Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/ADT/APFloat.h b/linux-x64/clang/include/llvm/ADT/APFloat.h
new file mode 100644
index 0000000..6c0b6ae
--- /dev/null
+++ b/linux-x64/clang/include/llvm/ADT/APFloat.h
@@ -0,0 +1,1249 @@
+//===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief
+/// This file declares a class to represent arbitrary precision floating point
+/// values and provide a variety of arithmetic operations on them.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_APFLOAT_H
+#define LLVM_ADT_APFLOAT_H
+
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <memory>
+
+#define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
+  do {                                                                         \
+    if (usesLayout<IEEEFloat>(getSemantics()))                                 \
+      return U.IEEE.METHOD_CALL;                                               \
+    if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
+      return U.Double.METHOD_CALL;                                             \
+    llvm_unreachable("Unexpected semantics");                                  \
+  } while (false)
+
+namespace llvm {
+
+struct fltSemantics;
+class APSInt;
+class StringRef;
+class APFloat;
+class raw_ostream;
+
+template <typename T> class SmallVectorImpl;
+
+/// Enum that represents what fraction of the LSB truncated bits of an fp number
+/// represent.
+///
+/// This essentially combines the roles of guard and sticky bits.
+enum lostFraction { // Example of truncated bits:
+  lfExactlyZero,    // 000000
+  lfLessThanHalf,   // 0xxxxx  x's not all zero
+  lfExactlyHalf,    // 100000
+  lfMoreThanHalf    // 1xxxxx  x's not all zero
+};
+
+/// A self-contained host- and target-independent arbitrary-precision
+/// floating-point software implementation.
+///
+/// APFloat uses bignum integer arithmetic as provided by static functions in
+/// the APInt class.  The library will work with bignum integers whose parts are
+/// any unsigned type at least 16 bits wide, but 64 bits is recommended.
+///
+/// Written for clarity rather than speed, in particular with a view to use in
+/// the front-end of a cross compiler so that target arithmetic can be correctly
+/// performed on the host.  Performance should nonetheless be reasonable,
+/// particularly for its intended use.  It may be useful as a base
+/// implementation for a run-time library during development of a faster
+/// target-specific one.
+///
+/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
+/// implemented operations.  Currently implemented operations are add, subtract,
+/// multiply, divide, fused-multiply-add, conversion-to-float,
+/// conversion-to-integer and conversion-from-integer.  New rounding modes
+/// (e.g. away from zero) can be added with three or four lines of code.
+///
+/// Four formats are built-in: IEEE single precision, double precision,
+/// quadruple precision, and x87 80-bit extended double (when operating with
+/// full extended precision).  Adding a new format that obeys IEEE semantics
+/// only requires adding two lines of code: a declaration and definition of the
+/// format.
+///
+/// All operations return the status of that operation as an exception bit-mask,
+/// so multiple operations can be done consecutively with their results or-ed
+/// together.  The returned status can be useful for compiler diagnostics; e.g.,
+/// inexact, underflow and overflow can be easily diagnosed on constant folding,
+/// and compiler optimizers can determine what exceptions would be raised by
+/// folding operations and optimize, or perhaps not optimize, accordingly.
+///
+/// At present, underflow tininess is detected after rounding; it should be
+/// straight forward to add support for the before-rounding case too.
+///
+/// The library reads hexadecimal floating point numbers as per C99, and
+/// correctly rounds if necessary according to the specified rounding mode.
+/// Syntax is required to have been validated by the caller.  It also converts
+/// floating point numbers to hexadecimal text as per the C99 %a and %A
+/// conversions.  The output precision (or alternatively the natural minimal
+/// precision) can be specified; if the requested precision is less than the
+/// natural precision the output is correctly rounded for the specified rounding
+/// mode.
+///
+/// It also reads decimal floating point numbers and correctly rounds according
+/// to the specified rounding mode.
+///
+/// Conversion to decimal text is not currently implemented.
+///
+/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
+/// signed exponent, and the significand as an array of integer parts.  After
+/// normalization of a number of precision P the exponent is within the range of
+/// the format, and if the number is not denormal the P-th bit of the
+/// significand is set as an explicit integer bit.  For denormals the most
+/// significant bit is shifted right so that the exponent is maintained at the
+/// format's minimum, so that the smallest denormal has just the least
+/// significant bit of the significand set.  The sign of zeroes and infinities
+/// is significant; the exponent and significand of such numbers is not stored,
+/// but has a known implicit (deterministic) value: 0 for the significands, 0
+/// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
+/// significand are deterministic, although not really meaningful, and preserved
+/// in non-conversion operations.  The exponent is implicitly all 1 bits.
+///
+/// APFloat does not provide any exception handling beyond default exception
+/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
+/// by encoding Signaling NaNs with the first bit of its trailing significand as
+/// 0.
+///
+/// TODO
+/// ====
+///
+/// Some features that may or may not be worth adding:
+///
+/// Binary to decimal conversion (hard).
+///
+/// Optional ability to detect underflow tininess before rounding.
+///
+/// New formats: x87 in single and double precision mode (IEEE apart from
+/// extended exponent range) (hard).
+///
+/// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
+///
+
+// This is the common type definitions shared by APFloat and its internal
+// implementation classes. This struct should not define any non-static data
+// members.
+struct APFloatBase {
+  typedef APInt::WordType integerPart;
+  static const unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;
+
+  /// A signed type to represent a floating point numbers unbiased exponent.
+  typedef signed short ExponentType;
+
+  /// \name Floating Point Semantics.
+  /// @{
+
+  static const fltSemantics &IEEEhalf() LLVM_READNONE;
+  static const fltSemantics &IEEEsingle() LLVM_READNONE;
+  static const fltSemantics &IEEEdouble() LLVM_READNONE;
+  static const fltSemantics &IEEEquad() LLVM_READNONE;
+  static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
+  static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
+
+  /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
+  /// anything real.
+  static const fltSemantics &Bogus() LLVM_READNONE;
+
+  /// @}
+
+  /// IEEE-754R 5.11: Floating Point Comparison Relations.
+  enum cmpResult {
+    cmpLessThan,
+    cmpEqual,
+    cmpGreaterThan,
+    cmpUnordered
+  };
+
+  /// IEEE-754R 4.3: Rounding-direction attributes.
+  enum roundingMode {
+    rmNearestTiesToEven,
+    rmTowardPositive,
+    rmTowardNegative,
+    rmTowardZero,
+    rmNearestTiesToAway
+  };
+
+  /// IEEE-754R 7: Default exception handling.
+  ///
+  /// opUnderflow or opOverflow are always returned or-ed with opInexact.
+  enum opStatus {
+    opOK = 0x00,
+    opInvalidOp = 0x01,
+    opDivByZero = 0x02,
+    opOverflow = 0x04,
+    opUnderflow = 0x08,
+    opInexact = 0x10
+  };
+
+  /// Category of internally-represented number.
+  enum fltCategory {
+    fcInfinity,
+    fcNaN,
+    fcNormal,
+    fcZero
+  };
+
+  /// Convenience enum used to construct an uninitialized APFloat.
+  enum uninitializedTag {
+    uninitialized
+  };
+
+  /// Enumeration of \c ilogb error results.
+  enum IlogbErrorKinds {
+    IEK_Zero = INT_MIN + 1,
+    IEK_NaN = INT_MIN,
+    IEK_Inf = INT_MAX
+  };
+
+  static unsigned int semanticsPrecision(const fltSemantics &);
+  static ExponentType semanticsMinExponent(const fltSemantics &);
+  static ExponentType semanticsMaxExponent(const fltSemantics &);
+  static unsigned int semanticsSizeInBits(const fltSemantics &);
+
+  /// Returns the size of the floating point number (in bits) in the given
+  /// semantics.
+  static unsigned getSizeInBits(const fltSemantics &Sem);
+};
+
+namespace detail {
+
+class IEEEFloat final : public APFloatBase {
+public:
+  /// \name Constructors
+  /// @{
+
+  IEEEFloat(const fltSemantics &); // Default construct to 0.0
+  IEEEFloat(const fltSemantics &, integerPart);
+  IEEEFloat(const fltSemantics &, uninitializedTag);
+  IEEEFloat(const fltSemantics &, const APInt &);
+  explicit IEEEFloat(double d);
+  explicit IEEEFloat(float f);
+  IEEEFloat(const IEEEFloat &);
+  IEEEFloat(IEEEFloat &&);
+  ~IEEEFloat();
+
+  /// @}
+
+  /// Returns whether this instance allocated memory.
+  bool needsCleanup() const { return partCount() > 1; }
+
+  /// \name Convenience "constructors"
+  /// @{
+
+  /// @}
+
+  /// \name Arithmetic
+  /// @{
+
+  opStatus add(const IEEEFloat &, roundingMode);
+  opStatus subtract(const IEEEFloat &, roundingMode);
+  opStatus multiply(const IEEEFloat &, roundingMode);
+  opStatus divide(const IEEEFloat &, roundingMode);
+  /// IEEE remainder.
+  opStatus remainder(const IEEEFloat &);
+  /// C fmod, or llvm frem.
+  opStatus mod(const IEEEFloat &);
+  opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
+  opStatus roundToIntegral(roundingMode);
+  /// IEEE-754R 5.3.1: nextUp/nextDown.
+  opStatus next(bool nextDown);
+
+  /// @}
+
+  /// \name Sign operations.
+  /// @{
+
+  void changeSign();
+
+  /// @}
+
+  /// \name Conversions
+  /// @{
+
+  opStatus convert(const fltSemantics &, roundingMode, bool *);
+  opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
+                            roundingMode, bool *) const;
+  opStatus convertFromAPInt(const APInt &, bool, roundingMode);
+  opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
+                                          bool, roundingMode);
+  opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
+                                          bool, roundingMode);
+  opStatus convertFromString(StringRef, roundingMode);
+  APInt bitcastToAPInt() const;
+  double convertToDouble() const;
+  float convertToFloat() const;
+
+  /// @}
+
+  /// The definition of equality is not straightforward for floating point, so
+  /// we won't use operator==.  Use one of the following, or write whatever it
+  /// is you really mean.
+  bool operator==(const IEEEFloat &) const = delete;
+
+  /// IEEE comparison with another floating point number (NaNs compare
+  /// unordered, 0==-0).
+  cmpResult compare(const IEEEFloat &) const;
+
+  /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
+  bool bitwiseIsEqual(const IEEEFloat &) const;
+
+  /// Write out a hexadecimal representation of the floating point value to DST,
+  /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
+  /// Return the number of characters written, excluding the terminating NUL.
+  unsigned int convertToHexString(char *dst, unsigned int hexDigits,
+                                  bool upperCase, roundingMode) const;
+
+  /// \name IEEE-754R 5.7.2 General operations.
+  /// @{
+
+  /// IEEE-754R isSignMinus: Returns true if and only if the current value is
+  /// negative.
+  ///
+  /// This applies to zeros and NaNs as well.
+  bool isNegative() const { return sign; }
+
+  /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
+  ///
+  /// This implies that the current value of the float is not zero, subnormal,
+  /// infinite, or NaN following the definition of normality from IEEE-754R.
+  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
+
+  /// Returns true if and only if the current value is zero, subnormal, or
+  /// normal.
+  ///
+  /// This means that the value is not infinite or NaN.
+  bool isFinite() const { return !isNaN() && !isInfinity(); }
+
+  /// Returns true if and only if the float is plus or minus zero.
+  bool isZero() const { return category == fcZero; }
+
+  /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
+  /// denormal.
+  bool isDenormal() const;
+
+  /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
+  bool isInfinity() const { return category == fcInfinity; }
+
+  /// Returns true if and only if the float is a quiet or signaling NaN.
+  bool isNaN() const { return category == fcNaN; }
+
+  /// Returns true if and only if the float is a signaling NaN.
+  bool isSignaling() const;
+
+  /// @}
+
+  /// \name Simple Queries
+  /// @{
+
+  fltCategory getCategory() const { return category; }
+  const fltSemantics &getSemantics() const { return *semantics; }
+  bool isNonZero() const { return category != fcZero; }
+  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
+  bool isPosZero() const { return isZero() && !isNegative(); }
+  bool isNegZero() const { return isZero() && isNegative(); }
+
+  /// Returns true if and only if the number has the smallest possible non-zero
+  /// magnitude in the current semantics.
+  bool isSmallest() const;
+
+  /// Returns true if and only if the number has the largest possible finite
+  /// magnitude in the current semantics.
+  bool isLargest() const;
+
+  /// Returns true if and only if the number is an exact integer.
+  bool isInteger() const;
+
+  /// @}
+
+  IEEEFloat &operator=(const IEEEFloat &);
+  IEEEFloat &operator=(IEEEFloat &&);
+
+  /// Overload to compute a hash code for an APFloat value.
+  ///
+  /// Note that the use of hash codes for floating point values is in general
+  /// frought with peril. Equality is hard to define for these values. For
+  /// example, should negative and positive zero hash to different codes? Are
+  /// they equal or not? This hash value implementation specifically
+  /// emphasizes producing different codes for different inputs in order to
+  /// be used in canonicalization and memoization. As such, equality is
+  /// bitwiseIsEqual, and 0 != -0.
+  friend hash_code hash_value(const IEEEFloat &Arg);
+
+  /// Converts this value into a decimal string.
+  ///
+  /// \param FormatPrecision The maximum number of digits of
+  ///   precision to output.  If there are fewer digits available,
+  ///   zero padding will not be used unless the value is
+  ///   integral and small enough to be expressed in
+  ///   FormatPrecision digits.  0 means to use the natural
+  ///   precision of the number.
+  /// \param FormatMaxPadding The maximum number of zeros to
+  ///   consider inserting before falling back to scientific
+  ///   notation.  0 means to always use scientific notation.
+  ///
+  /// \param TruncateZero Indicate whether to remove the trailing zero in
+  ///   fraction part or not. Also setting this parameter to false forcing
+  ///   producing of output more similar to default printf behavior.
+  ///   Specifically the lower e is used as exponent delimiter and exponent
+  ///   always contains no less than two digits.
+  ///
+  /// Number       Precision    MaxPadding      Result
+  /// ------       ---------    ----------      ------
+  /// 1.01E+4              5             2       10100
+  /// 1.01E+4              4             2       1.01E+4
+  /// 1.01E+4              5             1       1.01E+4
+  /// 1.01E-2              5             2       0.0101
+  /// 1.01E-2              4             2       0.0101
+  /// 1.01E-2              4             1       1.01E-2
+  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
+                unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;
+
+  /// If this value has an exact multiplicative inverse, store it in inv and
+  /// return true.
+  bool getExactInverse(APFloat *inv) const;
+
+  /// Returns the exponent of the internal representation of the APFloat.
+  ///
+  /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
+  /// For special APFloat values, this returns special error codes:
+  ///
+  ///   NaN -> \c IEK_NaN
+  ///   0   -> \c IEK_Zero
+  ///   Inf -> \c IEK_Inf
+  ///
+  friend int ilogb(const IEEEFloat &Arg);
+
+  /// Returns: X * 2^Exp for integral exponents.
+  friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
+
+  friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
+
+  /// \name Special value setters.
+  /// @{
+
+  void makeLargest(bool Neg = false);
+  void makeSmallest(bool Neg = false);
+  void makeNaN(bool SNaN = false, bool Neg = false,
+               const APInt *fill = nullptr);
+  void makeInf(bool Neg = false);
+  void makeZero(bool Neg = false);
+  void makeQuiet();
+
+  /// Returns the smallest (by magnitude) normalized finite number in the given
+  /// semantics.
+  ///
+  /// \param Negative - True iff the number should be negative
+  void makeSmallestNormalized(bool Negative = false);
+
+  /// @}
+
+  cmpResult compareAbsoluteValue(const IEEEFloat &) const;
+
+private:
+  /// \name Simple Queries
+  /// @{
+
+  integerPart *significandParts();
+  const integerPart *significandParts() const;
+  unsigned int partCount() const;
+
+  /// @}
+
+  /// \name Significand operations.
+  /// @{
+
+  integerPart addSignificand(const IEEEFloat &);
+  integerPart subtractSignificand(const IEEEFloat &, integerPart);
+  lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
+  lostFraction multiplySignificand(const IEEEFloat &, const IEEEFloat *);
+  lostFraction divideSignificand(const IEEEFloat &);
+  void incrementSignificand();
+  void initialize(const fltSemantics *);
+  void shiftSignificandLeft(unsigned int);
+  lostFraction shiftSignificandRight(unsigned int);
+  unsigned int significandLSB() const;
+  unsigned int significandMSB() const;
+  void zeroSignificand();
+  /// Return true if the significand excluding the integral bit is all ones.
+  bool isSignificandAllOnes() const;
+  /// Return true if the significand excluding the integral bit is all zeros.
+  bool isSignificandAllZeros() const;
+
+  /// @}
+
+  /// \name Arithmetic on special values.
+  /// @{
+
+  opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
+  opStatus divideSpecials(const IEEEFloat &);
+  opStatus multiplySpecials(const IEEEFloat &);
+  opStatus modSpecials(const IEEEFloat &);
+
+  /// @}
+
+  /// \name Miscellany
+  /// @{
+
+  bool convertFromStringSpecials(StringRef str);
+  opStatus normalize(roundingMode, lostFraction);
+  opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
+  opStatus handleOverflow(roundingMode);
+  bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
+  opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
+                                        unsigned int, bool, roundingMode,
+                                        bool *) const;
+  opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
+                                    roundingMode);
+  opStatus convertFromHexadecimalString(StringRef, roundingMode);
+  opStatus convertFromDecimalString(StringRef, roundingMode);
+  char *convertNormalToHexString(char *, unsigned int, bool,
+                                 roundingMode) const;
+  opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
+                                        roundingMode);
+
+  /// @}
+
+  APInt convertHalfAPFloatToAPInt() const;
+  APInt convertFloatAPFloatToAPInt() const;
+  APInt convertDoubleAPFloatToAPInt() const;
+  APInt convertQuadrupleAPFloatToAPInt() const;
+  APInt convertF80LongDoubleAPFloatToAPInt() const;
+  APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
+  void initFromAPInt(const fltSemantics *Sem, const APInt &api);
+  void initFromHalfAPInt(const APInt &api);
+  void initFromFloatAPInt(const APInt &api);
+  void initFromDoubleAPInt(const APInt &api);
+  void initFromQuadrupleAPInt(const APInt &api);
+  void initFromF80LongDoubleAPInt(const APInt &api);
+  void initFromPPCDoubleDoubleAPInt(const APInt &api);
+
+  void assign(const IEEEFloat &);
+  void copySignificand(const IEEEFloat &);
+  void freeSignificand();
+
+  /// Note: this must be the first data member.
+  /// The semantics that this value obeys.
+  const fltSemantics *semantics;
+
+  /// A binary fraction with an explicit integer bit.
+  ///
+  /// The significand must be at least one bit wider than the target precision.
+  union Significand {
+    integerPart part;
+    integerPart *parts;
+  } significand;
+
+  /// The signed unbiased exponent of the value.
+  ExponentType exponent;
+
+  /// What kind of floating point number this is.
+  ///
+  /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
+  /// Using the extra bit keeps it from failing under VisualStudio.
+  fltCategory category : 3;
+
+  /// Sign bit of the number.
+  unsigned int sign : 1;
+};
+
+hash_code hash_value(const IEEEFloat &Arg);
+int ilogb(const IEEEFloat &Arg);
+IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
+IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);
+
+// This mode implements more precise float in terms of two APFloats.
+// The interface and layout is designed for arbitray underlying semantics,
+// though currently only PPCDoubleDouble semantics are supported, whose
+// corresponding underlying semantics are IEEEdouble.
+class DoubleAPFloat final : public APFloatBase {
+  // Note: this must be the first data member.
+  const fltSemantics *Semantics;
+  std::unique_ptr<APFloat[]> Floats;
+
+  opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
+                   const APFloat &cc, roundingMode RM);
+
+  opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
+                          DoubleAPFloat &Out, roundingMode RM);
+
+public:
+  DoubleAPFloat(const fltSemantics &S);
+  DoubleAPFloat(const fltSemantics &S, uninitializedTag);
+  DoubleAPFloat(const fltSemantics &S, integerPart);
+  DoubleAPFloat(const fltSemantics &S, const APInt &I);
+  DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
+  DoubleAPFloat(const DoubleAPFloat &RHS);
+  DoubleAPFloat(DoubleAPFloat &&RHS);
+
+  DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
+
+  DoubleAPFloat &operator=(DoubleAPFloat &&RHS) {
+    if (this != &RHS) {
+      this->~DoubleAPFloat();
+      new (this) DoubleAPFloat(std::move(RHS));
+    }
+    return *this;
+  }
+
+  bool needsCleanup() const { return Floats != nullptr; }
+
+  APFloat &getFirst() { return Floats[0]; }
+  const APFloat &getFirst() const { return Floats[0]; }
+  APFloat &getSecond() { return Floats[1]; }
+  const APFloat &getSecond() const { return Floats[1]; }
+
+  opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
+  opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
+  opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
+  opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
+  opStatus remainder(const DoubleAPFloat &RHS);
+  opStatus mod(const DoubleAPFloat &RHS);
+  opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
+                            const DoubleAPFloat &Addend, roundingMode RM);
+  opStatus roundToIntegral(roundingMode RM);
+  void changeSign();
+  cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
+
+  fltCategory getCategory() const;
+  bool isNegative() const;
+
+  void makeInf(bool Neg);
+  void makeZero(bool Neg);
+  void makeLargest(bool Neg);
+  void makeSmallest(bool Neg);
+  void makeSmallestNormalized(bool Neg);
+  void makeNaN(bool SNaN, bool Neg, const APInt *fill);
+
+  cmpResult compare(const DoubleAPFloat &RHS) const;
+  bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
+  APInt bitcastToAPInt() const;
+  opStatus convertFromString(StringRef, roundingMode);
+  opStatus next(bool nextDown);
+
+  opStatus convertToInteger(MutableArrayRef<integerPart> Input,
+                            unsigned int Width, bool IsSigned, roundingMode RM,
+                            bool *IsExact) const;
+  opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
+  opStatus convertFromSignExtendedInteger(const integerPart *Input,
+                                          unsigned int InputSize, bool IsSigned,
+                                          roundingMode RM);
+  opStatus convertFromZeroExtendedInteger(const integerPart *Input,
+                                          unsigned int InputSize, bool IsSigned,
+                                          roundingMode RM);
+  unsigned int convertToHexString(char *DST, unsigned int HexDigits,
+                                  bool UpperCase, roundingMode RM) const;
+
+  bool isDenormal() const;
+  bool isSmallest() const;
+  bool isLargest() const;
+  bool isInteger() const;
+
+  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
+                unsigned FormatMaxPadding, bool TruncateZero = true) const;
+
+  bool getExactInverse(APFloat *inv) const;
+
+  friend int ilogb(const DoubleAPFloat &Arg);
+  friend DoubleAPFloat scalbn(DoubleAPFloat X, int Exp, roundingMode);
+  friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
+  friend hash_code hash_value(const DoubleAPFloat &Arg);
+};
+
+hash_code hash_value(const DoubleAPFloat &Arg);
+
+} // End detail namespace
+
+// This is a interface class that is currently forwarding functionalities from
+// detail::IEEEFloat.
+class APFloat : public APFloatBase {
+  typedef detail::IEEEFloat IEEEFloat;
+  typedef detail::DoubleAPFloat DoubleAPFloat;
+
+  static_assert(std::is_standard_layout<IEEEFloat>::value, "");
+
+  union Storage {
+    const fltSemantics *semantics;
+    IEEEFloat IEEE;
+    DoubleAPFloat Double;
+
+    explicit Storage(IEEEFloat F, const fltSemantics &S);
+    explicit Storage(DoubleAPFloat F, const fltSemantics &S)
+        : Double(std::move(F)) {
+      assert(&S == &PPCDoubleDouble());
+    }
+
+    template <typename... ArgTypes>
+    Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
+      if (usesLayout<IEEEFloat>(Semantics)) {
+        new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
+        return;
+      }
+      if (usesLayout<DoubleAPFloat>(Semantics)) {
+        new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
+        return;
+      }
+      llvm_unreachable("Unexpected semantics");
+    }
+
+    ~Storage() {
+      if (usesLayout<IEEEFloat>(*semantics)) {
+        IEEE.~IEEEFloat();
+        return;
+      }
+      if (usesLayout<DoubleAPFloat>(*semantics)) {
+        Double.~DoubleAPFloat();
+        return;
+      }
+      llvm_unreachable("Unexpected semantics");
+    }
+
+    Storage(const Storage &RHS) {
+      if (usesLayout<IEEEFloat>(*RHS.semantics)) {
+        new (this) IEEEFloat(RHS.IEEE);
+        return;
+      }
+      if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
+        new (this) DoubleAPFloat(RHS.Double);
+        return;
+      }
+      llvm_unreachable("Unexpected semantics");
+    }
+
+    Storage(Storage &&RHS) {
+      if (usesLayout<IEEEFloat>(*RHS.semantics)) {
+        new (this) IEEEFloat(std::move(RHS.IEEE));
+        return;
+      }
+      if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
+        new (this) DoubleAPFloat(std::move(RHS.Double));
+        return;
+      }
+      llvm_unreachable("Unexpected semantics");
+    }
+
+    Storage &operator=(const Storage &RHS) {
+      if (usesLayout<IEEEFloat>(*semantics) &&
+          usesLayout<IEEEFloat>(*RHS.semantics)) {
+        IEEE = RHS.IEEE;
+      } else if (usesLayout<DoubleAPFloat>(*semantics) &&
+                 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
+        Double = RHS.Double;
+      } else if (this != &RHS) {
+        this->~Storage();
+        new (this) Storage(RHS);
+      }
+      return *this;
+    }
+
+    Storage &operator=(Storage &&RHS) {
+      if (usesLayout<IEEEFloat>(*semantics) &&
+          usesLayout<IEEEFloat>(*RHS.semantics)) {
+        IEEE = std::move(RHS.IEEE);
+      } else if (usesLayout<DoubleAPFloat>(*semantics) &&
+                 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
+        Double = std::move(RHS.Double);
+      } else if (this != &RHS) {
+        this->~Storage();
+        new (this) Storage(std::move(RHS));
+      }
+      return *this;
+    }
+  } U;
+
+  template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
+    static_assert(std::is_same<T, IEEEFloat>::value ||
+                  std::is_same<T, DoubleAPFloat>::value, "");
+    if (std::is_same<T, DoubleAPFloat>::value) {
+      return &Semantics == &PPCDoubleDouble();
+    }
+    return &Semantics != &PPCDoubleDouble();
+  }
+
+  IEEEFloat &getIEEE() {
+    if (usesLayout<IEEEFloat>(*U.semantics))
+      return U.IEEE;
+    if (usesLayout<DoubleAPFloat>(*U.semantics))
+      return U.Double.getFirst().U.IEEE;
+    llvm_unreachable("Unexpected semantics");
+  }
+
+  const IEEEFloat &getIEEE() const {
+    if (usesLayout<IEEEFloat>(*U.semantics))
+      return U.IEEE;
+    if (usesLayout<DoubleAPFloat>(*U.semantics))
+      return U.Double.getFirst().U.IEEE;
+    llvm_unreachable("Unexpected semantics");
+  }
+
+  void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
+
+  void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
+
+  void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
+    APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
+  }
+
+  void makeLargest(bool Neg) {
+    APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
+  }
+
+  void makeSmallest(bool Neg) {
+    APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
+  }
+
+  void makeSmallestNormalized(bool Neg) {
+    APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
+  }
+
+  // FIXME: This is due to clang 3.3 (or older version) always checks for the
+  // default constructor in an array aggregate initialization, even if no
+  // elements in the array is default initialized.
+  APFloat() : U(IEEEdouble()) {
+    llvm_unreachable("This is a workaround for old clang.");
+  }
+
+  explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
+  explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
+      : U(std::move(F), S) {}
+
+  cmpResult compareAbsoluteValue(const APFloat &RHS) const {
+    assert(&getSemantics() == &RHS.getSemantics() &&
+           "Should only compare APFloats with the same semantics");
+    if (usesLayout<IEEEFloat>(getSemantics()))
+      return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
+    if (usesLayout<DoubleAPFloat>(getSemantics()))
+      return U.Double.compareAbsoluteValue(RHS.U.Double);
+    llvm_unreachable("Unexpected semantics");
+  }
+
+public:
+  APFloat(const fltSemantics &Semantics) : U(Semantics) {}
+  APFloat(const fltSemantics &Semantics, StringRef S);
+  APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
+  // TODO: Remove this constructor. This isn't faster than the first one.
+  APFloat(const fltSemantics &Semantics, uninitializedTag)
+      : U(Semantics, uninitialized) {}
+  APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
+  explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
+  explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
+  APFloat(const APFloat &RHS) = default;
+  APFloat(APFloat &&RHS) = default;
+
+  ~APFloat() = default;
+
+  bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
+
+  /// Factory for Positive and Negative Zero.
+  ///
+  /// \param Negative True iff the number should be negative.
+  static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
+    APFloat Val(Sem, uninitialized);
+    Val.makeZero(Negative);
+    return Val;
+  }
+
+  /// Factory for Positive and Negative Infinity.
+  ///
+  /// \param Negative True iff the number should be negative.
+  static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
+    APFloat Val(Sem, uninitialized);
+    Val.makeInf(Negative);
+    return Val;
+  }
+
+  /// Factory for NaN values.
+  ///
+  /// \param Negative - True iff the NaN generated should be negative.
+  /// \param type - The unspecified fill bits for creating the NaN, 0 by
+  /// default.  The value is truncated as necessary.
+  static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
+                        unsigned type = 0) {
+    if (type) {
+      APInt fill(64, type);
+      return getQNaN(Sem, Negative, &fill);
+    } else {
+      return getQNaN(Sem, Negative, nullptr);
+    }
+  }
+
+  /// Factory for QNaN values.
+  static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
+                         const APInt *payload = nullptr) {
+    APFloat Val(Sem, uninitialized);
+    Val.makeNaN(false, Negative, payload);
+    return Val;
+  }
+
+  /// Factory for SNaN values.
+  static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
+                         const APInt *payload = nullptr) {
+    APFloat Val(Sem, uninitialized);
+    Val.makeNaN(true, Negative, payload);
+    return Val;
+  }
+
+  /// Returns the largest finite number in the given semantics.
+  ///
+  /// \param Negative - True iff the number should be negative
+  static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
+    APFloat Val(Sem, uninitialized);
+    Val.makeLargest(Negative);
+    return Val;
+  }
+
+  /// Returns the smallest (by magnitude) finite number in the given semantics.
+  /// Might be denormalized, which implies a relative loss of precision.
+  ///
+  /// \param Negative - True iff the number should be negative
+  static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
+    APFloat Val(Sem, uninitialized);
+    Val.makeSmallest(Negative);
+    return Val;
+  }
+
+  /// Returns the smallest (by magnitude) normalized finite number in the given
+  /// semantics.
+  ///
+  /// \param Negative - True iff the number should be negative
+  static APFloat getSmallestNormalized(const fltSemantics &Sem,
+                                       bool Negative = false) {
+    APFloat Val(Sem, uninitialized);
+    Val.makeSmallestNormalized(Negative);
+    return Val;
+  }
+
+  /// Returns a float which is bitcasted from an all one value int.
+  ///
+  /// \param BitWidth - Select float type
+  /// \param isIEEE   - If 128 bit number, select between PPC and IEEE
+  static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
+
+  /// Used to insert APFloat objects, or objects that contain APFloat objects,
+  /// into FoldingSets.
+  void Profile(FoldingSetNodeID &NID) const;
+
+  opStatus add(const APFloat &RHS, roundingMode RM) {
+    assert(&getSemantics() == &RHS.getSemantics() &&
+           "Should only call on two APFloats with the same semantics");
+    if (usesLayout<IEEEFloat>(getSemantics()))
+      return U.IEEE.add(RHS.U.IEEE, RM);
+    if (usesLayout<DoubleAPFloat>(getSemantics()))
+      return U.Double.add(RHS.U.Double, RM);
+    llvm_unreachable("Unexpected semantics");
+  }
+  opStatus subtract(const APFloat &RHS, roundingMode RM) {
+    assert(&getSemantics() == &RHS.getSemantics() &&
+           "Should only call on two APFloats with the same semantics");
+    if (usesLayout<IEEEFloat>(getSemantics()))
+      return U.IEEE.subtract(RHS.U.IEEE, RM);
+    if (usesLayout<DoubleAPFloat>(getSemantics()))
+      return U.Double.subtract(RHS.U.Double, RM);
+    llvm_unreachable("Unexpected semantics");
+  }
+  opStatus multiply(const APFloat &RHS, roundingMode RM) {
+    assert(&getSemantics() == &RHS.getSemantics() &&
+           "Should only call on two APFloats with the same semantics");
+    if (usesLayout<IEEEFloat>(getSemantics()))
+      return U.IEEE.multiply(RHS.U.IEEE, RM);
+    if (usesLayout<DoubleAPFloat>(getSemantics()))
+      return U.Double.multiply(RHS.U.Double, RM);
+    llvm_unreachable("Unexpected semantics");
+  }
+  opStatus divide(const APFloat &RHS, roundingMode RM) {
+    assert(&getSemantics() == &RHS.getSemantics() &&
+           "Should only call on two APFloats with the same semantics");
+    if (usesLayout<IEEEFloat>(getSemantics()))
+      return U.IEEE.divide(RHS.U.IEEE, RM);
+    if (usesLayout<DoubleAPFloat>(getSemantics()))
+      return U.Double.divide(RHS.U.Double, RM);
+    llvm_unreachable("Unexpected semantics");
+  }
+  opStatus remainder(const APFloat &RHS) {
+    assert(&getSemantics() == &RHS.getSemantics() &&
+           "Should only call on two APFloats with the same semantics");
+    if (usesLayout<IEEEFloat>(getSemantics()))
+      return U.IEEE.remainder(RHS.U.IEEE);
+    if (usesLayout<DoubleAPFloat>(getSemantics()))
+      return U.Double.remainder(RHS.U.Double);
+    llvm_unreachable("Unexpected semantics");
+  }
+  opStatus mod(const APFloat &RHS) {
+    assert(&getSemantics() == &RHS.getSemantics() &&
+           "Should only call on two APFloats with the same semantics");
+    if (usesLayout<IEEEFloat>(getSemantics()))
+      return U.IEEE.mod(RHS.U.IEEE);
+    if (usesLayout<DoubleAPFloat>(getSemantics()))
+      return U.Double.mod(RHS.U.Double);
+    llvm_unreachable("Unexpected semantics");
+  }
+  opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
+                            roundingMode RM) {
+    assert(&getSemantics() == &Multiplicand.getSemantics() &&
+           "Should only call on APFloats with the same semantics");
+    assert(&getSemantics() == &Addend.getSemantics() &&
+           "Should only call on APFloats with the same semantics");
+    if (usesLayout<IEEEFloat>(getSemantics()))
+      return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
+    if (usesLayout<DoubleAPFloat>(getSemantics()))
+      return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
+                                       RM);
+    llvm_unreachable("Unexpected semantics");
+  }
+  opStatus roundToIntegral(roundingMode RM) {
+    APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
+  }
+
+  // TODO: bool parameters are not readable and a source of bugs.
+  // Do something.
+  opStatus next(bool nextDown) {
+    APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
+  }
+
+  /// Add two APFloats, rounding ties to the nearest even.
+  /// No error checking.
+  APFloat operator+(const APFloat &RHS) const {
+    APFloat Result(*this);
+    (void)Result.add(RHS, rmNearestTiesToEven);
+    return Result;
+  }
+
+  /// Subtract two APFloats, rounding ties to the nearest even.
+  /// No error checking.
+  APFloat operator-(const APFloat &RHS) const {
+    APFloat Result(*this);
+    (void)Result.subtract(RHS, rmNearestTiesToEven);
+    return Result;
+  }
+
+  /// Multiply two APFloats, rounding ties to the nearest even.
+  /// No error checking.
+  APFloat operator*(const APFloat &RHS) const {
+    APFloat Result(*this);
+    (void)Result.multiply(RHS, rmNearestTiesToEven);
+    return Result;
+  }
+
+  /// Divide the first APFloat by the second, rounding ties to the nearest even.
+  /// No error checking.
+  APFloat operator/(const APFloat &RHS) const {
+    APFloat Result(*this);
+    (void)Result.divide(RHS, rmNearestTiesToEven);
+    return Result;
+  }
+
+  void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
+  void clearSign() {
+    if (isNegative())
+      changeSign();
+  }
+  void copySign(const APFloat &RHS) {
+    if (isNegative() != RHS.isNegative())
+      changeSign();
+  }
+
+  /// A static helper to produce a copy of an APFloat value with its sign
+  /// copied from some other APFloat.
+  static APFloat copySign(APFloat Value, const APFloat &Sign) {
+    Value.copySign(Sign);
+    return Value;
+  }
+
+  opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
+                   bool *losesInfo);
+  opStatus convertToInteger(MutableArrayRef<integerPart> Input,
+                            unsigned int Width, bool IsSigned, roundingMode RM,
+                            bool *IsExact) const {
+    APFLOAT_DISPATCH_ON_SEMANTICS(
+        convertToInteger(Input, Width, IsSigned, RM, IsExact));
+  }
+  opStatus convertToInteger(APSInt &Result, roundingMode RM,
+                            bool *IsExact) const;
+  opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
+                            roundingMode RM) {
+    APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
+  }
+  opStatus convertFromSignExtendedInteger(const integerPart *Input,
+                                          unsigned int InputSize, bool IsSigned,
+                                          roundingMode RM) {
+    APFLOAT_DISPATCH_ON_SEMANTICS(
+        convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
+  }
+  opStatus convertFromZeroExtendedInteger(const integerPart *Input,
+                                          unsigned int InputSize, bool IsSigned,
+                                          roundingMode RM) {
+    APFLOAT_DISPATCH_ON_SEMANTICS(
+        convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
+  }
+  opStatus convertFromString(StringRef, roundingMode);
+  APInt bitcastToAPInt() const {
+    APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
+  }
+  double convertToDouble() const { return getIEEE().convertToDouble(); }
+  float convertToFloat() const { return getIEEE().convertToFloat(); }
+
+  bool operator==(const APFloat &) const = delete;
+
+  cmpResult compare(const APFloat &RHS) const {
+    assert(&getSemantics() == &RHS.getSemantics() &&
+           "Should only compare APFloats with the same semantics");
+    if (usesLayout<IEEEFloat>(getSemantics()))
+      return U.IEEE.compare(RHS.U.IEEE);
+    if (usesLayout<DoubleAPFloat>(getSemantics()))
+      return U.Double.compare(RHS.U.Double);
+    llvm_unreachable("Unexpected semantics");
+  }
+
+  bool bitwiseIsEqual(const APFloat &RHS) const {
+    if (&getSemantics() != &RHS.getSemantics())
+      return false;
+    if (usesLayout<IEEEFloat>(getSemantics()))
+      return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
+    if (usesLayout<DoubleAPFloat>(getSemantics()))
+      return U.Double.bitwiseIsEqual(RHS.U.Double);
+    llvm_unreachable("Unexpected semantics");
+  }
+
+  /// We don't rely on operator== working on double values, as
+  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
+  /// As such, this method can be used to do an exact bit-for-bit comparison of
+  /// two floating point values.
+  ///
+  /// We leave the version with the double argument here because it's just so
+  /// convenient to write "2.0" and the like.  Without this function we'd
+  /// have to duplicate its logic everywhere it's called.
+  bool isExactlyValue(double V) const {
+    bool ignored;
+    APFloat Tmp(V);
+    Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
+    return bitwiseIsEqual(Tmp);
+  }
+
+  unsigned int convertToHexString(char *DST, unsigned int HexDigits,
+                                  bool UpperCase, roundingMode RM) const {
+    APFLOAT_DISPATCH_ON_SEMANTICS(
+        convertToHexString(DST, HexDigits, UpperCase, RM));
+  }
+
+  bool isZero() const { return getCategory() == fcZero; }
+  bool isInfinity() const { return getCategory() == fcInfinity; }
+  bool isNaN() const { return getCategory() == fcNaN; }
+
+  bool isNegative() const { return getIEEE().isNegative(); }
+  bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
+  bool isSignaling() const { return getIEEE().isSignaling(); }
+
+  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
+  bool isFinite() const { return !isNaN() && !isInfinity(); }
+
+  fltCategory getCategory() const { return getIEEE().getCategory(); }
+  const fltSemantics &getSemantics() const { return *U.semantics; }
+  bool isNonZero() const { return !isZero(); }
+  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
+  bool isPosZero() const { return isZero() && !isNegative(); }
+  bool isNegZero() const { return isZero() && isNegative(); }
+  bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
+  bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
+  bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
+
+  APFloat &operator=(const APFloat &RHS) = default;
+  APFloat &operator=(APFloat &&RHS) = default;
+
+  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
+                unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
+    APFLOAT_DISPATCH_ON_SEMANTICS(
+        toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
+  }
+
+  void print(raw_ostream &) const;
+  void dump() const;
+
+  bool getExactInverse(APFloat *inv) const {
+    APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
+  }
+
+  friend hash_code hash_value(const APFloat &Arg);
+  friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
+  friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
+  friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
+  friend IEEEFloat;
+  friend DoubleAPFloat;
+};
+
+/// See friend declarations above.
+///
+/// These additional declarations are required in order to compile LLVM with IBM
+/// xlC compiler.
+hash_code hash_value(const APFloat &Arg);
+inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
+  if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
+    return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
+  if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
+    return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
+  llvm_unreachable("Unexpected semantics");
+}
+
+/// Equivalent of C standard library function.
+///
+/// While the C standard says Exp is an unspecified value for infinity and nan,
+/// this returns INT_MAX for infinities, and INT_MIN for NaNs.
+inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
+  if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
+    return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
+  if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
+    return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
+  llvm_unreachable("Unexpected semantics");
+}
+/// Returns the absolute value of the argument.
+inline APFloat abs(APFloat X) {
+  X.clearSign();
+  return X;
+}
+
+/// \brief Returns the negated value of the argument.
+inline APFloat neg(APFloat X) {
+  X.changeSign();
+  return X;
+}
+
+/// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
+/// both are not NaN. If either argument is a NaN, returns the other argument.
+LLVM_READONLY
+inline APFloat minnum(const APFloat &A, const APFloat &B) {
+  if (A.isNaN())
+    return B;
+  if (B.isNaN())
+    return A;
+  return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
+}
+
+/// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
+/// both are not NaN. If either argument is a NaN, returns the other argument.
+LLVM_READONLY
+inline APFloat maxnum(const APFloat &A, const APFloat &B) {
+  if (A.isNaN())
+    return B;
+  if (B.isNaN())
+    return A;
+  return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
+}
+
+} // namespace llvm
+
+#undef APFLOAT_DISPATCH_ON_SEMANTICS
+#endif // LLVM_ADT_APFLOAT_H