blob: 99620802505b6edf37b3d3eec3f3cccb985b475a [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This file defines a set of templates that efficiently compute a dominator
11/// tree over a generic graph. This is used typically in LLVM for fast
12/// dominance queries on the CFG, but is fully generic w.r.t. the underlying
13/// graph types.
14///
15/// Unlike ADT/* graph algorithms, generic dominator tree has more requirements
16/// on the graph's NodeRef. The NodeRef should be a pointer and,
17/// NodeRef->getParent() must return the parent node that is also a pointer.
18///
19/// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits.
20///
21//===----------------------------------------------------------------------===//
22
23#ifndef LLVM_SUPPORT_GENERICDOMTREE_H
24#define LLVM_SUPPORT_GENERICDOMTREE_H
25
Andrew Scull0372a572018-11-16 15:47:06 +000026#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/GraphTraits.h"
28#include "llvm/ADT/PointerIntPair.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/Support/CFGUpdate.h"
33#include "llvm/Support/raw_ostream.h"
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010034#include <algorithm>
35#include <cassert>
36#include <cstddef>
37#include <iterator>
38#include <memory>
39#include <type_traits>
40#include <utility>
41#include <vector>
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010042
43namespace llvm {
44
45template <typename NodeT, bool IsPostDom>
46class DominatorTreeBase;
47
48namespace DomTreeBuilder {
49template <typename DomTreeT>
50struct SemiNCAInfo;
51} // namespace DomTreeBuilder
52
Andrew Scullcdfcccc2018-10-05 20:58:37 +010053/// Base class for the actual dominator tree node.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010054template <class NodeT> class DomTreeNodeBase {
55 friend class PostDominatorTree;
56 friend class DominatorTreeBase<NodeT, false>;
57 friend class DominatorTreeBase<NodeT, true>;
58 friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>;
59 friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>;
60
61 NodeT *TheBB;
62 DomTreeNodeBase *IDom;
63 unsigned Level;
64 std::vector<DomTreeNodeBase *> Children;
65 mutable unsigned DFSNumIn = ~0;
66 mutable unsigned DFSNumOut = ~0;
67
68 public:
69 DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom)
70 : TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {}
71
72 using iterator = typename std::vector<DomTreeNodeBase *>::iterator;
73 using const_iterator =
74 typename std::vector<DomTreeNodeBase *>::const_iterator;
75
76 iterator begin() { return Children.begin(); }
77 iterator end() { return Children.end(); }
78 const_iterator begin() const { return Children.begin(); }
79 const_iterator end() const { return Children.end(); }
80
81 NodeT *getBlock() const { return TheBB; }
82 DomTreeNodeBase *getIDom() const { return IDom; }
83 unsigned getLevel() const { return Level; }
84
85 const std::vector<DomTreeNodeBase *> &getChildren() const { return Children; }
86
87 std::unique_ptr<DomTreeNodeBase> addChild(
88 std::unique_ptr<DomTreeNodeBase> C) {
89 Children.push_back(C.get());
90 return C;
91 }
92
93 size_t getNumChildren() const { return Children.size(); }
94
95 void clearAllChildren() { Children.clear(); }
96
97 bool compare(const DomTreeNodeBase *Other) const {
98 if (getNumChildren() != Other->getNumChildren())
99 return true;
100
101 if (Level != Other->Level) return true;
102
103 SmallPtrSet<const NodeT *, 4> OtherChildren;
104 for (const DomTreeNodeBase *I : *Other) {
105 const NodeT *Nd = I->getBlock();
106 OtherChildren.insert(Nd);
107 }
108
109 for (const DomTreeNodeBase *I : *this) {
110 const NodeT *N = I->getBlock();
111 if (OtherChildren.count(N) == 0)
112 return true;
113 }
114 return false;
115 }
116
117 void setIDom(DomTreeNodeBase *NewIDom) {
118 assert(IDom && "No immediate dominator?");
119 if (IDom == NewIDom) return;
120
121 auto I = find(IDom->Children, this);
122 assert(I != IDom->Children.end() &&
123 "Not in immediate dominator children set!");
124 // I am no longer your child...
125 IDom->Children.erase(I);
126
127 // Switch to new dominator
128 IDom = NewIDom;
129 IDom->Children.push_back(this);
130
131 UpdateLevel();
132 }
133
134 /// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes
135 /// in the dominator tree. They are only guaranteed valid if
136 /// updateDFSNumbers() has been called.
137 unsigned getDFSNumIn() const { return DFSNumIn; }
138 unsigned getDFSNumOut() const { return DFSNumOut; }
139
140private:
141 // Return true if this node is dominated by other. Use this only if DFS info
142 // is valid.
143 bool DominatedBy(const DomTreeNodeBase *other) const {
144 return this->DFSNumIn >= other->DFSNumIn &&
145 this->DFSNumOut <= other->DFSNumOut;
146 }
147
148 void UpdateLevel() {
149 assert(IDom);
150 if (Level == IDom->Level + 1) return;
151
152 SmallVector<DomTreeNodeBase *, 64> WorkStack = {this};
153
154 while (!WorkStack.empty()) {
155 DomTreeNodeBase *Current = WorkStack.pop_back_val();
156 Current->Level = Current->IDom->Level + 1;
157
158 for (DomTreeNodeBase *C : *Current) {
159 assert(C->IDom);
160 if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C);
161 }
162 }
163 }
164};
165
166template <class NodeT>
167raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase<NodeT> *Node) {
168 if (Node->getBlock())
169 Node->getBlock()->printAsOperand(O, false);
170 else
171 O << " <<exit node>>";
172
173 O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} ["
174 << Node->getLevel() << "]\n";
175
176 return O;
177}
178
179template <class NodeT>
180void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O,
181 unsigned Lev) {
182 O.indent(2 * Lev) << "[" << Lev << "] " << N;
183 for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
184 E = N->end();
185 I != E; ++I)
186 PrintDomTree<NodeT>(*I, O, Lev + 1);
187}
188
189namespace DomTreeBuilder {
190// The routines below are provided in a separate header but referenced here.
191template <typename DomTreeT>
192void Calculate(DomTreeT &DT);
193
194template <typename DomTreeT>
Andrew Scull0372a572018-11-16 15:47:06 +0000195void CalculateWithUpdates(DomTreeT &DT,
196 ArrayRef<typename DomTreeT::UpdateType> Updates);
197
198template <typename DomTreeT>
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100199void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
200 typename DomTreeT::NodePtr To);
201
202template <typename DomTreeT>
203void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
204 typename DomTreeT::NodePtr To);
205
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100206template <typename DomTreeT>
207void ApplyUpdates(DomTreeT &DT,
208 ArrayRef<typename DomTreeT::UpdateType> Updates);
209
210template <typename DomTreeT>
211bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL);
212} // namespace DomTreeBuilder
213
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100214/// Core dominator tree base class.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100215///
216/// This class is a generic template over graph nodes. It is instantiated for
217/// various graphs in the LLVM IR or in the code generator.
218template <typename NodeT, bool IsPostDom>
219class DominatorTreeBase {
220 public:
221 static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value,
222 "Currently DominatorTreeBase supports only pointer nodes");
223 using NodeType = NodeT;
224 using NodePtr = NodeT *;
225 using ParentPtr = decltype(std::declval<NodeT *>()->getParent());
226 static_assert(std::is_pointer<ParentPtr>::value,
227 "Currently NodeT's parent must be a pointer type");
228 using ParentType = typename std::remove_pointer<ParentPtr>::type;
229 static constexpr bool IsPostDominator = IsPostDom;
230
Andrew Scull0372a572018-11-16 15:47:06 +0000231 using UpdateType = cfg::Update<NodePtr>;
232 using UpdateKind = cfg::UpdateKind;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100233 static constexpr UpdateKind Insert = UpdateKind::Insert;
234 static constexpr UpdateKind Delete = UpdateKind::Delete;
235
236 enum class VerificationLevel { Fast, Basic, Full };
237
238protected:
239 // Dominators always have a single root, postdominators can have more.
240 SmallVector<NodeT *, IsPostDom ? 4 : 1> Roots;
241
242 using DomTreeNodeMapType =
243 DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>;
244 DomTreeNodeMapType DomTreeNodes;
245 DomTreeNodeBase<NodeT> *RootNode;
246 ParentPtr Parent = nullptr;
247
248 mutable bool DFSInfoValid = false;
249 mutable unsigned int SlowQueries = 0;
250
251 friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>;
252
253 public:
254 DominatorTreeBase() {}
255
256 DominatorTreeBase(DominatorTreeBase &&Arg)
257 : Roots(std::move(Arg.Roots)),
258 DomTreeNodes(std::move(Arg.DomTreeNodes)),
259 RootNode(Arg.RootNode),
260 Parent(Arg.Parent),
261 DFSInfoValid(Arg.DFSInfoValid),
262 SlowQueries(Arg.SlowQueries) {
263 Arg.wipe();
264 }
265
266 DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
267 Roots = std::move(RHS.Roots);
268 DomTreeNodes = std::move(RHS.DomTreeNodes);
269 RootNode = RHS.RootNode;
270 Parent = RHS.Parent;
271 DFSInfoValid = RHS.DFSInfoValid;
272 SlowQueries = RHS.SlowQueries;
273 RHS.wipe();
274 return *this;
275 }
276
277 DominatorTreeBase(const DominatorTreeBase &) = delete;
278 DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
279
280 /// getRoots - Return the root blocks of the current CFG. This may include
281 /// multiple blocks if we are computing post dominators. For forward
282 /// dominators, this will always be a single block (the entry node).
283 ///
284 const SmallVectorImpl<NodeT *> &getRoots() const { return Roots; }
285
286 /// isPostDominator - Returns true if analysis based of postdoms
287 ///
288 bool isPostDominator() const { return IsPostDominator; }
289
290 /// compare - Return false if the other dominator tree base matches this
291 /// dominator tree base. Otherwise return true.
292 bool compare(const DominatorTreeBase &Other) const {
293 if (Parent != Other.Parent) return true;
294
295 if (Roots.size() != Other.Roots.size())
296 return true;
297
298 if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin()))
299 return true;
300
301 const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
302 if (DomTreeNodes.size() != OtherDomTreeNodes.size())
303 return true;
304
305 for (const auto &DomTreeNode : DomTreeNodes) {
306 NodeT *BB = DomTreeNode.first;
307 typename DomTreeNodeMapType::const_iterator OI =
308 OtherDomTreeNodes.find(BB);
309 if (OI == OtherDomTreeNodes.end())
310 return true;
311
312 DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second;
313 DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
314
315 if (MyNd.compare(&OtherNd))
316 return true;
317 }
318
319 return false;
320 }
321
322 void releaseMemory() { reset(); }
323
324 /// getNode - return the (Post)DominatorTree node for the specified basic
325 /// block. This is the same as using operator[] on this class. The result
326 /// may (but is not required to) be null for a forward (backwards)
327 /// statically unreachable block.
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100328 DomTreeNodeBase<NodeT> *getNode(const NodeT *BB) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100329 auto I = DomTreeNodes.find(BB);
330 if (I != DomTreeNodes.end())
331 return I->second.get();
332 return nullptr;
333 }
334
335 /// See getNode.
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100336 DomTreeNodeBase<NodeT> *operator[](const NodeT *BB) const {
337 return getNode(BB);
338 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100339
340 /// getRootNode - This returns the entry node for the CFG of the function. If
341 /// this tree represents the post-dominance relations for a function, however,
342 /// this root may be a node with the block == NULL. This is the case when
343 /// there are multiple exit nodes from a particular function. Consumers of
344 /// post-dominance information must be capable of dealing with this
345 /// possibility.
346 ///
347 DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
348 const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
349
350 /// Get all nodes dominated by R, including R itself.
351 void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
352 Result.clear();
353 const DomTreeNodeBase<NodeT> *RN = getNode(R);
354 if (!RN)
355 return; // If R is unreachable, it will not be present in the DOM tree.
356 SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
357 WL.push_back(RN);
358
359 while (!WL.empty()) {
360 const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
361 Result.push_back(N->getBlock());
362 WL.append(N->begin(), N->end());
363 }
364 }
365
366 /// properlyDominates - Returns true iff A dominates B and A != B.
367 /// Note that this is not a constant time operation!
368 ///
369 bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
370 const DomTreeNodeBase<NodeT> *B) const {
371 if (!A || !B)
372 return false;
373 if (A == B)
374 return false;
375 return dominates(A, B);
376 }
377
378 bool properlyDominates(const NodeT *A, const NodeT *B) const;
379
380 /// isReachableFromEntry - Return true if A is dominated by the entry
381 /// block of the function containing it.
382 bool isReachableFromEntry(const NodeT *A) const {
383 assert(!this->isPostDominator() &&
384 "This is not implemented for post dominators");
385 return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
386 }
387
388 bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
389
390 /// dominates - Returns true iff A dominates B. Note that this is not a
391 /// constant time operation!
392 ///
393 bool dominates(const DomTreeNodeBase<NodeT> *A,
394 const DomTreeNodeBase<NodeT> *B) const {
395 // A node trivially dominates itself.
396 if (B == A)
397 return true;
398
399 // An unreachable node is dominated by anything.
400 if (!isReachableFromEntry(B))
401 return true;
402
403 // And dominates nothing.
404 if (!isReachableFromEntry(A))
405 return false;
406
407 if (B->getIDom() == A) return true;
408
409 if (A->getIDom() == B) return false;
410
411 // A can only dominate B if it is higher in the tree.
412 if (A->getLevel() >= B->getLevel()) return false;
413
414 // Compare the result of the tree walk and the dfs numbers, if expensive
415 // checks are enabled.
416#ifdef EXPENSIVE_CHECKS
417 assert((!DFSInfoValid ||
418 (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
419 "Tree walk disagrees with dfs numbers!");
420#endif
421
422 if (DFSInfoValid)
423 return B->DominatedBy(A);
424
425 // If we end up with too many slow queries, just update the
426 // DFS numbers on the theory that we are going to keep querying.
427 SlowQueries++;
428 if (SlowQueries > 32) {
429 updateDFSNumbers();
430 return B->DominatedBy(A);
431 }
432
433 return dominatedBySlowTreeWalk(A, B);
434 }
435
436 bool dominates(const NodeT *A, const NodeT *B) const;
437
438 NodeT *getRoot() const {
439 assert(this->Roots.size() == 1 && "Should always have entry node!");
440 return this->Roots[0];
441 }
442
443 /// findNearestCommonDominator - Find nearest common dominator basic block
444 /// for basic block A and B. If there is no such block then return nullptr.
445 NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const {
446 assert(A && B && "Pointers are not valid");
447 assert(A->getParent() == B->getParent() &&
448 "Two blocks are not in same function");
449
450 // If either A or B is a entry block then it is nearest common dominator
451 // (for forward-dominators).
452 if (!isPostDominator()) {
453 NodeT &Entry = A->getParent()->front();
454 if (A == &Entry || B == &Entry)
455 return &Entry;
456 }
457
458 DomTreeNodeBase<NodeT> *NodeA = getNode(A);
459 DomTreeNodeBase<NodeT> *NodeB = getNode(B);
460
461 if (!NodeA || !NodeB) return nullptr;
462
463 // Use level information to go up the tree until the levels match. Then
464 // continue going up til we arrive at the same node.
465 while (NodeA && NodeA != NodeB) {
466 if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB);
467
468 NodeA = NodeA->IDom;
469 }
470
471 return NodeA ? NodeA->getBlock() : nullptr;
472 }
473
474 const NodeT *findNearestCommonDominator(const NodeT *A,
475 const NodeT *B) const {
476 // Cast away the const qualifiers here. This is ok since
477 // const is re-introduced on the return type.
478 return findNearestCommonDominator(const_cast<NodeT *>(A),
479 const_cast<NodeT *>(B));
480 }
481
482 bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const {
483 return isPostDominator() && !A->getBlock();
484 }
485
486 //===--------------------------------------------------------------------===//
487 // API to update (Post)DominatorTree information based on modifications to
488 // the CFG...
489
490 /// Inform the dominator tree about a sequence of CFG edge insertions and
491 /// deletions and perform a batch update on the tree.
492 ///
493 /// This function should be used when there were multiple CFG updates after
494 /// the last dominator tree update. It takes care of performing the updates
495 /// in sync with the CFG and optimizes away the redundant operations that
496 /// cancel each other.
497 /// The functions expects the sequence of updates to be balanced. Eg.:
498 /// - {{Insert, A, B}, {Delete, A, B}, {Insert, A, B}} is fine, because
499 /// logically it results in a single insertions.
500 /// - {{Insert, A, B}, {Insert, A, B}} is invalid, because it doesn't make
501 /// sense to insert the same edge twice.
502 ///
503 /// What's more, the functions assumes that it's safe to ask every node in the
504 /// CFG about its children and inverse children. This implies that deletions
505 /// of CFG edges must not delete the CFG nodes before calling this function.
506 ///
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100507 /// The applyUpdates function can reorder the updates and remove redundant
508 /// ones internally. The batch updater is also able to detect sequences of
509 /// zero and exactly one update -- it's optimized to do less work in these
510 /// cases.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100511 ///
512 /// Note that for postdominators it automatically takes care of applying
513 /// updates on reverse edges internally (so there's no need to swap the
514 /// From and To pointers when constructing DominatorTree::UpdateType).
515 /// The type of updates is the same for DomTreeBase<T> and PostDomTreeBase<T>
516 /// with the same template parameter T.
517 ///
518 /// \param Updates An unordered sequence of updates to perform.
519 ///
520 void applyUpdates(ArrayRef<UpdateType> Updates) {
521 DomTreeBuilder::ApplyUpdates(*this, Updates);
522 }
523
524 /// Inform the dominator tree about a CFG edge insertion and update the tree.
525 ///
526 /// This function has to be called just before or just after making the update
527 /// on the actual CFG. There cannot be any other updates that the dominator
528 /// tree doesn't know about.
529 ///
530 /// Note that for postdominators it automatically takes care of inserting
531 /// a reverse edge internally (so there's no need to swap the parameters).
532 ///
533 void insertEdge(NodeT *From, NodeT *To) {
534 assert(From);
535 assert(To);
536 assert(From->getParent() == Parent);
537 assert(To->getParent() == Parent);
538 DomTreeBuilder::InsertEdge(*this, From, To);
539 }
540
541 /// Inform the dominator tree about a CFG edge deletion and update the tree.
542 ///
543 /// This function has to be called just after making the update on the actual
544 /// CFG. An internal functions checks if the edge doesn't exist in the CFG in
545 /// DEBUG mode. There cannot be any other updates that the
546 /// dominator tree doesn't know about.
547 ///
548 /// Note that for postdominators it automatically takes care of deleting
549 /// a reverse edge internally (so there's no need to swap the parameters).
550 ///
551 void deleteEdge(NodeT *From, NodeT *To) {
552 assert(From);
553 assert(To);
554 assert(From->getParent() == Parent);
555 assert(To->getParent() == Parent);
556 DomTreeBuilder::DeleteEdge(*this, From, To);
557 }
558
559 /// Add a new node to the dominator tree information.
560 ///
561 /// This creates a new node as a child of DomBB dominator node, linking it
562 /// into the children list of the immediate dominator.
563 ///
564 /// \param BB New node in CFG.
565 /// \param DomBB CFG node that is dominator for BB.
566 /// \returns New dominator tree node that represents new CFG node.
567 ///
568 DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
569 assert(getNode(BB) == nullptr && "Block already in dominator tree!");
570 DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
571 assert(IDomNode && "Not immediate dominator specified for block!");
572 DFSInfoValid = false;
573 return (DomTreeNodes[BB] = IDomNode->addChild(
574 llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
575 }
576
577 /// Add a new node to the forward dominator tree and make it a new root.
578 ///
579 /// \param BB New node in CFG.
580 /// \returns New dominator tree node that represents new CFG node.
581 ///
582 DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) {
583 assert(getNode(BB) == nullptr && "Block already in dominator tree!");
584 assert(!this->isPostDominator() &&
585 "Cannot change root of post-dominator tree");
586 DFSInfoValid = false;
587 DomTreeNodeBase<NodeT> *NewNode = (DomTreeNodes[BB] =
588 llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr)).get();
589 if (Roots.empty()) {
590 addRoot(BB);
591 } else {
592 assert(Roots.size() == 1);
593 NodeT *OldRoot = Roots.front();
594 auto &OldNode = DomTreeNodes[OldRoot];
595 OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot]));
596 OldNode->IDom = NewNode;
597 OldNode->UpdateLevel();
598 Roots[0] = BB;
599 }
600 return RootNode = NewNode;
601 }
602
603 /// changeImmediateDominator - This method is used to update the dominator
604 /// tree information when a node's immediate dominator changes.
605 ///
606 void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
607 DomTreeNodeBase<NodeT> *NewIDom) {
608 assert(N && NewIDom && "Cannot change null node pointers!");
609 DFSInfoValid = false;
610 N->setIDom(NewIDom);
611 }
612
613 void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
614 changeImmediateDominator(getNode(BB), getNode(NewBB));
615 }
616
617 /// eraseNode - Removes a node from the dominator tree. Block must not
618 /// dominate any other blocks. Removes node from its immediate dominator's
619 /// children list. Deletes dominator node associated with basic block BB.
620 void eraseNode(NodeT *BB) {
621 DomTreeNodeBase<NodeT> *Node = getNode(BB);
622 assert(Node && "Removing node that isn't in dominator tree.");
623 assert(Node->getChildren().empty() && "Node is not a leaf node.");
624
625 DFSInfoValid = false;
626
627 // Remove node from immediate dominator's children list.
628 DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
629 if (IDom) {
630 const auto I = find(IDom->Children, Node);
631 assert(I != IDom->Children.end() &&
632 "Not in immediate dominator children set!");
633 // I am no longer your child...
634 IDom->Children.erase(I);
635 }
636
637 DomTreeNodes.erase(BB);
638
639 if (!IsPostDom) return;
640
641 // Remember to update PostDominatorTree roots.
642 auto RIt = llvm::find(Roots, BB);
643 if (RIt != Roots.end()) {
644 std::swap(*RIt, Roots.back());
645 Roots.pop_back();
646 }
647 }
648
649 /// splitBlock - BB is split and now it has one successor. Update dominator
650 /// tree to reflect this change.
651 void splitBlock(NodeT *NewBB) {
652 if (IsPostDominator)
653 Split<Inverse<NodeT *>>(NewBB);
654 else
655 Split<NodeT *>(NewBB);
656 }
657
658 /// print - Convert to human readable form
659 ///
660 void print(raw_ostream &O) const {
661 O << "=============================--------------------------------\n";
662 if (IsPostDominator)
663 O << "Inorder PostDominator Tree: ";
664 else
665 O << "Inorder Dominator Tree: ";
666 if (!DFSInfoValid)
667 O << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
668 O << "\n";
669
670 // The postdom tree can have a null root if there are no returns.
671 if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), O, 1);
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100672 O << "Roots: ";
673 for (const NodePtr Block : Roots) {
674 Block->printAsOperand(O, false);
675 O << " ";
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100676 }
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100677 O << "\n";
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100678 }
679
680public:
681 /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
682 /// dominator tree in dfs order.
683 void updateDFSNumbers() const {
684 if (DFSInfoValid) {
685 SlowQueries = 0;
686 return;
687 }
688
689 SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
690 typename DomTreeNodeBase<NodeT>::const_iterator>,
691 32> WorkStack;
692
693 const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
694 assert((!Parent || ThisRoot) && "Empty constructed DomTree");
695 if (!ThisRoot)
696 return;
697
698 // Both dominators and postdominators have a single root node. In the case
699 // case of PostDominatorTree, this node is a virtual root.
700 WorkStack.push_back({ThisRoot, ThisRoot->begin()});
701
702 unsigned DFSNum = 0;
703 ThisRoot->DFSNumIn = DFSNum++;
704
705 while (!WorkStack.empty()) {
706 const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
707 const auto ChildIt = WorkStack.back().second;
708
709 // If we visited all of the children of this node, "recurse" back up the
710 // stack setting the DFOutNum.
711 if (ChildIt == Node->end()) {
712 Node->DFSNumOut = DFSNum++;
713 WorkStack.pop_back();
714 } else {
715 // Otherwise, recursively visit this child.
716 const DomTreeNodeBase<NodeT> *Child = *ChildIt;
717 ++WorkStack.back().second;
718
719 WorkStack.push_back({Child, Child->begin()});
720 Child->DFSNumIn = DFSNum++;
721 }
722 }
723
724 SlowQueries = 0;
725 DFSInfoValid = true;
726 }
727
728 /// recalculate - compute a dominator tree for the given function
729 void recalculate(ParentType &Func) {
730 Parent = &Func;
731 DomTreeBuilder::Calculate(*this);
732 }
733
Andrew Scull0372a572018-11-16 15:47:06 +0000734 void recalculate(ParentType &Func, ArrayRef<UpdateType> Updates) {
735 Parent = &Func;
736 DomTreeBuilder::CalculateWithUpdates(*this, Updates);
737 }
738
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100739 /// verify - checks if the tree is correct. There are 3 level of verification:
740 /// - Full -- verifies if the tree is correct by making sure all the
741 /// properties (including the parent and the sibling property)
742 /// hold.
743 /// Takes O(N^3) time.
744 ///
745 /// - Basic -- checks if the tree is correct, but compares it to a freshly
746 /// constructed tree instead of checking the sibling property.
747 /// Takes O(N^2) time.
748 ///
749 /// - Fast -- checks basic tree structure and compares it with a freshly
750 /// constructed tree.
751 /// Takes O(N^2) time worst case, but is faster in practise (same
752 /// as tree construction).
753 bool verify(VerificationLevel VL = VerificationLevel::Full) const {
754 return DomTreeBuilder::Verify(*this, VL);
755 }
756
757protected:
758 void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
759
760 void reset() {
761 DomTreeNodes.clear();
762 Roots.clear();
763 RootNode = nullptr;
764 Parent = nullptr;
765 DFSInfoValid = false;
766 SlowQueries = 0;
767 }
768
769 // NewBB is split and now it has one successor. Update dominator tree to
770 // reflect this change.
771 template <class N>
772 void Split(typename GraphTraits<N>::NodeRef NewBB) {
773 using GraphT = GraphTraits<N>;
774 using NodeRef = typename GraphT::NodeRef;
775 assert(std::distance(GraphT::child_begin(NewBB),
776 GraphT::child_end(NewBB)) == 1 &&
777 "NewBB should have a single successor!");
778 NodeRef NewBBSucc = *GraphT::child_begin(NewBB);
779
780 std::vector<NodeRef> PredBlocks;
781 for (const auto &Pred : children<Inverse<N>>(NewBB))
782 PredBlocks.push_back(Pred);
783
784 assert(!PredBlocks.empty() && "No predblocks?");
785
786 bool NewBBDominatesNewBBSucc = true;
787 for (const auto &Pred : children<Inverse<N>>(NewBBSucc)) {
788 if (Pred != NewBB && !dominates(NewBBSucc, Pred) &&
789 isReachableFromEntry(Pred)) {
790 NewBBDominatesNewBBSucc = false;
791 break;
792 }
793 }
794
795 // Find NewBB's immediate dominator and create new dominator tree node for
796 // NewBB.
797 NodeT *NewBBIDom = nullptr;
798 unsigned i = 0;
799 for (i = 0; i < PredBlocks.size(); ++i)
800 if (isReachableFromEntry(PredBlocks[i])) {
801 NewBBIDom = PredBlocks[i];
802 break;
803 }
804
805 // It's possible that none of the predecessors of NewBB are reachable;
806 // in that case, NewBB itself is unreachable, so nothing needs to be
807 // changed.
808 if (!NewBBIDom) return;
809
810 for (i = i + 1; i < PredBlocks.size(); ++i) {
811 if (isReachableFromEntry(PredBlocks[i]))
812 NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
813 }
814
815 // Create the new dominator tree node... and set the idom of NewBB.
816 DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom);
817
818 // If NewBB strictly dominates other blocks, then it is now the immediate
819 // dominator of NewBBSucc. Update the dominator tree as appropriate.
820 if (NewBBDominatesNewBBSucc) {
821 DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc);
822 changeImmediateDominator(NewBBSuccNode, NewBBNode);
823 }
824 }
825
826 private:
827 bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
828 const DomTreeNodeBase<NodeT> *B) const {
829 assert(A != B);
830 assert(isReachableFromEntry(B));
831 assert(isReachableFromEntry(A));
832
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100833 const unsigned ALevel = A->getLevel();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100834 const DomTreeNodeBase<NodeT> *IDom;
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100835
836 // Don't walk nodes above A's subtree. When we reach A's level, we must
837 // either find A or be in some other subtree not dominated by A.
838 while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel)
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100839 B = IDom; // Walk up the tree
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100840
841 return B == A;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100842 }
843
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100844 /// Wipe this tree's state without releasing any resources.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100845 ///
846 /// This is essentially a post-move helper only. It leaves the object in an
847 /// assignable and destroyable state, but otherwise invalid.
848 void wipe() {
849 DomTreeNodes.clear();
850 RootNode = nullptr;
851 Parent = nullptr;
852 }
853};
854
855template <typename T>
856using DomTreeBase = DominatorTreeBase<T, false>;
857
858template <typename T>
859using PostDomTreeBase = DominatorTreeBase<T, true>;
860
861// These two functions are declared out of line as a workaround for building
862// with old (< r147295) versions of clang because of pr11642.
863template <typename NodeT, bool IsPostDom>
864bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A,
865 const NodeT *B) const {
866 if (A == B)
867 return true;
868
869 // Cast away the const qualifiers here. This is ok since
870 // this function doesn't actually return the values returned
871 // from getNode.
872 return dominates(getNode(const_cast<NodeT *>(A)),
873 getNode(const_cast<NodeT *>(B)));
874}
875template <typename NodeT, bool IsPostDom>
876bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates(
877 const NodeT *A, const NodeT *B) const {
878 if (A == B)
879 return false;
880
881 // Cast away the const qualifiers here. This is ok since
882 // this function doesn't actually return the values returned
883 // from getNode.
884 return dominates(getNode(const_cast<NodeT *>(A)),
885 getNode(const_cast<NodeT *>(B)));
886}
887
888} // end namespace llvm
889
890#endif // LLVM_SUPPORT_GENERICDOMTREE_H