Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/Support/GenericDomTree.h b/linux-x64/clang/include/llvm/Support/GenericDomTree.h
new file mode 100644
index 0000000..bcaac6b
--- /dev/null
+++ b/linux-x64/clang/include/llvm/Support/GenericDomTree.h
@@ -0,0 +1,907 @@
+//===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// This file defines a set of templates that efficiently compute a dominator
+/// tree over a generic graph. This is used typically in LLVM for fast
+/// dominance queries on the CFG, but is fully generic w.r.t. the underlying
+/// graph types.
+///
+/// Unlike ADT/* graph algorithms, generic dominator tree has more requirements
+/// on the graph's NodeRef. The NodeRef should be a pointer and,
+/// NodeRef->getParent() must return the parent node that is also a pointer.
+///
+/// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SUPPORT_GENERICDOMTREE_H
+#define LLVM_SUPPORT_GENERICDOMTREE_H
+
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <iterator>
+#include <memory>
+#include <type_traits>
+#include <utility>
+#include <vector>
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+
+template <typename NodeT, bool IsPostDom>
+class DominatorTreeBase;
+
+namespace DomTreeBuilder {
+template <typename DomTreeT>
+struct SemiNCAInfo;
+}  // namespace DomTreeBuilder
+
+/// \brief Base class for the actual dominator tree node.
+template <class NodeT> class DomTreeNodeBase {
+  friend class PostDominatorTree;
+  friend class DominatorTreeBase<NodeT, false>;
+  friend class DominatorTreeBase<NodeT, true>;
+  friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>;
+  friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>;
+
+  NodeT *TheBB;
+  DomTreeNodeBase *IDom;
+  unsigned Level;
+  std::vector<DomTreeNodeBase *> Children;
+  mutable unsigned DFSNumIn = ~0;
+  mutable unsigned DFSNumOut = ~0;
+
+ public:
+  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom)
+      : TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {}
+
+  using iterator = typename std::vector<DomTreeNodeBase *>::iterator;
+  using const_iterator =
+      typename std::vector<DomTreeNodeBase *>::const_iterator;
+
+  iterator begin() { return Children.begin(); }
+  iterator end() { return Children.end(); }
+  const_iterator begin() const { return Children.begin(); }
+  const_iterator end() const { return Children.end(); }
+
+  NodeT *getBlock() const { return TheBB; }
+  DomTreeNodeBase *getIDom() const { return IDom; }
+  unsigned getLevel() const { return Level; }
+
+  const std::vector<DomTreeNodeBase *> &getChildren() const { return Children; }
+
+  std::unique_ptr<DomTreeNodeBase> addChild(
+      std::unique_ptr<DomTreeNodeBase> C) {
+    Children.push_back(C.get());
+    return C;
+  }
+
+  size_t getNumChildren() const { return Children.size(); }
+
+  void clearAllChildren() { Children.clear(); }
+
+  bool compare(const DomTreeNodeBase *Other) const {
+    if (getNumChildren() != Other->getNumChildren())
+      return true;
+
+    if (Level != Other->Level) return true;
+
+    SmallPtrSet<const NodeT *, 4> OtherChildren;
+    for (const DomTreeNodeBase *I : *Other) {
+      const NodeT *Nd = I->getBlock();
+      OtherChildren.insert(Nd);
+    }
+
+    for (const DomTreeNodeBase *I : *this) {
+      const NodeT *N = I->getBlock();
+      if (OtherChildren.count(N) == 0)
+        return true;
+    }
+    return false;
+  }
+
+  void setIDom(DomTreeNodeBase *NewIDom) {
+    assert(IDom && "No immediate dominator?");
+    if (IDom == NewIDom) return;
+
+    auto I = find(IDom->Children, this);
+    assert(I != IDom->Children.end() &&
+           "Not in immediate dominator children set!");
+    // I am no longer your child...
+    IDom->Children.erase(I);
+
+    // Switch to new dominator
+    IDom = NewIDom;
+    IDom->Children.push_back(this);
+
+    UpdateLevel();
+  }
+
+  /// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes
+  /// in the dominator tree. They are only guaranteed valid if
+  /// updateDFSNumbers() has been called.
+  unsigned getDFSNumIn() const { return DFSNumIn; }
+  unsigned getDFSNumOut() const { return DFSNumOut; }
+
+private:
+  // Return true if this node is dominated by other. Use this only if DFS info
+  // is valid.
+  bool DominatedBy(const DomTreeNodeBase *other) const {
+    return this->DFSNumIn >= other->DFSNumIn &&
+           this->DFSNumOut <= other->DFSNumOut;
+  }
+
+  void UpdateLevel() {
+    assert(IDom);
+    if (Level == IDom->Level + 1) return;
+
+    SmallVector<DomTreeNodeBase *, 64> WorkStack = {this};
+
+    while (!WorkStack.empty()) {
+      DomTreeNodeBase *Current = WorkStack.pop_back_val();
+      Current->Level = Current->IDom->Level + 1;
+
+      for (DomTreeNodeBase *C : *Current) {
+        assert(C->IDom);
+        if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C);
+      }
+    }
+  }
+};
+
+template <class NodeT>
+raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase<NodeT> *Node) {
+  if (Node->getBlock())
+    Node->getBlock()->printAsOperand(O, false);
+  else
+    O << " <<exit node>>";
+
+  O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} ["
+    << Node->getLevel() << "]\n";
+
+  return O;
+}
+
+template <class NodeT>
+void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O,
+                  unsigned Lev) {
+  O.indent(2 * Lev) << "[" << Lev << "] " << N;
+  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
+                                                       E = N->end();
+       I != E; ++I)
+    PrintDomTree<NodeT>(*I, O, Lev + 1);
+}
+
+namespace DomTreeBuilder {
+// The routines below are provided in a separate header but referenced here.
+template <typename DomTreeT>
+void Calculate(DomTreeT &DT);
+
+template <typename DomTreeT>
+void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
+                typename DomTreeT::NodePtr To);
+
+template <typename DomTreeT>
+void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
+                typename DomTreeT::NodePtr To);
+
+// UpdateKind and Update are used by the batch update API and it's easiest to
+// define them here.
+enum class UpdateKind : unsigned char { Insert, Delete };
+
+template <typename NodePtr>
+struct Update {
+  using NodeKindPair = PointerIntPair<NodePtr, 1, UpdateKind>;
+
+  NodePtr From;
+  NodeKindPair ToAndKind;
+
+  Update(UpdateKind Kind, NodePtr From, NodePtr To)
+      : From(From), ToAndKind(To, Kind) {}
+
+  UpdateKind getKind() const { return ToAndKind.getInt(); }
+  NodePtr getFrom() const { return From; }
+  NodePtr getTo() const { return ToAndKind.getPointer(); }
+  bool operator==(const Update &RHS) const {
+    return From == RHS.From && ToAndKind == RHS.ToAndKind;
+  }
+
+  friend raw_ostream &operator<<(raw_ostream &OS, const Update &U) {
+    OS << (U.getKind() == UpdateKind::Insert ? "Insert " : "Delete ");
+    U.getFrom()->printAsOperand(OS, false);
+    OS << " -> ";
+    U.getTo()->printAsOperand(OS, false);
+    return OS;
+  }
+};
+
+template <typename DomTreeT>
+void ApplyUpdates(DomTreeT &DT,
+                  ArrayRef<typename DomTreeT::UpdateType> Updates);
+
+template <typename DomTreeT>
+bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL);
+}  // namespace DomTreeBuilder
+
+/// \brief Core dominator tree base class.
+///
+/// This class is a generic template over graph nodes. It is instantiated for
+/// various graphs in the LLVM IR or in the code generator.
+template <typename NodeT, bool IsPostDom>
+class DominatorTreeBase {
+ public:
+  static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value,
+                "Currently DominatorTreeBase supports only pointer nodes");
+  using NodeType = NodeT;
+  using NodePtr = NodeT *;
+  using ParentPtr = decltype(std::declval<NodeT *>()->getParent());
+  static_assert(std::is_pointer<ParentPtr>::value,
+                "Currently NodeT's parent must be a pointer type");
+  using ParentType = typename std::remove_pointer<ParentPtr>::type;
+  static constexpr bool IsPostDominator = IsPostDom;
+
+  using UpdateType = DomTreeBuilder::Update<NodePtr>;
+  using UpdateKind = DomTreeBuilder::UpdateKind;
+  static constexpr UpdateKind Insert = UpdateKind::Insert;
+  static constexpr UpdateKind Delete = UpdateKind::Delete;
+
+  enum class VerificationLevel { Fast, Basic, Full };
+
+protected:
+  // Dominators always have a single root, postdominators can have more.
+  SmallVector<NodeT *, IsPostDom ? 4 : 1> Roots;
+
+  using DomTreeNodeMapType =
+     DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>;
+  DomTreeNodeMapType DomTreeNodes;
+  DomTreeNodeBase<NodeT> *RootNode;
+  ParentPtr Parent = nullptr;
+
+  mutable bool DFSInfoValid = false;
+  mutable unsigned int SlowQueries = 0;
+
+  friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>;
+
+ public:
+  DominatorTreeBase() {}
+
+  DominatorTreeBase(DominatorTreeBase &&Arg)
+      : Roots(std::move(Arg.Roots)),
+        DomTreeNodes(std::move(Arg.DomTreeNodes)),
+        RootNode(Arg.RootNode),
+        Parent(Arg.Parent),
+        DFSInfoValid(Arg.DFSInfoValid),
+        SlowQueries(Arg.SlowQueries) {
+    Arg.wipe();
+  }
+
+  DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
+    Roots = std::move(RHS.Roots);
+    DomTreeNodes = std::move(RHS.DomTreeNodes);
+    RootNode = RHS.RootNode;
+    Parent = RHS.Parent;
+    DFSInfoValid = RHS.DFSInfoValid;
+    SlowQueries = RHS.SlowQueries;
+    RHS.wipe();
+    return *this;
+  }
+
+  DominatorTreeBase(const DominatorTreeBase &) = delete;
+  DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
+
+  /// getRoots - Return the root blocks of the current CFG.  This may include
+  /// multiple blocks if we are computing post dominators.  For forward
+  /// dominators, this will always be a single block (the entry node).
+  ///
+  const SmallVectorImpl<NodeT *> &getRoots() const { return Roots; }
+
+  /// isPostDominator - Returns true if analysis based of postdoms
+  ///
+  bool isPostDominator() const { return IsPostDominator; }
+
+  /// compare - Return false if the other dominator tree base matches this
+  /// dominator tree base. Otherwise return true.
+  bool compare(const DominatorTreeBase &Other) const {
+    if (Parent != Other.Parent) return true;
+
+    if (Roots.size() != Other.Roots.size())
+      return true;
+
+    if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin()))
+      return true;
+
+    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
+    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
+      return true;
+
+    for (const auto &DomTreeNode : DomTreeNodes) {
+      NodeT *BB = DomTreeNode.first;
+      typename DomTreeNodeMapType::const_iterator OI =
+          OtherDomTreeNodes.find(BB);
+      if (OI == OtherDomTreeNodes.end())
+        return true;
+
+      DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second;
+      DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
+
+      if (MyNd.compare(&OtherNd))
+        return true;
+    }
+
+    return false;
+  }
+
+  void releaseMemory() { reset(); }
+
+  /// getNode - return the (Post)DominatorTree node for the specified basic
+  /// block.  This is the same as using operator[] on this class.  The result
+  /// may (but is not required to) be null for a forward (backwards)
+  /// statically unreachable block.
+  DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
+    auto I = DomTreeNodes.find(BB);
+    if (I != DomTreeNodes.end())
+      return I->second.get();
+    return nullptr;
+  }
+
+  /// See getNode.
+  DomTreeNodeBase<NodeT> *operator[](NodeT *BB) const { return getNode(BB); }
+
+  /// getRootNode - This returns the entry node for the CFG of the function.  If
+  /// this tree represents the post-dominance relations for a function, however,
+  /// this root may be a node with the block == NULL.  This is the case when
+  /// there are multiple exit nodes from a particular function.  Consumers of
+  /// post-dominance information must be capable of dealing with this
+  /// possibility.
+  ///
+  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
+  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
+
+  /// Get all nodes dominated by R, including R itself.
+  void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
+    Result.clear();
+    const DomTreeNodeBase<NodeT> *RN = getNode(R);
+    if (!RN)
+      return; // If R is unreachable, it will not be present in the DOM tree.
+    SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
+    WL.push_back(RN);
+
+    while (!WL.empty()) {
+      const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
+      Result.push_back(N->getBlock());
+      WL.append(N->begin(), N->end());
+    }
+  }
+
+  /// properlyDominates - Returns true iff A dominates B and A != B.
+  /// Note that this is not a constant time operation!
+  ///
+  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
+                         const DomTreeNodeBase<NodeT> *B) const {
+    if (!A || !B)
+      return false;
+    if (A == B)
+      return false;
+    return dominates(A, B);
+  }
+
+  bool properlyDominates(const NodeT *A, const NodeT *B) const;
+
+  /// isReachableFromEntry - Return true if A is dominated by the entry
+  /// block of the function containing it.
+  bool isReachableFromEntry(const NodeT *A) const {
+    assert(!this->isPostDominator() &&
+           "This is not implemented for post dominators");
+    return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
+  }
+
+  bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
+
+  /// dominates - Returns true iff A dominates B.  Note that this is not a
+  /// constant time operation!
+  ///
+  bool dominates(const DomTreeNodeBase<NodeT> *A,
+                 const DomTreeNodeBase<NodeT> *B) const {
+    // A node trivially dominates itself.
+    if (B == A)
+      return true;
+
+    // An unreachable node is dominated by anything.
+    if (!isReachableFromEntry(B))
+      return true;
+
+    // And dominates nothing.
+    if (!isReachableFromEntry(A))
+      return false;
+
+    if (B->getIDom() == A) return true;
+
+    if (A->getIDom() == B) return false;
+
+    // A can only dominate B if it is higher in the tree.
+    if (A->getLevel() >= B->getLevel()) return false;
+
+    // Compare the result of the tree walk and the dfs numbers, if expensive
+    // checks are enabled.
+#ifdef EXPENSIVE_CHECKS
+    assert((!DFSInfoValid ||
+            (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
+           "Tree walk disagrees with dfs numbers!");
+#endif
+
+    if (DFSInfoValid)
+      return B->DominatedBy(A);
+
+    // If we end up with too many slow queries, just update the
+    // DFS numbers on the theory that we are going to keep querying.
+    SlowQueries++;
+    if (SlowQueries > 32) {
+      updateDFSNumbers();
+      return B->DominatedBy(A);
+    }
+
+    return dominatedBySlowTreeWalk(A, B);
+  }
+
+  bool dominates(const NodeT *A, const NodeT *B) const;
+
+  NodeT *getRoot() const {
+    assert(this->Roots.size() == 1 && "Should always have entry node!");
+    return this->Roots[0];
+  }
+
+  /// findNearestCommonDominator - Find nearest common dominator basic block
+  /// for basic block A and B. If there is no such block then return nullptr.
+  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const {
+    assert(A && B && "Pointers are not valid");
+    assert(A->getParent() == B->getParent() &&
+           "Two blocks are not in same function");
+
+    // If either A or B is a entry block then it is nearest common dominator
+    // (for forward-dominators).
+    if (!isPostDominator()) {
+      NodeT &Entry = A->getParent()->front();
+      if (A == &Entry || B == &Entry)
+        return &Entry;
+    }
+
+    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
+    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
+
+    if (!NodeA || !NodeB) return nullptr;
+
+    // Use level information to go up the tree until the levels match. Then
+    // continue going up til we arrive at the same node.
+    while (NodeA && NodeA != NodeB) {
+      if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB);
+
+      NodeA = NodeA->IDom;
+    }
+
+    return NodeA ? NodeA->getBlock() : nullptr;
+  }
+
+  const NodeT *findNearestCommonDominator(const NodeT *A,
+                                          const NodeT *B) const {
+    // Cast away the const qualifiers here. This is ok since
+    // const is re-introduced on the return type.
+    return findNearestCommonDominator(const_cast<NodeT *>(A),
+                                      const_cast<NodeT *>(B));
+  }
+
+  bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const {
+    return isPostDominator() && !A->getBlock();
+  }
+
+  //===--------------------------------------------------------------------===//
+  // API to update (Post)DominatorTree information based on modifications to
+  // the CFG...
+
+  /// Inform the dominator tree about a sequence of CFG edge insertions and
+  /// deletions and perform a batch update on the tree.
+  ///
+  /// This function should be used when there were multiple CFG updates after
+  /// the last dominator tree update. It takes care of performing the updates
+  /// in sync with the CFG and optimizes away the redundant operations that
+  /// cancel each other.
+  /// The functions expects the sequence of updates to be balanced. Eg.:
+  ///  - {{Insert, A, B}, {Delete, A, B}, {Insert, A, B}} is fine, because
+  ///    logically it results in a single insertions.
+  ///  - {{Insert, A, B}, {Insert, A, B}} is invalid, because it doesn't make
+  ///    sense to insert the same edge twice.
+  ///
+  /// What's more, the functions assumes that it's safe to ask every node in the
+  /// CFG about its children and inverse children. This implies that deletions
+  /// of CFG edges must not delete the CFG nodes before calling this function.
+  ///
+  /// Batch updates should be generally faster when performing longer sequences
+  /// of updates than calling insertEdge/deleteEdge manually multiple times, as
+  /// it can reorder the updates and remove redundant ones internally.
+  /// The batch updater is also able to detect sequences of zero and exactly one
+  /// update -- it's optimized to do less work in these cases.
+  ///
+  /// Note that for postdominators it automatically takes care of applying
+  /// updates on reverse edges internally (so there's no need to swap the
+  /// From and To pointers when constructing DominatorTree::UpdateType).
+  /// The type of updates is the same for DomTreeBase<T> and PostDomTreeBase<T>
+  /// with the same template parameter T.
+  ///
+  /// \param Updates An unordered sequence of updates to perform.
+  ///
+  void applyUpdates(ArrayRef<UpdateType> Updates) {
+    DomTreeBuilder::ApplyUpdates(*this, Updates);
+  }
+
+  /// Inform the dominator tree about a CFG edge insertion and update the tree.
+  ///
+  /// This function has to be called just before or just after making the update
+  /// on the actual CFG. There cannot be any other updates that the dominator
+  /// tree doesn't know about.
+  ///
+  /// Note that for postdominators it automatically takes care of inserting
+  /// a reverse edge internally (so there's no need to swap the parameters).
+  ///
+  void insertEdge(NodeT *From, NodeT *To) {
+    assert(From);
+    assert(To);
+    assert(From->getParent() == Parent);
+    assert(To->getParent() == Parent);
+    DomTreeBuilder::InsertEdge(*this, From, To);
+  }
+
+  /// Inform the dominator tree about a CFG edge deletion and update the tree.
+  ///
+  /// This function has to be called just after making the update on the actual
+  /// CFG. An internal functions checks if the edge doesn't exist in the CFG in
+  /// DEBUG mode. There cannot be any other updates that the
+  /// dominator tree doesn't know about.
+  ///
+  /// Note that for postdominators it automatically takes care of deleting
+  /// a reverse edge internally (so there's no need to swap the parameters).
+  ///
+  void deleteEdge(NodeT *From, NodeT *To) {
+    assert(From);
+    assert(To);
+    assert(From->getParent() == Parent);
+    assert(To->getParent() == Parent);
+    DomTreeBuilder::DeleteEdge(*this, From, To);
+  }
+
+  /// Add a new node to the dominator tree information.
+  ///
+  /// This creates a new node as a child of DomBB dominator node, linking it
+  /// into the children list of the immediate dominator.
+  ///
+  /// \param BB New node in CFG.
+  /// \param DomBB CFG node that is dominator for BB.
+  /// \returns New dominator tree node that represents new CFG node.
+  ///
+  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
+    assert(getNode(BB) == nullptr && "Block already in dominator tree!");
+    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
+    assert(IDomNode && "Not immediate dominator specified for block!");
+    DFSInfoValid = false;
+    return (DomTreeNodes[BB] = IDomNode->addChild(
+                llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
+  }
+
+  /// Add a new node to the forward dominator tree and make it a new root.
+  ///
+  /// \param BB New node in CFG.
+  /// \returns New dominator tree node that represents new CFG node.
+  ///
+  DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) {
+    assert(getNode(BB) == nullptr && "Block already in dominator tree!");
+    assert(!this->isPostDominator() &&
+           "Cannot change root of post-dominator tree");
+    DFSInfoValid = false;
+    DomTreeNodeBase<NodeT> *NewNode = (DomTreeNodes[BB] =
+      llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr)).get();
+    if (Roots.empty()) {
+      addRoot(BB);
+    } else {
+      assert(Roots.size() == 1);
+      NodeT *OldRoot = Roots.front();
+      auto &OldNode = DomTreeNodes[OldRoot];
+      OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot]));
+      OldNode->IDom = NewNode;
+      OldNode->UpdateLevel();
+      Roots[0] = BB;
+    }
+    return RootNode = NewNode;
+  }
+
+  /// changeImmediateDominator - This method is used to update the dominator
+  /// tree information when a node's immediate dominator changes.
+  ///
+  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
+                                DomTreeNodeBase<NodeT> *NewIDom) {
+    assert(N && NewIDom && "Cannot change null node pointers!");
+    DFSInfoValid = false;
+    N->setIDom(NewIDom);
+  }
+
+  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
+    changeImmediateDominator(getNode(BB), getNode(NewBB));
+  }
+
+  /// eraseNode - Removes a node from the dominator tree. Block must not
+  /// dominate any other blocks. Removes node from its immediate dominator's
+  /// children list. Deletes dominator node associated with basic block BB.
+  void eraseNode(NodeT *BB) {
+    DomTreeNodeBase<NodeT> *Node = getNode(BB);
+    assert(Node && "Removing node that isn't in dominator tree.");
+    assert(Node->getChildren().empty() && "Node is not a leaf node.");
+
+    DFSInfoValid = false;
+
+    // Remove node from immediate dominator's children list.
+    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
+    if (IDom) {
+      const auto I = find(IDom->Children, Node);
+      assert(I != IDom->Children.end() &&
+             "Not in immediate dominator children set!");
+      // I am no longer your child...
+      IDom->Children.erase(I);
+    }
+
+    DomTreeNodes.erase(BB);
+
+    if (!IsPostDom) return;
+
+    // Remember to update PostDominatorTree roots.
+    auto RIt = llvm::find(Roots, BB);
+    if (RIt != Roots.end()) {
+      std::swap(*RIt, Roots.back());
+      Roots.pop_back();
+    }
+  }
+
+  /// splitBlock - BB is split and now it has one successor. Update dominator
+  /// tree to reflect this change.
+  void splitBlock(NodeT *NewBB) {
+    if (IsPostDominator)
+      Split<Inverse<NodeT *>>(NewBB);
+    else
+      Split<NodeT *>(NewBB);
+  }
+
+  /// print - Convert to human readable form
+  ///
+  void print(raw_ostream &O) const {
+    O << "=============================--------------------------------\n";
+    if (IsPostDominator)
+      O << "Inorder PostDominator Tree: ";
+    else
+      O << "Inorder Dominator Tree: ";
+    if (!DFSInfoValid)
+      O << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
+    O << "\n";
+
+    // The postdom tree can have a null root if there are no returns.
+    if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), O, 1);
+    if (IsPostDominator) {
+      O << "Roots: ";
+      for (const NodePtr Block : Roots) {
+        Block->printAsOperand(O, false);
+        O << " ";
+      }
+      O << "\n";
+    }
+  }
+
+public:
+  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
+  /// dominator tree in dfs order.
+  void updateDFSNumbers() const {
+    if (DFSInfoValid) {
+      SlowQueries = 0;
+      return;
+    }
+
+    SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
+                          typename DomTreeNodeBase<NodeT>::const_iterator>,
+                32> WorkStack;
+
+    const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
+    assert((!Parent || ThisRoot) && "Empty constructed DomTree");
+    if (!ThisRoot)
+      return;
+
+    // Both dominators and postdominators have a single root node. In the case
+    // case of PostDominatorTree, this node is a virtual root.
+    WorkStack.push_back({ThisRoot, ThisRoot->begin()});
+
+    unsigned DFSNum = 0;
+    ThisRoot->DFSNumIn = DFSNum++;
+
+    while (!WorkStack.empty()) {
+      const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
+      const auto ChildIt = WorkStack.back().second;
+
+      // If we visited all of the children of this node, "recurse" back up the
+      // stack setting the DFOutNum.
+      if (ChildIt == Node->end()) {
+        Node->DFSNumOut = DFSNum++;
+        WorkStack.pop_back();
+      } else {
+        // Otherwise, recursively visit this child.
+        const DomTreeNodeBase<NodeT> *Child = *ChildIt;
+        ++WorkStack.back().second;
+
+        WorkStack.push_back({Child, Child->begin()});
+        Child->DFSNumIn = DFSNum++;
+      }
+    }
+
+    SlowQueries = 0;
+    DFSInfoValid = true;
+  }
+
+  /// recalculate - compute a dominator tree for the given function
+  void recalculate(ParentType &Func) {
+    Parent = &Func;
+    DomTreeBuilder::Calculate(*this);
+  }
+
+  /// verify - checks if the tree is correct. There are 3 level of verification:
+  ///  - Full --  verifies if the tree is correct by making sure all the
+  ///             properties (including the parent and the sibling property)
+  ///             hold.
+  ///             Takes O(N^3) time.
+  ///
+  ///  - Basic -- checks if the tree is correct, but compares it to a freshly
+  ///             constructed tree instead of checking the sibling property.
+  ///             Takes O(N^2) time.
+  ///
+  ///  - Fast  -- checks basic tree structure and compares it with a freshly
+  ///             constructed tree.
+  ///             Takes O(N^2) time worst case, but is faster in practise (same
+  ///             as tree construction).
+  bool verify(VerificationLevel VL = VerificationLevel::Full) const {
+    return DomTreeBuilder::Verify(*this, VL);
+  }
+
+protected:
+  void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
+
+  void reset() {
+    DomTreeNodes.clear();
+    Roots.clear();
+    RootNode = nullptr;
+    Parent = nullptr;
+    DFSInfoValid = false;
+    SlowQueries = 0;
+  }
+
+  // NewBB is split and now it has one successor. Update dominator tree to
+  // reflect this change.
+  template <class N>
+  void Split(typename GraphTraits<N>::NodeRef NewBB) {
+    using GraphT = GraphTraits<N>;
+    using NodeRef = typename GraphT::NodeRef;
+    assert(std::distance(GraphT::child_begin(NewBB),
+                         GraphT::child_end(NewBB)) == 1 &&
+           "NewBB should have a single successor!");
+    NodeRef NewBBSucc = *GraphT::child_begin(NewBB);
+
+    std::vector<NodeRef> PredBlocks;
+    for (const auto &Pred : children<Inverse<N>>(NewBB))
+      PredBlocks.push_back(Pred);
+
+    assert(!PredBlocks.empty() && "No predblocks?");
+
+    bool NewBBDominatesNewBBSucc = true;
+    for (const auto &Pred : children<Inverse<N>>(NewBBSucc)) {
+      if (Pred != NewBB && !dominates(NewBBSucc, Pred) &&
+          isReachableFromEntry(Pred)) {
+        NewBBDominatesNewBBSucc = false;
+        break;
+      }
+    }
+
+    // Find NewBB's immediate dominator and create new dominator tree node for
+    // NewBB.
+    NodeT *NewBBIDom = nullptr;
+    unsigned i = 0;
+    for (i = 0; i < PredBlocks.size(); ++i)
+      if (isReachableFromEntry(PredBlocks[i])) {
+        NewBBIDom = PredBlocks[i];
+        break;
+      }
+
+    // It's possible that none of the predecessors of NewBB are reachable;
+    // in that case, NewBB itself is unreachable, so nothing needs to be
+    // changed.
+    if (!NewBBIDom) return;
+
+    for (i = i + 1; i < PredBlocks.size(); ++i) {
+      if (isReachableFromEntry(PredBlocks[i]))
+        NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
+    }
+
+    // Create the new dominator tree node... and set the idom of NewBB.
+    DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom);
+
+    // If NewBB strictly dominates other blocks, then it is now the immediate
+    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
+    if (NewBBDominatesNewBBSucc) {
+      DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc);
+      changeImmediateDominator(NewBBSuccNode, NewBBNode);
+    }
+  }
+
+ private:
+  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
+                               const DomTreeNodeBase<NodeT> *B) const {
+    assert(A != B);
+    assert(isReachableFromEntry(B));
+    assert(isReachableFromEntry(A));
+
+    const DomTreeNodeBase<NodeT> *IDom;
+    while ((IDom = B->getIDom()) != nullptr && IDom != A && IDom != B)
+      B = IDom;  // Walk up the tree
+    return IDom != nullptr;
+  }
+
+  /// \brief Wipe this tree's state without releasing any resources.
+  ///
+  /// This is essentially a post-move helper only. It leaves the object in an
+  /// assignable and destroyable state, but otherwise invalid.
+  void wipe() {
+    DomTreeNodes.clear();
+    RootNode = nullptr;
+    Parent = nullptr;
+  }
+};
+
+template <typename T>
+using DomTreeBase = DominatorTreeBase<T, false>;
+
+template <typename T>
+using PostDomTreeBase = DominatorTreeBase<T, true>;
+
+// These two functions are declared out of line as a workaround for building
+// with old (< r147295) versions of clang because of pr11642.
+template <typename NodeT, bool IsPostDom>
+bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A,
+                                                    const NodeT *B) const {
+  if (A == B)
+    return true;
+
+  // Cast away the const qualifiers here. This is ok since
+  // this function doesn't actually return the values returned
+  // from getNode.
+  return dominates(getNode(const_cast<NodeT *>(A)),
+                   getNode(const_cast<NodeT *>(B)));
+}
+template <typename NodeT, bool IsPostDom>
+bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates(
+    const NodeT *A, const NodeT *B) const {
+  if (A == B)
+    return false;
+
+  // Cast away the const qualifiers here. This is ok since
+  // this function doesn't actually return the values returned
+  // from getNode.
+  return dominates(getNode(const_cast<NodeT *>(A)),
+                   getNode(const_cast<NodeT *>(B)));
+}
+
+} // end namespace llvm
+
+#endif // LLVM_SUPPORT_GENERICDOMTREE_H