blob: 02b2f1be648a726d929b4595ebe5673c95c7175b [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The file defines the MachineFrameInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
15#define LLVM_CODEGEN_MACHINEFRAMEINFO_H
16
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Support/DataTypes.h"
19#include <cassert>
20#include <vector>
21
22namespace llvm {
23class raw_ostream;
24class MachineFunction;
25class MachineBasicBlock;
26class BitVector;
27class AllocaInst;
28
29/// The CalleeSavedInfo class tracks the information need to locate where a
30/// callee saved register is in the current frame.
31class CalleeSavedInfo {
32 unsigned Reg;
33 int FrameIdx;
34 /// Flag indicating whether the register is actually restored in the epilog.
35 /// In most cases, if a register is saved, it is also restored. There are
36 /// some situations, though, when this is not the case. For example, the
37 /// LR register on ARM is usually saved, but on exit from the function its
38 /// saved value may be loaded directly into PC. Since liveness tracking of
39 /// physical registers treats callee-saved registers are live outside of
40 /// the function, LR would be treated as live-on-exit, even though in these
41 /// scenarios it is not. This flag is added to indicate that the saved
42 /// register described by this object is not restored in the epilog.
43 /// The long-term solution is to model the liveness of callee-saved registers
44 /// by implicit uses on the return instructions, however, the required
45 /// changes in the ARM backend would be quite extensive.
46 bool Restored;
47
48public:
49 explicit CalleeSavedInfo(unsigned R, int FI = 0)
50 : Reg(R), FrameIdx(FI), Restored(true) {}
51
52 // Accessors.
53 unsigned getReg() const { return Reg; }
54 int getFrameIdx() const { return FrameIdx; }
55 void setFrameIdx(int FI) { FrameIdx = FI; }
56 bool isRestored() const { return Restored; }
57 void setRestored(bool R) { Restored = R; }
58};
59
60/// The MachineFrameInfo class represents an abstract stack frame until
61/// prolog/epilog code is inserted. This class is key to allowing stack frame
62/// representation optimizations, such as frame pointer elimination. It also
63/// allows more mundane (but still important) optimizations, such as reordering
64/// of abstract objects on the stack frame.
65///
66/// To support this, the class assigns unique integer identifiers to stack
67/// objects requested clients. These identifiers are negative integers for
68/// fixed stack objects (such as arguments passed on the stack) or nonnegative
69/// for objects that may be reordered. Instructions which refer to stack
70/// objects use a special MO_FrameIndex operand to represent these frame
71/// indexes.
72///
73/// Because this class keeps track of all references to the stack frame, it
74/// knows when a variable sized object is allocated on the stack. This is the
75/// sole condition which prevents frame pointer elimination, which is an
76/// important optimization on register-poor architectures. Because original
77/// variable sized alloca's in the source program are the only source of
78/// variable sized stack objects, it is safe to decide whether there will be
79/// any variable sized objects before all stack objects are known (for
80/// example, register allocator spill code never needs variable sized
81/// objects).
82///
83/// When prolog/epilog code emission is performed, the final stack frame is
84/// built and the machine instructions are modified to refer to the actual
85/// stack offsets of the object, eliminating all MO_FrameIndex operands from
86/// the program.
87///
Andrew Scullcdfcccc2018-10-05 20:58:37 +010088/// Abstract Stack Frame Information
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010089class MachineFrameInfo {
Andrew Scullcdfcccc2018-10-05 20:58:37 +010090public:
91 /// Stack Smashing Protection (SSP) rules require that vulnerable stack
92 /// allocations are located close the stack protector.
93 enum SSPLayoutKind {
94 SSPLK_None, ///< Did not trigger a stack protector. No effect on data
95 ///< layout.
96 SSPLK_LargeArray, ///< Array or nested array >= SSP-buffer-size. Closest
97 ///< to the stack protector.
98 SSPLK_SmallArray, ///< Array or nested array < SSP-buffer-size. 2nd closest
99 ///< to the stack protector.
100 SSPLK_AddrOf ///< The address of this allocation is exposed and
101 ///< triggered protection. 3rd closest to the protector.
102 };
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100103
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100104private:
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100105 // Represent a single object allocated on the stack.
106 struct StackObject {
107 // The offset of this object from the stack pointer on entry to
108 // the function. This field has no meaning for a variable sized element.
109 int64_t SPOffset;
110
111 // The size of this object on the stack. 0 means a variable sized object,
112 // ~0ULL means a dead object.
113 uint64_t Size;
114
115 // The required alignment of this stack slot.
116 unsigned Alignment;
117
118 // If true, the value of the stack object is set before
119 // entering the function and is not modified inside the function. By
120 // default, fixed objects are immutable unless marked otherwise.
121 bool isImmutable;
122
123 // If true the stack object is used as spill slot. It
124 // cannot alias any other memory objects.
125 bool isSpillSlot;
126
127 /// If true, this stack slot is used to spill a value (could be deopt
128 /// and/or GC related) over a statepoint. We know that the address of the
129 /// slot can't alias any LLVM IR value. This is very similar to a Spill
130 /// Slot, but is created by statepoint lowering is SelectionDAG, not the
131 /// register allocator.
132 bool isStatepointSpillSlot = false;
133
134 /// Identifier for stack memory type analagous to address space. If this is
135 /// non-0, the meaning is target defined. Offsets cannot be directly
136 /// compared between objects with different stack IDs. The object may not
137 /// necessarily reside in the same contiguous memory block as other stack
138 /// objects. Objects with differing stack IDs should not be merged or
139 /// replaced substituted for each other.
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100140 //
141 /// It is assumed a target uses consecutive, increasing stack IDs starting
142 /// from 1.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100143 uint8_t StackID;
144
145 /// If this stack object is originated from an Alloca instruction
146 /// this value saves the original IR allocation. Can be NULL.
147 const AllocaInst *Alloca;
148
149 // If true, the object was mapped into the local frame
150 // block and doesn't need additional handling for allocation beyond that.
151 bool PreAllocated = false;
152
153 // If true, an LLVM IR value might point to this object.
154 // Normally, spill slots and fixed-offset objects don't alias IR-accessible
155 // objects, but there are exceptions (on PowerPC, for example, some byval
156 // arguments have ABI-prescribed offsets).
157 bool isAliased;
158
159 /// If true, the object has been zero-extended.
160 bool isZExt = false;
161
162 /// If true, the object has been zero-extended.
163 bool isSExt = false;
164
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100165 uint8_t SSPLayout;
166
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100167 StackObject(uint64_t Size, unsigned Alignment, int64_t SPOffset,
168 bool IsImmutable, bool IsSpillSlot, const AllocaInst *Alloca,
169 bool IsAliased, uint8_t StackID = 0)
170 : SPOffset(SPOffset), Size(Size), Alignment(Alignment),
171 isImmutable(IsImmutable), isSpillSlot(IsSpillSlot),
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100172 StackID(StackID), Alloca(Alloca), isAliased(IsAliased),
173 SSPLayout(SSPLK_None) {}
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100174 };
175
176 /// The alignment of the stack.
177 unsigned StackAlignment;
178
179 /// Can the stack be realigned. This can be false if the target does not
180 /// support stack realignment, or if the user asks us not to realign the
181 /// stack. In this situation, overaligned allocas are all treated as dynamic
182 /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
183 /// lowering. All non-alloca stack objects have their alignment clamped to the
184 /// base ABI stack alignment.
185 /// FIXME: There is room for improvement in this case, in terms of
186 /// grouping overaligned allocas into a "secondary stack frame" and
187 /// then only use a single alloca to allocate this frame and only a
188 /// single virtual register to access it. Currently, without such an
189 /// optimization, each such alloca gets its own dynamic realignment.
190 bool StackRealignable;
191
192 /// Whether the function has the \c alignstack attribute.
193 bool ForcedRealign;
194
195 /// The list of stack objects allocated.
196 std::vector<StackObject> Objects;
197
198 /// This contains the number of fixed objects contained on
199 /// the stack. Because fixed objects are stored at a negative index in the
200 /// Objects list, this is also the index to the 0th object in the list.
201 unsigned NumFixedObjects = 0;
202
203 /// This boolean keeps track of whether any variable
204 /// sized objects have been allocated yet.
205 bool HasVarSizedObjects = false;
206
207 /// This boolean keeps track of whether there is a call
208 /// to builtin \@llvm.frameaddress.
209 bool FrameAddressTaken = false;
210
211 /// This boolean keeps track of whether there is a call
212 /// to builtin \@llvm.returnaddress.
213 bool ReturnAddressTaken = false;
214
215 /// This boolean keeps track of whether there is a call
216 /// to builtin \@llvm.experimental.stackmap.
217 bool HasStackMap = false;
218
219 /// This boolean keeps track of whether there is a call
220 /// to builtin \@llvm.experimental.patchpoint.
221 bool HasPatchPoint = false;
222
223 /// The prolog/epilog code inserter calculates the final stack
224 /// offsets for all of the fixed size objects, updating the Objects list
225 /// above. It then updates StackSize to contain the number of bytes that need
226 /// to be allocated on entry to the function.
227 uint64_t StackSize = 0;
228
229 /// The amount that a frame offset needs to be adjusted to
230 /// have the actual offset from the stack/frame pointer. The exact usage of
231 /// this is target-dependent, but it is typically used to adjust between
232 /// SP-relative and FP-relative offsets. E.G., if objects are accessed via
233 /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
234 /// to the distance between the initial SP and the value in FP. For many
235 /// targets, this value is only used when generating debug info (via
236 /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
237 /// corresponding adjustments are performed directly.
238 int OffsetAdjustment = 0;
239
240 /// The prolog/epilog code inserter may process objects that require greater
241 /// alignment than the default alignment the target provides.
242 /// To handle this, MaxAlignment is set to the maximum alignment
243 /// needed by the objects on the current frame. If this is greater than the
244 /// native alignment maintained by the compiler, dynamic alignment code will
245 /// be needed.
246 ///
247 unsigned MaxAlignment = 0;
248
249 /// Set to true if this function adjusts the stack -- e.g.,
250 /// when calling another function. This is only valid during and after
251 /// prolog/epilog code insertion.
252 bool AdjustsStack = false;
253
254 /// Set to true if this function has any function calls.
255 bool HasCalls = false;
256
257 /// The frame index for the stack protector.
258 int StackProtectorIdx = -1;
259
260 /// The frame index for the function context. Used for SjLj exceptions.
261 int FunctionContextIdx = -1;
262
263 /// This contains the size of the largest call frame if the target uses frame
264 /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
265 /// class). This information is important for frame pointer elimination.
266 /// It is only valid during and after prolog/epilog code insertion.
267 unsigned MaxCallFrameSize = ~0u;
268
Andrew Scull0372a572018-11-16 15:47:06 +0000269 /// The number of bytes of callee saved registers that the target wants to
270 /// report for the current function in the CodeView S_FRAMEPROC record.
271 unsigned CVBytesOfCalleeSavedRegisters = 0;
272
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100273 /// The prolog/epilog code inserter fills in this vector with each
274 /// callee saved register saved in the frame. Beyond its use by the prolog/
275 /// epilog code inserter, this data used for debug info and exception
276 /// handling.
277 std::vector<CalleeSavedInfo> CSInfo;
278
279 /// Has CSInfo been set yet?
280 bool CSIValid = false;
281
282 /// References to frame indices which are mapped
283 /// into the local frame allocation block. <FrameIdx, LocalOffset>
284 SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
285
286 /// Size of the pre-allocated local frame block.
287 int64_t LocalFrameSize = 0;
288
289 /// Required alignment of the local object blob, which is the strictest
290 /// alignment of any object in it.
291 unsigned LocalFrameMaxAlign = 0;
292
293 /// Whether the local object blob needs to be allocated together. If not,
294 /// PEI should ignore the isPreAllocated flags on the stack objects and
295 /// just allocate them normally.
296 bool UseLocalStackAllocationBlock = false;
297
298 /// True if the function dynamically adjusts the stack pointer through some
299 /// opaque mechanism like inline assembly or Win32 EH.
300 bool HasOpaqueSPAdjustment = false;
301
302 /// True if the function contains operations which will lower down to
303 /// instructions which manipulate the stack pointer.
304 bool HasCopyImplyingStackAdjustment = false;
305
306 /// True if the function contains a call to the llvm.vastart intrinsic.
307 bool HasVAStart = false;
308
309 /// True if this is a varargs function that contains a musttail call.
310 bool HasMustTailInVarArgFunc = false;
311
312 /// True if this function contains a tail call. If so immutable objects like
313 /// function arguments are no longer so. A tail call *can* override fixed
314 /// stack objects like arguments so we can't treat them as immutable.
315 bool HasTailCall = false;
316
317 /// Not null, if shrink-wrapping found a better place for the prologue.
318 MachineBasicBlock *Save = nullptr;
319 /// Not null, if shrink-wrapping found a better place for the epilogue.
320 MachineBasicBlock *Restore = nullptr;
321
322public:
323 explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable,
324 bool ForcedRealign)
325 : StackAlignment(StackAlignment), StackRealignable(StackRealignable),
326 ForcedRealign(ForcedRealign) {}
327
328 /// Return true if there are any stack objects in this function.
329 bool hasStackObjects() const { return !Objects.empty(); }
330
331 /// This method may be called any time after instruction
332 /// selection is complete to determine if the stack frame for this function
333 /// contains any variable sized objects.
334 bool hasVarSizedObjects() const { return HasVarSizedObjects; }
335
336 /// Return the index for the stack protector object.
337 int getStackProtectorIndex() const { return StackProtectorIdx; }
338 void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
339 bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
340
341 /// Return the index for the function context object.
342 /// This object is used for SjLj exceptions.
343 int getFunctionContextIndex() const { return FunctionContextIdx; }
344 void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
345
346 /// This method may be called any time after instruction
347 /// selection is complete to determine if there is a call to
348 /// \@llvm.frameaddress in this function.
349 bool isFrameAddressTaken() const { return FrameAddressTaken; }
350 void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
351
352 /// This method may be called any time after
353 /// instruction selection is complete to determine if there is a call to
354 /// \@llvm.returnaddress in this function.
355 bool isReturnAddressTaken() const { return ReturnAddressTaken; }
356 void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
357
358 /// This method may be called any time after instruction
359 /// selection is complete to determine if there is a call to builtin
360 /// \@llvm.experimental.stackmap.
361 bool hasStackMap() const { return HasStackMap; }
362 void setHasStackMap(bool s = true) { HasStackMap = s; }
363
364 /// This method may be called any time after instruction
365 /// selection is complete to determine if there is a call to builtin
366 /// \@llvm.experimental.patchpoint.
367 bool hasPatchPoint() const { return HasPatchPoint; }
368 void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
369
370 /// Return the minimum frame object index.
371 int getObjectIndexBegin() const { return -NumFixedObjects; }
372
373 /// Return one past the maximum frame object index.
374 int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
375
376 /// Return the number of fixed objects.
377 unsigned getNumFixedObjects() const { return NumFixedObjects; }
378
379 /// Return the number of objects.
380 unsigned getNumObjects() const { return Objects.size(); }
381
382 /// Map a frame index into the local object block
383 void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
384 LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
385 Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
386 }
387
388 /// Get the local offset mapping for a for an object.
389 std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
390 assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
391 "Invalid local object reference!");
392 return LocalFrameObjects[i];
393 }
394
395 /// Return the number of objects allocated into the local object block.
396 int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
397
398 /// Set the size of the local object blob.
399 void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
400
401 /// Get the size of the local object blob.
402 int64_t getLocalFrameSize() const { return LocalFrameSize; }
403
404 /// Required alignment of the local object blob,
405 /// which is the strictest alignment of any object in it.
406 void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
407
408 /// Return the required alignment of the local object blob.
409 unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
410
411 /// Get whether the local allocation blob should be allocated together or
412 /// let PEI allocate the locals in it directly.
413 bool getUseLocalStackAllocationBlock() const {
414 return UseLocalStackAllocationBlock;
415 }
416
417 /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
418 /// should be allocated together or let PEI allocate the locals in it
419 /// directly.
420 void setUseLocalStackAllocationBlock(bool v) {
421 UseLocalStackAllocationBlock = v;
422 }
423
424 /// Return true if the object was pre-allocated into the local block.
425 bool isObjectPreAllocated(int ObjectIdx) const {
426 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
427 "Invalid Object Idx!");
428 return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
429 }
430
431 /// Return the size of the specified object.
432 int64_t getObjectSize(int ObjectIdx) const {
433 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
434 "Invalid Object Idx!");
435 return Objects[ObjectIdx+NumFixedObjects].Size;
436 }
437
438 /// Change the size of the specified stack object.
439 void setObjectSize(int ObjectIdx, int64_t Size) {
440 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
441 "Invalid Object Idx!");
442 Objects[ObjectIdx+NumFixedObjects].Size = Size;
443 }
444
445 /// Return the alignment of the specified stack object.
446 unsigned getObjectAlignment(int ObjectIdx) const {
447 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
448 "Invalid Object Idx!");
449 return Objects[ObjectIdx+NumFixedObjects].Alignment;
450 }
451
452 /// setObjectAlignment - Change the alignment of the specified stack object.
453 void setObjectAlignment(int ObjectIdx, unsigned Align) {
454 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
455 "Invalid Object Idx!");
456 Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
457 ensureMaxAlignment(Align);
458 }
459
460 /// Return the underlying Alloca of the specified
461 /// stack object if it exists. Returns 0 if none exists.
462 const AllocaInst* getObjectAllocation(int ObjectIdx) const {
463 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
464 "Invalid Object Idx!");
465 return Objects[ObjectIdx+NumFixedObjects].Alloca;
466 }
467
468 /// Return the assigned stack offset of the specified object
469 /// from the incoming stack pointer.
470 int64_t getObjectOffset(int ObjectIdx) const {
471 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
472 "Invalid Object Idx!");
473 assert(!isDeadObjectIndex(ObjectIdx) &&
474 "Getting frame offset for a dead object?");
475 return Objects[ObjectIdx+NumFixedObjects].SPOffset;
476 }
477
478 bool isObjectZExt(int ObjectIdx) const {
479 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
480 "Invalid Object Idx!");
481 return Objects[ObjectIdx+NumFixedObjects].isZExt;
482 }
483
484 void setObjectZExt(int ObjectIdx, bool IsZExt) {
485 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
486 "Invalid Object Idx!");
487 Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
488 }
489
490 bool isObjectSExt(int ObjectIdx) const {
491 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
492 "Invalid Object Idx!");
493 return Objects[ObjectIdx+NumFixedObjects].isSExt;
494 }
495
496 void setObjectSExt(int ObjectIdx, bool IsSExt) {
497 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
498 "Invalid Object Idx!");
499 Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
500 }
501
502 /// Set the stack frame offset of the specified object. The
503 /// offset is relative to the stack pointer on entry to the function.
504 void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
505 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
506 "Invalid Object Idx!");
507 assert(!isDeadObjectIndex(ObjectIdx) &&
508 "Setting frame offset for a dead object?");
509 Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
510 }
511
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100512 SSPLayoutKind getObjectSSPLayout(int ObjectIdx) const {
513 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
514 "Invalid Object Idx!");
515 return (SSPLayoutKind)Objects[ObjectIdx+NumFixedObjects].SSPLayout;
516 }
517
518 void setObjectSSPLayout(int ObjectIdx, SSPLayoutKind Kind) {
519 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
520 "Invalid Object Idx!");
521 assert(!isDeadObjectIndex(ObjectIdx) &&
522 "Setting SSP layout for a dead object?");
523 Objects[ObjectIdx+NumFixedObjects].SSPLayout = Kind;
524 }
525
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100526 /// Return the number of bytes that must be allocated to hold
527 /// all of the fixed size frame objects. This is only valid after
528 /// Prolog/Epilog code insertion has finalized the stack frame layout.
529 uint64_t getStackSize() const { return StackSize; }
530
531 /// Set the size of the stack.
532 void setStackSize(uint64_t Size) { StackSize = Size; }
533
534 /// Estimate and return the size of the stack frame.
535 unsigned estimateStackSize(const MachineFunction &MF) const;
536
537 /// Return the correction for frame offsets.
538 int getOffsetAdjustment() const { return OffsetAdjustment; }
539
540 /// Set the correction for frame offsets.
541 void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
542
543 /// Return the alignment in bytes that this function must be aligned to,
544 /// which is greater than the default stack alignment provided by the target.
545 unsigned getMaxAlignment() const { return MaxAlignment; }
546
547 /// Make sure the function is at least Align bytes aligned.
548 void ensureMaxAlignment(unsigned Align);
549
550 /// Return true if this function adjusts the stack -- e.g.,
551 /// when calling another function. This is only valid during and after
552 /// prolog/epilog code insertion.
553 bool adjustsStack() const { return AdjustsStack; }
554 void setAdjustsStack(bool V) { AdjustsStack = V; }
555
556 /// Return true if the current function has any function calls.
557 bool hasCalls() const { return HasCalls; }
558 void setHasCalls(bool V) { HasCalls = V; }
559
560 /// Returns true if the function contains opaque dynamic stack adjustments.
561 bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
562 void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
563
564 /// Returns true if the function contains operations which will lower down to
565 /// instructions which manipulate the stack pointer.
566 bool hasCopyImplyingStackAdjustment() const {
567 return HasCopyImplyingStackAdjustment;
568 }
569 void setHasCopyImplyingStackAdjustment(bool B) {
570 HasCopyImplyingStackAdjustment = B;
571 }
572
573 /// Returns true if the function calls the llvm.va_start intrinsic.
574 bool hasVAStart() const { return HasVAStart; }
575 void setHasVAStart(bool B) { HasVAStart = B; }
576
577 /// Returns true if the function is variadic and contains a musttail call.
578 bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
579 void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
580
581 /// Returns true if the function contains a tail call.
582 bool hasTailCall() const { return HasTailCall; }
583 void setHasTailCall() { HasTailCall = true; }
584
585 /// Computes the maximum size of a callframe and the AdjustsStack property.
586 /// This only works for targets defining
587 /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(),
588 /// and getFrameSize().
589 /// This is usually computed by the prologue epilogue inserter but some
590 /// targets may call this to compute it earlier.
591 void computeMaxCallFrameSize(const MachineFunction &MF);
592
593 /// Return the maximum size of a call frame that must be
594 /// allocated for an outgoing function call. This is only available if
595 /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
596 /// then only during or after prolog/epilog code insertion.
597 ///
598 unsigned getMaxCallFrameSize() const {
599 // TODO: Enable this assert when targets are fixed.
600 //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet");
601 if (!isMaxCallFrameSizeComputed())
602 return 0;
603 return MaxCallFrameSize;
604 }
605 bool isMaxCallFrameSizeComputed() const {
606 return MaxCallFrameSize != ~0u;
607 }
608 void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
609
Andrew Scull0372a572018-11-16 15:47:06 +0000610 /// Returns how many bytes of callee-saved registers the target pushed in the
611 /// prologue. Only used for debug info.
612 unsigned getCVBytesOfCalleeSavedRegisters() const {
613 return CVBytesOfCalleeSavedRegisters;
614 }
615 void setCVBytesOfCalleeSavedRegisters(unsigned S) {
616 CVBytesOfCalleeSavedRegisters = S;
617 }
618
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100619 /// Create a new object at a fixed location on the stack.
620 /// All fixed objects should be created before other objects are created for
621 /// efficiency. By default, fixed objects are not pointed to by LLVM IR
622 /// values. This returns an index with a negative value.
623 int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable,
624 bool isAliased = false);
625
626 /// Create a spill slot at a fixed location on the stack.
627 /// Returns an index with a negative value.
628 int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset,
629 bool IsImmutable = false);
630
631 /// Returns true if the specified index corresponds to a fixed stack object.
632 bool isFixedObjectIndex(int ObjectIdx) const {
633 return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
634 }
635
636 /// Returns true if the specified index corresponds
637 /// to an object that might be pointed to by an LLVM IR value.
638 bool isAliasedObjectIndex(int ObjectIdx) const {
639 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
640 "Invalid Object Idx!");
641 return Objects[ObjectIdx+NumFixedObjects].isAliased;
642 }
643
644 /// Returns true if the specified index corresponds to an immutable object.
645 bool isImmutableObjectIndex(int ObjectIdx) const {
646 // Tail calling functions can clobber their function arguments.
647 if (HasTailCall)
648 return false;
649 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
650 "Invalid Object Idx!");
651 return Objects[ObjectIdx+NumFixedObjects].isImmutable;
652 }
653
654 /// Marks the immutability of an object.
655 void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable) {
656 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
657 "Invalid Object Idx!");
658 Objects[ObjectIdx+NumFixedObjects].isImmutable = IsImmutable;
659 }
660
661 /// Returns true if the specified index corresponds to a spill slot.
662 bool isSpillSlotObjectIndex(int ObjectIdx) const {
663 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
664 "Invalid Object Idx!");
665 return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
666 }
667
668 bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
669 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
670 "Invalid Object Idx!");
671 return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
672 }
673
674 /// \see StackID
675 uint8_t getStackID(int ObjectIdx) const {
676 return Objects[ObjectIdx+NumFixedObjects].StackID;
677 }
678
679 /// \see StackID
680 void setStackID(int ObjectIdx, uint8_t ID) {
681 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
682 "Invalid Object Idx!");
683 Objects[ObjectIdx+NumFixedObjects].StackID = ID;
684 }
685
686 /// Returns true if the specified index corresponds to a dead object.
687 bool isDeadObjectIndex(int ObjectIdx) const {
688 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
689 "Invalid Object Idx!");
690 return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
691 }
692
693 /// Returns true if the specified index corresponds to a variable sized
694 /// object.
695 bool isVariableSizedObjectIndex(int ObjectIdx) const {
696 assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
697 "Invalid Object Idx!");
698 return Objects[ObjectIdx + NumFixedObjects].Size == 0;
699 }
700
701 void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
702 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
703 "Invalid Object Idx!");
704 Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
705 assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
706 }
707
708 /// Create a new statically sized stack object, returning
709 /// a nonnegative identifier to represent it.
710 int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSpillSlot,
711 const AllocaInst *Alloca = nullptr, uint8_t ID = 0);
712
713 /// Create a new statically sized stack object that represents a spill slot,
714 /// returning a nonnegative identifier to represent it.
715 int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
716
717 /// Remove or mark dead a statically sized stack object.
718 void RemoveStackObject(int ObjectIdx) {
719 // Mark it dead.
720 Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
721 }
722
723 /// Notify the MachineFrameInfo object that a variable sized object has been
724 /// created. This must be created whenever a variable sized object is
725 /// created, whether or not the index returned is actually used.
726 int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca);
727
728 /// Returns a reference to call saved info vector for the current function.
729 const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
730 return CSInfo;
731 }
732 /// \copydoc getCalleeSavedInfo()
733 std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; }
734
735 /// Used by prolog/epilog inserter to set the function's callee saved
736 /// information.
737 void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
738 CSInfo = CSI;
739 }
740
741 /// Has the callee saved info been calculated yet?
742 bool isCalleeSavedInfoValid() const { return CSIValid; }
743
744 void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
745
746 MachineBasicBlock *getSavePoint() const { return Save; }
747 void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
748 MachineBasicBlock *getRestorePoint() const { return Restore; }
749 void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
750
751 /// Return a set of physical registers that are pristine.
752 ///
753 /// Pristine registers hold a value that is useless to the current function,
754 /// but that must be preserved - they are callee saved registers that are not
755 /// saved.
756 ///
757 /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
758 /// method always returns an empty set.
759 BitVector getPristineRegs(const MachineFunction &MF) const;
760
761 /// Used by the MachineFunction printer to print information about
762 /// stack objects. Implemented in MachineFunction.cpp.
763 void print(const MachineFunction &MF, raw_ostream &OS) const;
764
765 /// dump - Print the function to stderr.
766 void dump(const MachineFunction &MF) const;
767};
768
769} // End llvm namespace
770
771#endif