Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/CodeGen/MachineFrameInfo.h b/linux-x64/clang/include/llvm/CodeGen/MachineFrameInfo.h
new file mode 100644
index 0000000..f887517
--- /dev/null
+++ b/linux-x64/clang/include/llvm/CodeGen/MachineFrameInfo.h
@@ -0,0 +1,724 @@
+//===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// The file defines the MachineFrameInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
+#define LLVM_CODEGEN_MACHINEFRAMEINFO_H
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/DataTypes.h"
+#include <cassert>
+#include <vector>
+
+namespace llvm {
+class raw_ostream;
+class MachineFunction;
+class MachineBasicBlock;
+class BitVector;
+class AllocaInst;
+
+/// The CalleeSavedInfo class tracks the information need to locate where a
+/// callee saved register is in the current frame.
+class CalleeSavedInfo {
+  unsigned Reg;
+  int FrameIdx;
+  /// Flag indicating whether the register is actually restored in the epilog.
+  /// In most cases, if a register is saved, it is also restored. There are
+  /// some situations, though, when this is not the case. For example, the
+  /// LR register on ARM is usually saved, but on exit from the function its
+  /// saved value may be loaded directly into PC. Since liveness tracking of
+  /// physical registers treats callee-saved registers are live outside of
+  /// the function, LR would be treated as live-on-exit, even though in these
+  /// scenarios it is not. This flag is added to indicate that the saved
+  /// register described by this object is not restored in the epilog.
+  /// The long-term solution is to model the liveness of callee-saved registers
+  /// by implicit uses on the return instructions, however, the required
+  /// changes in the ARM backend would be quite extensive.
+  bool Restored;
+
+public:
+  explicit CalleeSavedInfo(unsigned R, int FI = 0)
+  : Reg(R), FrameIdx(FI), Restored(true) {}
+
+  // Accessors.
+  unsigned getReg()                        const { return Reg; }
+  int getFrameIdx()                        const { return FrameIdx; }
+  void setFrameIdx(int FI)                       { FrameIdx = FI; }
+  bool isRestored()                        const { return Restored; }
+  void setRestored(bool R)                       { Restored = R; }
+};
+
+/// The MachineFrameInfo class represents an abstract stack frame until
+/// prolog/epilog code is inserted.  This class is key to allowing stack frame
+/// representation optimizations, such as frame pointer elimination.  It also
+/// allows more mundane (but still important) optimizations, such as reordering
+/// of abstract objects on the stack frame.
+///
+/// To support this, the class assigns unique integer identifiers to stack
+/// objects requested clients.  These identifiers are negative integers for
+/// fixed stack objects (such as arguments passed on the stack) or nonnegative
+/// for objects that may be reordered.  Instructions which refer to stack
+/// objects use a special MO_FrameIndex operand to represent these frame
+/// indexes.
+///
+/// Because this class keeps track of all references to the stack frame, it
+/// knows when a variable sized object is allocated on the stack.  This is the
+/// sole condition which prevents frame pointer elimination, which is an
+/// important optimization on register-poor architectures.  Because original
+/// variable sized alloca's in the source program are the only source of
+/// variable sized stack objects, it is safe to decide whether there will be
+/// any variable sized objects before all stack objects are known (for
+/// example, register allocator spill code never needs variable sized
+/// objects).
+///
+/// When prolog/epilog code emission is performed, the final stack frame is
+/// built and the machine instructions are modified to refer to the actual
+/// stack offsets of the object, eliminating all MO_FrameIndex operands from
+/// the program.
+///
+/// @brief Abstract Stack Frame Information
+class MachineFrameInfo {
+
+  // Represent a single object allocated on the stack.
+  struct StackObject {
+    // The offset of this object from the stack pointer on entry to
+    // the function.  This field has no meaning for a variable sized element.
+    int64_t SPOffset;
+
+    // The size of this object on the stack. 0 means a variable sized object,
+    // ~0ULL means a dead object.
+    uint64_t Size;
+
+    // The required alignment of this stack slot.
+    unsigned Alignment;
+
+    // If true, the value of the stack object is set before
+    // entering the function and is not modified inside the function. By
+    // default, fixed objects are immutable unless marked otherwise.
+    bool isImmutable;
+
+    // If true the stack object is used as spill slot. It
+    // cannot alias any other memory objects.
+    bool isSpillSlot;
+
+    /// If true, this stack slot is used to spill a value (could be deopt
+    /// and/or GC related) over a statepoint. We know that the address of the
+    /// slot can't alias any LLVM IR value.  This is very similar to a Spill
+    /// Slot, but is created by statepoint lowering is SelectionDAG, not the
+    /// register allocator.
+    bool isStatepointSpillSlot = false;
+
+    /// Identifier for stack memory type analagous to address space. If this is
+    /// non-0, the meaning is target defined. Offsets cannot be directly
+    /// compared between objects with different stack IDs. The object may not
+    /// necessarily reside in the same contiguous memory block as other stack
+    /// objects. Objects with differing stack IDs should not be merged or
+    /// replaced substituted for each other.
+    uint8_t StackID;
+
+    /// If this stack object is originated from an Alloca instruction
+    /// this value saves the original IR allocation. Can be NULL.
+    const AllocaInst *Alloca;
+
+    // If true, the object was mapped into the local frame
+    // block and doesn't need additional handling for allocation beyond that.
+    bool PreAllocated = false;
+
+    // If true, an LLVM IR value might point to this object.
+    // Normally, spill slots and fixed-offset objects don't alias IR-accessible
+    // objects, but there are exceptions (on PowerPC, for example, some byval
+    // arguments have ABI-prescribed offsets).
+    bool isAliased;
+
+    /// If true, the object has been zero-extended.
+    bool isZExt = false;
+
+    /// If true, the object has been zero-extended.
+    bool isSExt = false;
+
+    StackObject(uint64_t Size, unsigned Alignment, int64_t SPOffset,
+                bool IsImmutable, bool IsSpillSlot, const AllocaInst *Alloca,
+                bool IsAliased, uint8_t StackID = 0)
+      : SPOffset(SPOffset), Size(Size), Alignment(Alignment),
+        isImmutable(IsImmutable), isSpillSlot(IsSpillSlot),
+        StackID(StackID), Alloca(Alloca), isAliased(IsAliased) {}
+  };
+
+  /// The alignment of the stack.
+  unsigned StackAlignment;
+
+  /// Can the stack be realigned. This can be false if the target does not
+  /// support stack realignment, or if the user asks us not to realign the
+  /// stack. In this situation, overaligned allocas are all treated as dynamic
+  /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
+  /// lowering. All non-alloca stack objects have their alignment clamped to the
+  /// base ABI stack alignment.
+  /// FIXME: There is room for improvement in this case, in terms of
+  /// grouping overaligned allocas into a "secondary stack frame" and
+  /// then only use a single alloca to allocate this frame and only a
+  /// single virtual register to access it. Currently, without such an
+  /// optimization, each such alloca gets its own dynamic realignment.
+  bool StackRealignable;
+
+  /// Whether the function has the \c alignstack attribute.
+  bool ForcedRealign;
+
+  /// The list of stack objects allocated.
+  std::vector<StackObject> Objects;
+
+  /// This contains the number of fixed objects contained on
+  /// the stack.  Because fixed objects are stored at a negative index in the
+  /// Objects list, this is also the index to the 0th object in the list.
+  unsigned NumFixedObjects = 0;
+
+  /// This boolean keeps track of whether any variable
+  /// sized objects have been allocated yet.
+  bool HasVarSizedObjects = false;
+
+  /// This boolean keeps track of whether there is a call
+  /// to builtin \@llvm.frameaddress.
+  bool FrameAddressTaken = false;
+
+  /// This boolean keeps track of whether there is a call
+  /// to builtin \@llvm.returnaddress.
+  bool ReturnAddressTaken = false;
+
+  /// This boolean keeps track of whether there is a call
+  /// to builtin \@llvm.experimental.stackmap.
+  bool HasStackMap = false;
+
+  /// This boolean keeps track of whether there is a call
+  /// to builtin \@llvm.experimental.patchpoint.
+  bool HasPatchPoint = false;
+
+  /// The prolog/epilog code inserter calculates the final stack
+  /// offsets for all of the fixed size objects, updating the Objects list
+  /// above.  It then updates StackSize to contain the number of bytes that need
+  /// to be allocated on entry to the function.
+  uint64_t StackSize = 0;
+
+  /// The amount that a frame offset needs to be adjusted to
+  /// have the actual offset from the stack/frame pointer.  The exact usage of
+  /// this is target-dependent, but it is typically used to adjust between
+  /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
+  /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
+  /// to the distance between the initial SP and the value in FP.  For many
+  /// targets, this value is only used when generating debug info (via
+  /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
+  /// corresponding adjustments are performed directly.
+  int OffsetAdjustment = 0;
+
+  /// The prolog/epilog code inserter may process objects that require greater
+  /// alignment than the default alignment the target provides.
+  /// To handle this, MaxAlignment is set to the maximum alignment
+  /// needed by the objects on the current frame.  If this is greater than the
+  /// native alignment maintained by the compiler, dynamic alignment code will
+  /// be needed.
+  ///
+  unsigned MaxAlignment = 0;
+
+  /// Set to true if this function adjusts the stack -- e.g.,
+  /// when calling another function. This is only valid during and after
+  /// prolog/epilog code insertion.
+  bool AdjustsStack = false;
+
+  /// Set to true if this function has any function calls.
+  bool HasCalls = false;
+
+  /// The frame index for the stack protector.
+  int StackProtectorIdx = -1;
+
+  /// The frame index for the function context. Used for SjLj exceptions.
+  int FunctionContextIdx = -1;
+
+  /// This contains the size of the largest call frame if the target uses frame
+  /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
+  /// class).  This information is important for frame pointer elimination.
+  /// It is only valid during and after prolog/epilog code insertion.
+  unsigned MaxCallFrameSize = ~0u;
+
+  /// The prolog/epilog code inserter fills in this vector with each
+  /// callee saved register saved in the frame.  Beyond its use by the prolog/
+  /// epilog code inserter, this data used for debug info and exception
+  /// handling.
+  std::vector<CalleeSavedInfo> CSInfo;
+
+  /// Has CSInfo been set yet?
+  bool CSIValid = false;
+
+  /// References to frame indices which are mapped
+  /// into the local frame allocation block. <FrameIdx, LocalOffset>
+  SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
+
+  /// Size of the pre-allocated local frame block.
+  int64_t LocalFrameSize = 0;
+
+  /// Required alignment of the local object blob, which is the strictest
+  /// alignment of any object in it.
+  unsigned LocalFrameMaxAlign = 0;
+
+  /// Whether the local object blob needs to be allocated together. If not,
+  /// PEI should ignore the isPreAllocated flags on the stack objects and
+  /// just allocate them normally.
+  bool UseLocalStackAllocationBlock = false;
+
+  /// True if the function dynamically adjusts the stack pointer through some
+  /// opaque mechanism like inline assembly or Win32 EH.
+  bool HasOpaqueSPAdjustment = false;
+
+  /// True if the function contains operations which will lower down to
+  /// instructions which manipulate the stack pointer.
+  bool HasCopyImplyingStackAdjustment = false;
+
+  /// True if the function contains a call to the llvm.vastart intrinsic.
+  bool HasVAStart = false;
+
+  /// True if this is a varargs function that contains a musttail call.
+  bool HasMustTailInVarArgFunc = false;
+
+  /// True if this function contains a tail call. If so immutable objects like
+  /// function arguments are no longer so. A tail call *can* override fixed
+  /// stack objects like arguments so we can't treat them as immutable.
+  bool HasTailCall = false;
+
+  /// Not null, if shrink-wrapping found a better place for the prologue.
+  MachineBasicBlock *Save = nullptr;
+  /// Not null, if shrink-wrapping found a better place for the epilogue.
+  MachineBasicBlock *Restore = nullptr;
+
+public:
+  explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable,
+                            bool ForcedRealign)
+      : StackAlignment(StackAlignment), StackRealignable(StackRealignable),
+        ForcedRealign(ForcedRealign) {}
+
+  /// Return true if there are any stack objects in this function.
+  bool hasStackObjects() const { return !Objects.empty(); }
+
+  /// This method may be called any time after instruction
+  /// selection is complete to determine if the stack frame for this function
+  /// contains any variable sized objects.
+  bool hasVarSizedObjects() const { return HasVarSizedObjects; }
+
+  /// Return the index for the stack protector object.
+  int getStackProtectorIndex() const { return StackProtectorIdx; }
+  void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
+  bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
+
+  /// Return the index for the function context object.
+  /// This object is used for SjLj exceptions.
+  int getFunctionContextIndex() const { return FunctionContextIdx; }
+  void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
+
+  /// This method may be called any time after instruction
+  /// selection is complete to determine if there is a call to
+  /// \@llvm.frameaddress in this function.
+  bool isFrameAddressTaken() const { return FrameAddressTaken; }
+  void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
+
+  /// This method may be called any time after
+  /// instruction selection is complete to determine if there is a call to
+  /// \@llvm.returnaddress in this function.
+  bool isReturnAddressTaken() const { return ReturnAddressTaken; }
+  void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
+
+  /// This method may be called any time after instruction
+  /// selection is complete to determine if there is a call to builtin
+  /// \@llvm.experimental.stackmap.
+  bool hasStackMap() const { return HasStackMap; }
+  void setHasStackMap(bool s = true) { HasStackMap = s; }
+
+  /// This method may be called any time after instruction
+  /// selection is complete to determine if there is a call to builtin
+  /// \@llvm.experimental.patchpoint.
+  bool hasPatchPoint() const { return HasPatchPoint; }
+  void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
+
+  /// Return the minimum frame object index.
+  int getObjectIndexBegin() const { return -NumFixedObjects; }
+
+  /// Return one past the maximum frame object index.
+  int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
+
+  /// Return the number of fixed objects.
+  unsigned getNumFixedObjects() const { return NumFixedObjects; }
+
+  /// Return the number of objects.
+  unsigned getNumObjects() const { return Objects.size(); }
+
+  /// Map a frame index into the local object block
+  void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
+    LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
+    Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
+  }
+
+  /// Get the local offset mapping for a for an object.
+  std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
+    assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
+            "Invalid local object reference!");
+    return LocalFrameObjects[i];
+  }
+
+  /// Return the number of objects allocated into the local object block.
+  int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
+
+  /// Set the size of the local object blob.
+  void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
+
+  /// Get the size of the local object blob.
+  int64_t getLocalFrameSize() const { return LocalFrameSize; }
+
+  /// Required alignment of the local object blob,
+  /// which is the strictest alignment of any object in it.
+  void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
+
+  /// Return the required alignment of the local object blob.
+  unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
+
+  /// Get whether the local allocation blob should be allocated together or
+  /// let PEI allocate the locals in it directly.
+  bool getUseLocalStackAllocationBlock() const {
+    return UseLocalStackAllocationBlock;
+  }
+
+  /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
+  /// should be allocated together or let PEI allocate the locals in it
+  /// directly.
+  void setUseLocalStackAllocationBlock(bool v) {
+    UseLocalStackAllocationBlock = v;
+  }
+
+  /// Return true if the object was pre-allocated into the local block.
+  bool isObjectPreAllocated(int ObjectIdx) const {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
+  }
+
+  /// Return the size of the specified object.
+  int64_t getObjectSize(int ObjectIdx) const {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    return Objects[ObjectIdx+NumFixedObjects].Size;
+  }
+
+  /// Change the size of the specified stack object.
+  void setObjectSize(int ObjectIdx, int64_t Size) {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    Objects[ObjectIdx+NumFixedObjects].Size = Size;
+  }
+
+  /// Return the alignment of the specified stack object.
+  unsigned getObjectAlignment(int ObjectIdx) const {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    return Objects[ObjectIdx+NumFixedObjects].Alignment;
+  }
+
+  /// setObjectAlignment - Change the alignment of the specified stack object.
+  void setObjectAlignment(int ObjectIdx, unsigned Align) {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
+    ensureMaxAlignment(Align);
+  }
+
+  /// Return the underlying Alloca of the specified
+  /// stack object if it exists. Returns 0 if none exists.
+  const AllocaInst* getObjectAllocation(int ObjectIdx) const {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    return Objects[ObjectIdx+NumFixedObjects].Alloca;
+  }
+
+  /// Return the assigned stack offset of the specified object
+  /// from the incoming stack pointer.
+  int64_t getObjectOffset(int ObjectIdx) const {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    assert(!isDeadObjectIndex(ObjectIdx) &&
+           "Getting frame offset for a dead object?");
+    return Objects[ObjectIdx+NumFixedObjects].SPOffset;
+  }
+
+  bool isObjectZExt(int ObjectIdx) const {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    return Objects[ObjectIdx+NumFixedObjects].isZExt;
+  }
+
+  void setObjectZExt(int ObjectIdx, bool IsZExt) {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
+  }
+
+  bool isObjectSExt(int ObjectIdx) const {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    return Objects[ObjectIdx+NumFixedObjects].isSExt;
+  }
+
+  void setObjectSExt(int ObjectIdx, bool IsSExt) {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
+  }
+
+  /// Set the stack frame offset of the specified object. The
+  /// offset is relative to the stack pointer on entry to the function.
+  void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    assert(!isDeadObjectIndex(ObjectIdx) &&
+           "Setting frame offset for a dead object?");
+    Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
+  }
+
+  /// Return the number of bytes that must be allocated to hold
+  /// all of the fixed size frame objects.  This is only valid after
+  /// Prolog/Epilog code insertion has finalized the stack frame layout.
+  uint64_t getStackSize() const { return StackSize; }
+
+  /// Set the size of the stack.
+  void setStackSize(uint64_t Size) { StackSize = Size; }
+
+  /// Estimate and return the size of the stack frame.
+  unsigned estimateStackSize(const MachineFunction &MF) const;
+
+  /// Return the correction for frame offsets.
+  int getOffsetAdjustment() const { return OffsetAdjustment; }
+
+  /// Set the correction for frame offsets.
+  void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
+
+  /// Return the alignment in bytes that this function must be aligned to,
+  /// which is greater than the default stack alignment provided by the target.
+  unsigned getMaxAlignment() const { return MaxAlignment; }
+
+  /// Make sure the function is at least Align bytes aligned.
+  void ensureMaxAlignment(unsigned Align);
+
+  /// Return true if this function adjusts the stack -- e.g.,
+  /// when calling another function. This is only valid during and after
+  /// prolog/epilog code insertion.
+  bool adjustsStack() const { return AdjustsStack; }
+  void setAdjustsStack(bool V) { AdjustsStack = V; }
+
+  /// Return true if the current function has any function calls.
+  bool hasCalls() const { return HasCalls; }
+  void setHasCalls(bool V) { HasCalls = V; }
+
+  /// Returns true if the function contains opaque dynamic stack adjustments.
+  bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
+  void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
+
+  /// Returns true if the function contains operations which will lower down to
+  /// instructions which manipulate the stack pointer.
+  bool hasCopyImplyingStackAdjustment() const {
+    return HasCopyImplyingStackAdjustment;
+  }
+  void setHasCopyImplyingStackAdjustment(bool B) {
+    HasCopyImplyingStackAdjustment = B;
+  }
+
+  /// Returns true if the function calls the llvm.va_start intrinsic.
+  bool hasVAStart() const { return HasVAStart; }
+  void setHasVAStart(bool B) { HasVAStart = B; }
+
+  /// Returns true if the function is variadic and contains a musttail call.
+  bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
+  void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
+
+  /// Returns true if the function contains a tail call.
+  bool hasTailCall() const { return HasTailCall; }
+  void setHasTailCall() { HasTailCall = true; }
+
+  /// Computes the maximum size of a callframe and the AdjustsStack property.
+  /// This only works for targets defining
+  /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(),
+  /// and getFrameSize().
+  /// This is usually computed by the prologue epilogue inserter but some
+  /// targets may call this to compute it earlier.
+  void computeMaxCallFrameSize(const MachineFunction &MF);
+
+  /// Return the maximum size of a call frame that must be
+  /// allocated for an outgoing function call.  This is only available if
+  /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
+  /// then only during or after prolog/epilog code insertion.
+  ///
+  unsigned getMaxCallFrameSize() const {
+    // TODO: Enable this assert when targets are fixed.
+    //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet");
+    if (!isMaxCallFrameSizeComputed())
+      return 0;
+    return MaxCallFrameSize;
+  }
+  bool isMaxCallFrameSizeComputed() const {
+    return MaxCallFrameSize != ~0u;
+  }
+  void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
+
+  /// Create a new object at a fixed location on the stack.
+  /// All fixed objects should be created before other objects are created for
+  /// efficiency. By default, fixed objects are not pointed to by LLVM IR
+  /// values. This returns an index with a negative value.
+  int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable,
+                        bool isAliased = false);
+
+  /// Create a spill slot at a fixed location on the stack.
+  /// Returns an index with a negative value.
+  int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset,
+                                  bool IsImmutable = false);
+
+  /// Returns true if the specified index corresponds to a fixed stack object.
+  bool isFixedObjectIndex(int ObjectIdx) const {
+    return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
+  }
+
+  /// Returns true if the specified index corresponds
+  /// to an object that might be pointed to by an LLVM IR value.
+  bool isAliasedObjectIndex(int ObjectIdx) const {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    return Objects[ObjectIdx+NumFixedObjects].isAliased;
+  }
+
+  /// Returns true if the specified index corresponds to an immutable object.
+  bool isImmutableObjectIndex(int ObjectIdx) const {
+    // Tail calling functions can clobber their function arguments.
+    if (HasTailCall)
+      return false;
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    return Objects[ObjectIdx+NumFixedObjects].isImmutable;
+  }
+
+  /// Marks the immutability of an object.
+  void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable) {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    Objects[ObjectIdx+NumFixedObjects].isImmutable = IsImmutable;
+  }
+
+  /// Returns true if the specified index corresponds to a spill slot.
+  bool isSpillSlotObjectIndex(int ObjectIdx) const {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
+  }
+
+  bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
+  }
+
+  /// \see StackID
+  uint8_t getStackID(int ObjectIdx) const {
+    return Objects[ObjectIdx+NumFixedObjects].StackID;
+  }
+
+  /// \see StackID
+  void setStackID(int ObjectIdx, uint8_t ID) {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    Objects[ObjectIdx+NumFixedObjects].StackID = ID;
+  }
+
+  /// Returns true if the specified index corresponds to a dead object.
+  bool isDeadObjectIndex(int ObjectIdx) const {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
+  }
+
+  /// Returns true if the specified index corresponds to a variable sized
+  /// object.
+  bool isVariableSizedObjectIndex(int ObjectIdx) const {
+    assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    return Objects[ObjectIdx + NumFixedObjects].Size == 0;
+  }
+
+  void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
+    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
+           "Invalid Object Idx!");
+    Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
+    assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
+  }
+
+  /// Create a new statically sized stack object, returning
+  /// a nonnegative identifier to represent it.
+  int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSpillSlot,
+                        const AllocaInst *Alloca = nullptr, uint8_t ID = 0);
+
+  /// Create a new statically sized stack object that represents a spill slot,
+  /// returning a nonnegative identifier to represent it.
+  int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
+
+  /// Remove or mark dead a statically sized stack object.
+  void RemoveStackObject(int ObjectIdx) {
+    // Mark it dead.
+    Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
+  }
+
+  /// Notify the MachineFrameInfo object that a variable sized object has been
+  /// created.  This must be created whenever a variable sized object is
+  /// created, whether or not the index returned is actually used.
+  int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca);
+
+  /// Returns a reference to call saved info vector for the current function.
+  const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
+    return CSInfo;
+  }
+  /// \copydoc getCalleeSavedInfo()
+  std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; }
+
+  /// Used by prolog/epilog inserter to set the function's callee saved
+  /// information.
+  void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
+    CSInfo = CSI;
+  }
+
+  /// Has the callee saved info been calculated yet?
+  bool isCalleeSavedInfoValid() const { return CSIValid; }
+
+  void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
+
+  MachineBasicBlock *getSavePoint() const { return Save; }
+  void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
+  MachineBasicBlock *getRestorePoint() const { return Restore; }
+  void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
+
+  /// Return a set of physical registers that are pristine.
+  ///
+  /// Pristine registers hold a value that is useless to the current function,
+  /// but that must be preserved - they are callee saved registers that are not
+  /// saved.
+  ///
+  /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
+  /// method always returns an empty set.
+  BitVector getPristineRegs(const MachineFunction &MF) const;
+
+  /// Used by the MachineFunction printer to print information about
+  /// stack objects. Implemented in MachineFunction.cpp.
+  void print(const MachineFunction &MF, raw_ostream &OS) const;
+
+  /// dump - Print the function to stderr.
+  void dump(const MachineFunction &MF) const;
+};
+
+} // End llvm namespace
+
+#endif