |
| 908 | } |
| 909 | |
| 910 | /// Returns the smallest (by magnitude) finite number in the given semantics. |
| 911 | /// Might be denormalized, which implies a relative loss of precision. |
| 912 | /// |
| 913 | /// \param Negative - True iff the number should be negative |
| 914 | static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) { |
| 915 | APFloat Val(Sem, uninitialized); |
| 916 | Val.makeSmallest(Negative); |
| 917 | return Val; |
| 918 | } |
| 919 | |
| 920 | /// Returns the smallest (by magnitude) normalized finite number in the given |
| 921 | /// semantics. |
| 922 | /// |
| 923 | /// \param Negative - True iff the number should be negative |
| 924 | static APFloat getSmallestNormalized(const fltSemantics &Sem, |
| 925 | bool Negative = false) { |
| 926 | APFloat Val(Sem, uninitialized); |
| 927 | Val.makeSmallestNormalized(Negative); |
| 928 | return Val; |
| 929 | } |
| 930 | |
| 931 | /// Returns a float which is bitcasted from an all one value int. |
| 932 | /// |
| 933 | /// \param BitWidth - Select float type |
| 934 | /// \param isIEEE - If 128 bit number, select between PPC and IEEE |
| 935 | static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false); |
| 936 | |
| 937 | /// Used to insert APFloat objects, or objects that contain APFloat objects, |
| 938 | /// into FoldingSets. |
| 939 | void Profile(FoldingSetNodeID &NID) const; |
| 940 | |
| 941 | opStatus add(const APFloat &RHS, roundingMode RM) { |
| 942 | assert(&getSemantics() == &RHS.getSemantics() && |
| 943 | "Should only call on two APFloats with the same semantics"); |
| 944 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 945 | return U.IEEE.add(RHS.U.IEEE, RM); |
| 946 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 947 | return U.Double.add(RHS.U.Double, RM); |
| 948 | llvm_unreachable("Unexpected semantics"); |
| 949 | } |
| 950 | opStatus subtract(const APFloat &RHS, roundingMode RM) { |
| 951 | assert(&getSemantics() == &RHS.getSemantics() && |
| 952 | "Should only call on two APFloats with the same semantics"); |
| 953 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 954 | return U.IEEE.subtract(RHS.U.IEEE, RM); |
| 955 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 956 | return U.Double.subtract(RHS.U.Double, RM); |
| 957 | llvm_unreachable("Unexpected semantics"); |
| 958 | } |
| 959 | opStatus multiply(const APFloat &RHS, roundingMode RM) { |
| 960 | assert(&getSemantics() == &RHS.getSemantics() && |
| 961 | "Should only call on two APFloats with the same semantics"); |
| 962 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 963 | return U.IEEE.multiply(RHS.U.IEEE, RM); |
| 964 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 965 | return U.Double.multiply(RHS.U.Double, RM); |
| 966 | llvm_unreachable("Unexpected semantics"); |
| 967 | } |
| 968 | opStatus divide(const APFloat &RHS, roundingMode RM) { |
| 969 | assert(&getSemantics() == &RHS.getSemantics() && |
| 970 | "Should only call on two APFloats with the same semantics"); |
| 971 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 972 | return U.IEEE.divide(RHS.U.IEEE, RM); |
| 973 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 974 | return U.Double.divide(RHS.U.Double, RM); |
| 975 | llvm_unreachable("Unexpected semantics"); |
| 976 | } |
| 977 | opStatus remainder(const APFloat &RHS) { |
| 978 | assert(&getSemantics() == &RHS.getSemantics() && |
| 979 | "Should only call on two APFloats with the same semantics"); |
| 980 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 981 | return U.IEEE.remainder(RHS.U.IEEE); |
| 982 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 983 | return U.Double.remainder(RHS.U.Double); |
| 984 | llvm_unreachable("Unexpected semantics"); |
| 985 | } |
| 986 | opStatus mod(const APFloat &RHS) { |
| 987 | assert(&getSemantics() == &RHS.getSemantics() && |
| 988 | "Should only call on two APFloats with the same semantics"); |
| 989 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 990 | return U.IEEE.mod(RHS.U.IEEE); |
| 991 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 992 | return U.Double.mod(RHS.U.Double); |
| 993 | llvm_unreachable("Unexpected semantics"); |
| 994 | } |
| 995 | opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, |
| 996 | roundingMode RM) { |
| 997 | assert(&getSemantics() == &Multiplicand.getSemantics() && |
| 998 | "Should only call on APFloats with the same semantics"); |
| 999 | assert(&getSemantics() == &Addend.getSemantics() && |
| 1000 | "Should only call on APFloats with the same semantics"); |
| 1001 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1002 | return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM); |
| 1003 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1004 | return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double, |
| 1005 | RM); |
| 1006 | llvm_unreachable("Unexpected semantics"); |
| 1007 | } |
| 1008 | opStatus roundToIntegral(roundingMode RM) { |
| 1009 | APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM)); |
| 1010 | } |
| 1011 | |
| 1012 | // TODO: bool parameters are not readable and a source of bugs. |
| 1013 | // Do something. |
| 1014 | opStatus next(bool nextDown) { |
| 1015 | APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown)); |
| 1016 | } |
| 1017 | |
| 1018 | /// Add two APFloats, rounding ties to the nearest even. |
| 1019 | /// No error checking. |
| 1020 | APFloat operator+(const APFloat &RHS) const { |
| 1021 | APFloat Result(*this); |
| 1022 | (void)Result.add(RHS, rmNearestTiesToEven); |
| 1023 | return Result; |
| 1024 | } |
| 1025 | |
| 1026 | /// Subtract two APFloats, rounding ties to the nearest even. |
| 1027 | /// No error checking. |
| 1028 | APFloat operator-(const APFloat &RHS) const { |
| 1029 | APFloat Result(*this); |
| 1030 | (void)Result.subtract(RHS, rmNearestTiesToEven); |
| 1031 | return Result; |
| 1032 | } |
| 1033 | |
| 1034 | /// Multiply two APFloats, rounding ties to the nearest even. |
| 1035 | /// No error checking. |
| 1036 | APFloat operator*(const APFloat &RHS) const { |
| 1037 | APFloat Result(*this); |
| 1038 | (void)Result.multiply(RHS, rmNearestTiesToEven); |
| 1039 | return Result; |
| 1040 | } |
| 1041 | |
| 1042 | /// Divide the first APFloat by the second, rounding ties to the nearest even. |
| 1043 | /// No error checking. |
| 1044 | APFloat operator/(const APFloat &RHS) const { |
| 1045 | APFloat Result(*this); |
| 1046 | (void)Result.divide(RHS, rmNearestTiesToEven); |
| 1047 | return Result; |
| 1048 | } |
| 1049 | |
| 1050 | void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); } |
| 1051 | void clearSign() { |
| 1052 | if (isNegative()) |
| 1053 | changeSign(); |
| 1054 | } |
| 1055 | void copySign(const APFloat &RHS) { |
| 1056 | if (isNegative() != RHS.isNegative()) |
| 1057 | changeSign(); |
| 1058 | } |
| 1059 | |
| 1060 | /// A static helper to produce a copy of an APFloat value with its sign |
| 1061 | /// copied from some other APFloat. |
| 1062 | static APFloat copySign(APFloat Value, const APFloat &Sign) { |
| 1063 | Value.copySign(Sign); |
| 1064 | return Value; |
| 1065 | } |
| 1066 | |
| 1067 | opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, |
| 1068 | bool *losesInfo); |
| 1069 | opStatus convertToInteger(MutableArrayRef<integerPart> Input, |
| 1070 | unsigned int Width, bool IsSigned, roundingMode RM, |
| 1071 | bool *IsExact) const { |
| 1072 | APFLOAT_DISPATCH_ON_SEMANTICS( |
| 1073 | convertToInteger(Input, Width, IsSigned, RM, IsExact)); |
| 1074 | } |
| 1075 | opStatus convertToInteger(APSInt &Result, roundingMode RM, |
| 1076 | bool *IsExact) const; |
| 1077 | opStatus convertFromAPInt(const APInt &Input, bool IsSigned, |
| 1078 | roundingMode RM) { |
| 1079 | APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM)); |
| 1080 | } |
| 1081 | opStatus convertFromSignExtendedInteger(const integerPart *Input, |
| 1082 | unsigned int InputSize, bool IsSigned, |
| 1083 | roundingMode RM) { |
| 1084 | APFLOAT_DISPATCH_ON_SEMANTICS( |
| 1085 | convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM)); |
| 1086 | } |
| 1087 | opStatus convertFromZeroExtendedInteger(const integerPart *Input, |
| 1088 | unsigned int InputSize, bool IsSigned, |
| 1089 | roundingMode RM) { |
| 1090 | APFLOAT_DISPATCH_ON_SEMANTICS( |
| 1091 | convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM)); |
| 1092 | } |
| 1093 | opStatus convertFromString(StringRef, roundingMode); |
| 1094 | APInt bitcastToAPInt() const { |
| 1095 | APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt()); |
| 1096 | } |
| 1097 | double convertToDouble() const { return getIEEE().convertToDouble(); } |
| 1098 | float convertToFloat() const { return getIEEE().convertToFloat(); } |
| 1099 | |
| 1100 | bool operator==(const APFloat &) const = delete; |
| 1101 | |
| 1102 | cmpResult compare(const APFloat &RHS) const { |
| 1103 | assert(&getSemantics() == &RHS.getSemantics() && |
| 1104 | "Should only compare APFloats with the same semantics"); |
| 1105 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1106 | return U.IEEE.compare(RHS.U.IEEE); |
| 1107 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1108 | return U.Double.compare(RHS.U.Double); |
| 1109 | llvm_unreachable("Unexpected semantics"); |
| 1110 | } |
| 1111 | |
| 1112 | bool bitwiseIsEqual(const APFloat &RHS) const { |
| 1113 | if (&getSemantics() != &RHS.getSemantics()) |
| 1114 | return false; |
| 1115 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1116 | return U.IEEE.bitwiseIsEqual(RHS.U.IEEE); |
| 1117 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1118 | return U.Double.bitwiseIsEqual(RHS.U.Double); |
| 1119 | llvm_unreachable("Unexpected semantics"); |
| 1120 | } |
| 1121 | |
| 1122 | /// We don't rely on operator== working on double values, as |
| 1123 | /// it returns true for things that are clearly not equal, like -0.0 and 0.0. |
| 1124 | /// As such, this method can be used to do an exact bit-for-bit comparison of |
| 1125 | /// two floating point values. |
| 1126 | /// |
| 1127 | /// We leave the version with the double argument here because it's just so |
| 1128 | /// convenient to write "2.0" and the like. Without this function we'd |
| 1129 | /// have to duplicate its logic everywhere it's called. |
| 1130 | bool isExactlyValue(double V) const { |
| 1131 | bool ignored; |
| 1132 | APFloat Tmp(V); |
| 1133 | Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored); |
| 1134 | return bitwiseIsEqual(Tmp); |
| 1135 | } |
| 1136 | |
| 1137 | unsigned int convertToHexString(char *DST, unsigned int HexDigits, |
| 1138 | bool UpperCase, roundingMode RM) const { |
| 1139 | APFLOAT_DISPATCH_ON_SEMANTICS( |
| 1140 | convertToHexString(DST, HexDigits, UpperCase, RM)); |
| 1141 | } |
| 1142 | |
| 1143 | bool isZero() const { return getCategory() == fcZero; } |
| 1144 | bool isInfinity() const { return getCategory() == fcInfinity; } |
| 1145 | bool isNaN() const { return getCategory() == fcNaN; } |
| 1146 | |
| 1147 | bool isNegative() const { return getIEEE().isNegative(); } |
| 1148 | bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); } |
| 1149 | bool isSignaling() const { return getIEEE().isSignaling(); } |
| 1150 | |
| 1151 | bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } |
| 1152 | bool isFinite() const { return !isNaN() && !isInfinity(); } |
| 1153 | |
| 1154 | fltCategory getCategory() const { return getIEEE().getCategory(); } |
| 1155 | const fltSemantics &getSemantics() const { return *U.semantics; } |
| 1156 | bool isNonZero() const { return !isZero(); } |
| 1157 | bool isFiniteNonZero() const { return isFinite() && !isZero(); } |
| 1158 | bool isPosZero() const { return isZero() && !isNegative(); } |
| 1159 | bool isNegZero() const { return isZero() && isNegative(); } |
| 1160 | bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); } |
| 1161 | bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); } |
| 1162 | bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); } |
| 1163 | |
| 1164 | APFloat &operator=(const APFloat &RHS) = default; |
| 1165 | APFloat &operator=(APFloat &&RHS) = default; |
| 1166 | |
| 1167 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0, |
| 1168 | unsigned FormatMaxPadding = 3, bool TruncateZero = true) const { |
| 1169 | APFLOAT_DISPATCH_ON_SEMANTICS( |
| 1170 | toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero)); |
| 1171 | } |
| 1172 | |
| 1173 | void print(raw_ostream &) const; |
| 1174 | void dump() const; |
| 1175 | |
| 1176 | bool getExactInverse(APFloat *inv) const { |
| 1177 | APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv)); |
| 1178 | } |
| 1179 | |
| 1180 | friend hash_code hash_value(const APFloat &Arg); |
| 1181 | friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); } |
| 1182 | friend APFloat scalbn(APFloat X, int Exp, roundingMode RM); |
| 1183 | friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM); |
| 1184 | friend IEEEFloat; |
| 1185 | friend DoubleAPFloat; |
| 1186 | }; |
| 1187 | |
| 1188 | /// See friend declarations above. |
| 1189 | /// |
| 1190 | /// These additional declarations are required in order to compile LLVM with IBM |
| 1191 | /// xlC compiler. |
| 1192 | hash_code hash_value(const APFloat &Arg); |
| 1193 | inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) { |
| 1194 | if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics())) |
| 1195 | return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics()); |
| 1196 | if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics())) |
| 1197 | return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics()); |
| 1198 | llvm_unreachable("Unexpected semantics"); |
| 1199 | } |
| 1200 | |
| 1201 | /// Equivalent of C standard library function. |
| 1202 | /// |
| 1203 | /// While the C standard says Exp is an unspecified value for infinity and nan, |
| 1204 | /// this returns INT_MAX for infinities, and INT_MIN for NaNs. |
| 1205 | inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) { |
| 1206 | if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics())) |
| 1207 | return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics()); |
| 1208 | if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics())) |
| 1209 | return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics()); |
| 1210 | llvm_unreachable("Unexpected semantics"); |
| 1211 | } |
| 1212 | /// Returns the absolute value of the argument. |
| 1213 | inline APFloat abs(APFloat X) { |
| 1214 | X.clearSign(); |
| 1215 | return X; |
| 1216 | } |
| 1217 | |
| 1218 | /// \brief Returns the negated value of the argument. |
| 1219 | inline APFloat neg(APFloat X) { |
| 1220 | X.changeSign(); |
| 1221 | return X; |
| 1222 | } |
| 1223 | |
| 1224 | /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if |
| 1225 | /// both are not NaN. If either argument is a NaN, returns the other argument. |
| 1226 | LLVM_READONLY |
| 1227 | inline APFloat minnum(const APFloat &A, const APFloat &B) { |
| 1228 | if (A.isNaN()) |
| 1229 | return B; |
| 1230 | if (B.isNaN()) |
| 1231 | return A; |
| 1232 | return (B.compare(A) == APFloat::cmpLessThan) ? B : A; |
| 1233 | } |
| 1234 | |
| 1235 | /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if |
| 1236 | /// both are not NaN. If either argument is a NaN, returns the other argument. |
| 1237 | LLVM_READONLY |
| 1238 | inline APFloat maxnum(const APFloat &A, const APFloat &B) { |
| 1239 | if (A.isNaN()) |
| 1240 | return B; |
| 1241 | if (B.isNaN()) |
| 1242 | return A; |
| 1243 | return (A.compare(B) == APFloat::cmpLessThan) ? B : A; |
| 1244 | } |
| 1245 | |
| 1246 | } // namespace llvm |
| 1247 | |
| 1248 | #undef APFLOAT_DISPATCH_ON_SEMANTICS |
| 1249 | #endif // LLVM_ADT_APFLOAT_H |