blob: f14c2a4f3226a55ad976dbbd9079c1055c874288 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8//
9// This file contains routines that help analyze properties that chains of
10// computations have.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_VALUETRACKING_H
15#define LLVM_ANALYSIS_VALUETRACKING_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/Optional.h"
Andrew Walbran3d2c1972020-04-07 12:24:26 +010019#include "llvm/ADT/SmallSet.h"
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010020#include "llvm/IR/CallSite.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/Instruction.h"
23#include "llvm/IR/Intrinsics.h"
24#include <cassert>
25#include <cstdint>
26
27namespace llvm {
28
29class AddOperator;
30class APInt;
31class AssumptionCache;
32class DataLayout;
33class DominatorTree;
34class GEPOperator;
35class IntrinsicInst;
Andrew Walbran3d2c1972020-04-07 12:24:26 +010036class WithOverflowInst;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010037struct KnownBits;
38class Loop;
39class LoopInfo;
40class MDNode;
41class OptimizationRemarkEmitter;
42class StringRef;
43class TargetLibraryInfo;
44class Value;
45
46 /// Determine which bits of V are known to be either zero or one and return
47 /// them in the KnownZero/KnownOne bit sets.
48 ///
49 /// This function is defined on values with integer type, values with pointer
50 /// type, and vectors of integers. In the case
51 /// where V is a vector, the known zero and known one values are the
52 /// same width as the vector element, and the bit is set only if it is true
53 /// for all of the elements in the vector.
54 void computeKnownBits(const Value *V, KnownBits &Known,
55 const DataLayout &DL, unsigned Depth = 0,
56 AssumptionCache *AC = nullptr,
57 const Instruction *CxtI = nullptr,
58 const DominatorTree *DT = nullptr,
Andrew Scull0372a572018-11-16 15:47:06 +000059 OptimizationRemarkEmitter *ORE = nullptr,
60 bool UseInstrInfo = true);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010061
62 /// Returns the known bits rather than passing by reference.
63 KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
64 unsigned Depth = 0, AssumptionCache *AC = nullptr,
65 const Instruction *CxtI = nullptr,
66 const DominatorTree *DT = nullptr,
Andrew Scull0372a572018-11-16 15:47:06 +000067 OptimizationRemarkEmitter *ORE = nullptr,
68 bool UseInstrInfo = true);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010069
70 /// Compute known bits from the range metadata.
71 /// \p KnownZero the set of bits that are known to be zero
72 /// \p KnownOne the set of bits that are known to be one
73 void computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
74 KnownBits &Known);
75
76 /// Return true if LHS and RHS have no common bits set.
77 bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
78 const DataLayout &DL,
79 AssumptionCache *AC = nullptr,
80 const Instruction *CxtI = nullptr,
Andrew Scull0372a572018-11-16 15:47:06 +000081 const DominatorTree *DT = nullptr,
82 bool UseInstrInfo = true);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010083
84 /// Return true if the given value is known to have exactly one bit set when
85 /// defined. For vectors return true if every element is known to be a power
86 /// of two when defined. Supports values with integer or pointer type and
87 /// vectors of integers. If 'OrZero' is set, then return true if the given
88 /// value is either a power of two or zero.
89 bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
90 bool OrZero = false, unsigned Depth = 0,
91 AssumptionCache *AC = nullptr,
92 const Instruction *CxtI = nullptr,
Andrew Scull0372a572018-11-16 15:47:06 +000093 const DominatorTree *DT = nullptr,
94 bool UseInstrInfo = true);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010095
96 bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);
97
98 /// Return true if the given value is known to be non-zero when defined. For
99 /// vectors, return true if every element is known to be non-zero when
100 /// defined. For pointers, if the context instruction and dominator tree are
101 /// specified, perform context-sensitive analysis and return true if the
102 /// pointer couldn't possibly be null at the specified instruction.
103 /// Supports values with integer or pointer type and vectors of integers.
104 bool isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth = 0,
105 AssumptionCache *AC = nullptr,
106 const Instruction *CxtI = nullptr,
Andrew Scull0372a572018-11-16 15:47:06 +0000107 const DominatorTree *DT = nullptr,
108 bool UseInstrInfo = true);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100109
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100110 /// Return true if the two given values are negation.
111 /// Currently can recoginze Value pair:
112 /// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
113 /// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
114 bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false);
115
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100116 /// Returns true if the give value is known to be non-negative.
117 bool isKnownNonNegative(const Value *V, const DataLayout &DL,
118 unsigned Depth = 0,
119 AssumptionCache *AC = nullptr,
120 const Instruction *CxtI = nullptr,
Andrew Scull0372a572018-11-16 15:47:06 +0000121 const DominatorTree *DT = nullptr,
122 bool UseInstrInfo = true);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100123
124 /// Returns true if the given value is known be positive (i.e. non-negative
125 /// and non-zero).
126 bool isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth = 0,
127 AssumptionCache *AC = nullptr,
128 const Instruction *CxtI = nullptr,
Andrew Scull0372a572018-11-16 15:47:06 +0000129 const DominatorTree *DT = nullptr,
130 bool UseInstrInfo = true);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100131
132 /// Returns true if the given value is known be negative (i.e. non-positive
133 /// and non-zero).
134 bool isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth = 0,
135 AssumptionCache *AC = nullptr,
136 const Instruction *CxtI = nullptr,
Andrew Scull0372a572018-11-16 15:47:06 +0000137 const DominatorTree *DT = nullptr,
138 bool UseInstrInfo = true);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100139
140 /// Return true if the given values are known to be non-equal when defined.
141 /// Supports scalar integer types only.
142 bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
Andrew Scull0372a572018-11-16 15:47:06 +0000143 AssumptionCache *AC = nullptr,
144 const Instruction *CxtI = nullptr,
145 const DominatorTree *DT = nullptr,
146 bool UseInstrInfo = true);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100147
148 /// Return true if 'V & Mask' is known to be zero. We use this predicate to
149 /// simplify operations downstream. Mask is known to be zero for bits that V
150 /// cannot have.
151 ///
152 /// This function is defined on values with integer type, values with pointer
153 /// type, and vectors of integers. In the case
154 /// where V is a vector, the mask, known zero, and known one values are the
155 /// same width as the vector element, and the bit is set only if it is true
156 /// for all of the elements in the vector.
157 bool MaskedValueIsZero(const Value *V, const APInt &Mask,
158 const DataLayout &DL,
159 unsigned Depth = 0, AssumptionCache *AC = nullptr,
160 const Instruction *CxtI = nullptr,
Andrew Scull0372a572018-11-16 15:47:06 +0000161 const DominatorTree *DT = nullptr,
162 bool UseInstrInfo = true);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100163
164 /// Return the number of times the sign bit of the register is replicated into
165 /// the other bits. We know that at least 1 bit is always equal to the sign
166 /// bit (itself), but other cases can give us information. For example,
167 /// immediately after an "ashr X, 2", we know that the top 3 bits are all
168 /// equal to each other, so we return 3. For vectors, return the number of
169 /// sign bits for the vector element with the mininum number of known sign
170 /// bits.
171 unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
172 unsigned Depth = 0, AssumptionCache *AC = nullptr,
173 const Instruction *CxtI = nullptr,
Andrew Scull0372a572018-11-16 15:47:06 +0000174 const DominatorTree *DT = nullptr,
175 bool UseInstrInfo = true);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100176
177 /// This function computes the integer multiple of Base that equals V. If
178 /// successful, it returns true and returns the multiple in Multiple. If
179 /// unsuccessful, it returns false. Also, if V can be simplified to an
180 /// integer, then the simplified V is returned in Val. Look through sext only
181 /// if LookThroughSExt=true.
182 bool ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
183 bool LookThroughSExt = false,
184 unsigned Depth = 0);
185
186 /// Map a call instruction to an intrinsic ID. Libcalls which have equivalent
187 /// intrinsics are treated as-if they were intrinsics.
188 Intrinsic::ID getIntrinsicForCallSite(ImmutableCallSite ICS,
189 const TargetLibraryInfo *TLI);
190
191 /// Return true if we can prove that the specified FP value is never equal to
192 /// -0.0.
193 bool CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
194 unsigned Depth = 0);
195
196 /// Return true if we can prove that the specified FP value is either NaN or
197 /// never less than -0.0.
198 ///
199 /// NaN --> true
200 /// +0 --> true
201 /// -0 --> true
202 /// x > +0 --> true
203 /// x < -0 --> false
204 bool CannotBeOrderedLessThanZero(const Value *V, const TargetLibraryInfo *TLI);
205
206 /// Return true if the floating-point scalar value is not a NaN or if the
207 /// floating-point vector value has no NaN elements. Return false if a value
208 /// could ever be NaN.
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100209 bool isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
210 unsigned Depth = 0);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100211
212 /// Return true if we can prove that the specified FP value's sign bit is 0.
213 ///
214 /// NaN --> true/false (depending on the NaN's sign bit)
215 /// +0 --> true
216 /// -0 --> false
217 /// x > +0 --> true
218 /// x < -0 --> false
219 bool SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI);
220
221 /// If the specified value can be set by repeating the same byte in memory,
222 /// return the i8 value that it is represented with. This is true for all i8
223 /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
224 /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
Andrew Scull0372a572018-11-16 15:47:06 +0000225 /// i16 0x1234), return null. If the value is entirely undef and padding,
226 /// return undef.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100227 Value *isBytewiseValue(Value *V);
228
229 /// Given an aggregrate and an sequence of indices, see if the scalar value
230 /// indexed is already around as a register, for example if it were inserted
231 /// directly into the aggregrate.
232 ///
233 /// If InsertBefore is not null, this function will duplicate (modified)
234 /// insertvalues when a part of a nested struct is extracted.
235 Value *FindInsertedValue(Value *V,
236 ArrayRef<unsigned> idx_range,
237 Instruction *InsertBefore = nullptr);
238
239 /// Analyze the specified pointer to see if it can be expressed as a base
240 /// pointer plus a constant offset. Return the base and offset to the caller.
241 Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
242 const DataLayout &DL);
243 inline const Value *GetPointerBaseWithConstantOffset(const Value *Ptr,
244 int64_t &Offset,
245 const DataLayout &DL) {
246 return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset,
247 DL);
248 }
249
250 /// Returns true if the GEP is based on a pointer to a string (array of
251 // \p CharSize integers) and is indexing into this string.
252 bool isGEPBasedOnPointerToString(const GEPOperator *GEP,
253 unsigned CharSize = 8);
254
255 /// Represents offset+length into a ConstantDataArray.
256 struct ConstantDataArraySlice {
257 /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
258 /// initializer, it just doesn't fit the ConstantDataArray interface).
259 const ConstantDataArray *Array;
260
261 /// Slice starts at this Offset.
262 uint64_t Offset;
263
264 /// Length of the slice.
265 uint64_t Length;
266
267 /// Moves the Offset and adjusts Length accordingly.
268 void move(uint64_t Delta) {
269 assert(Delta < Length);
270 Offset += Delta;
271 Length -= Delta;
272 }
273
274 /// Convenience accessor for elements in the slice.
275 uint64_t operator[](unsigned I) const {
276 return Array==nullptr ? 0 : Array->getElementAsInteger(I + Offset);
277 }
278 };
279
280 /// Returns true if the value \p V is a pointer into a ConstantDataArray.
281 /// If successful \p Slice will point to a ConstantDataArray info object
282 /// with an appropriate offset.
283 bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
284 unsigned ElementSize, uint64_t Offset = 0);
285
286 /// This function computes the length of a null-terminated C string pointed to
287 /// by V. If successful, it returns true and returns the string in Str. If
288 /// unsuccessful, it returns false. This does not include the trailing null
289 /// character by default. If TrimAtNul is set to false, then this returns any
290 /// trailing null characters as well as any other characters that come after
291 /// it.
292 bool getConstantStringInfo(const Value *V, StringRef &Str,
293 uint64_t Offset = 0, bool TrimAtNul = true);
294
295 /// If we can compute the length of the string pointed to by the specified
296 /// pointer, return 'len+1'. If we can't, return 0.
297 uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
298
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100299 /// This function returns call pointer argument that is considered the same by
300 /// aliasing rules. You CAN'T use it to replace one value with another.
Andrew Walbran16937d02019-10-22 13:54:20 +0100301 const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call);
302 inline Value *getArgumentAliasingToReturnedPointer(CallBase *Call) {
303 return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
304 const_cast<const CallBase *>(Call)));
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100305 }
306
307 // {launder,strip}.invariant.group returns pointer that aliases its argument,
308 // and it only captures pointer by returning it.
309 // These intrinsics are not marked as nocapture, because returning is
310 // considered as capture. The arguments are not marked as returned neither,
311 // because it would make it useless.
312 bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
Andrew Walbran16937d02019-10-22 13:54:20 +0100313 const CallBase *Call);
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100314
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100315 /// This method strips off any GEP address adjustments and pointer casts from
316 /// the specified value, returning the original object being addressed. Note
317 /// that the returned value has pointer type if the specified value does. If
318 /// the MaxLookup value is non-zero, it limits the number of instructions to
319 /// be stripped off.
320 Value *GetUnderlyingObject(Value *V, const DataLayout &DL,
321 unsigned MaxLookup = 6);
322 inline const Value *GetUnderlyingObject(const Value *V, const DataLayout &DL,
323 unsigned MaxLookup = 6) {
324 return GetUnderlyingObject(const_cast<Value *>(V), DL, MaxLookup);
325 }
326
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100327 /// This method is similar to GetUnderlyingObject except that it can
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100328 /// look through phi and select instructions and return multiple objects.
329 ///
330 /// If LoopInfo is passed, loop phis are further analyzed. If a pointer
331 /// accesses different objects in each iteration, we don't look through the
332 /// phi node. E.g. consider this loop nest:
333 ///
334 /// int **A;
335 /// for (i)
336 /// for (j) {
337 /// A[i][j] = A[i-1][j] * B[j]
338 /// }
339 ///
340 /// This is transformed by Load-PRE to stash away A[i] for the next iteration
341 /// of the outer loop:
342 ///
343 /// Curr = A[0]; // Prev_0
344 /// for (i: 1..N) {
345 /// Prev = Curr; // Prev = PHI (Prev_0, Curr)
346 /// Curr = A[i];
347 /// for (j: 0..N) {
348 /// Curr[j] = Prev[j] * B[j]
349 /// }
350 /// }
351 ///
352 /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
353 /// should not assume that Curr and Prev share the same underlying object thus
354 /// it shouldn't look through the phi above.
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100355 void GetUnderlyingObjects(const Value *V,
356 SmallVectorImpl<const Value *> &Objects,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100357 const DataLayout &DL, LoopInfo *LI = nullptr,
358 unsigned MaxLookup = 6);
359
360 /// This is a wrapper around GetUnderlyingObjects and adds support for basic
361 /// ptrtoint+arithmetic+inttoptr sequences.
362 bool getUnderlyingObjectsForCodeGen(const Value *V,
363 SmallVectorImpl<Value *> &Objects,
364 const DataLayout &DL);
365
366 /// Return true if the only users of this pointer are lifetime markers.
367 bool onlyUsedByLifetimeMarkers(const Value *V);
368
369 /// Return true if the instruction does not have any effects besides
370 /// calculating the result and does not have undefined behavior.
371 ///
372 /// This method never returns true for an instruction that returns true for
373 /// mayHaveSideEffects; however, this method also does some other checks in
374 /// addition. It checks for undefined behavior, like dividing by zero or
375 /// loading from an invalid pointer (but not for undefined results, like a
376 /// shift with a shift amount larger than the width of the result). It checks
377 /// for malloc and alloca because speculatively executing them might cause a
378 /// memory leak. It also returns false for instructions related to control
379 /// flow, specifically terminators and PHI nodes.
380 ///
381 /// If the CtxI is specified this method performs context-sensitive analysis
382 /// and returns true if it is safe to execute the instruction immediately
383 /// before the CtxI.
384 ///
385 /// If the CtxI is NOT specified this method only looks at the instruction
386 /// itself and its operands, so if this method returns true, it is safe to
387 /// move the instruction as long as the correct dominance relationships for
388 /// the operands and users hold.
389 ///
390 /// This method can return true for instructions that read memory;
391 /// for such instructions, moving them may change the resulting value.
392 bool isSafeToSpeculativelyExecute(const Value *V,
393 const Instruction *CtxI = nullptr,
394 const DominatorTree *DT = nullptr);
395
396 /// Returns true if the result or effects of the given instructions \p I
397 /// depend on or influence global memory.
398 /// Memory dependence arises for example if the instruction reads from
399 /// memory or may produce effects or undefined behaviour. Memory dependent
400 /// instructions generally cannot be reorderd with respect to other memory
401 /// dependent instructions or moved into non-dominated basic blocks.
402 /// Instructions which just compute a value based on the values of their
403 /// operands are not memory dependent.
404 bool mayBeMemoryDependent(const Instruction &I);
405
406 /// Return true if it is an intrinsic that cannot be speculated but also
407 /// cannot trap.
408 bool isAssumeLikeIntrinsic(const Instruction *I);
409
410 /// Return true if it is valid to use the assumptions provided by an
411 /// assume intrinsic, I, at the point in the control-flow identified by the
412 /// context instruction, CxtI.
413 bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
414 const DominatorTree *DT = nullptr);
415
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100416 enum class OverflowResult {
417 /// Always overflows in the direction of signed/unsigned min value.
418 AlwaysOverflowsLow,
419 /// Always overflows in the direction of signed/unsigned max value.
420 AlwaysOverflowsHigh,
421 /// May or may not overflow.
422 MayOverflow,
423 /// Never overflows.
424 NeverOverflows,
425 };
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100426
427 OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
428 const Value *RHS,
429 const DataLayout &DL,
430 AssumptionCache *AC,
431 const Instruction *CxtI,
Andrew Scull0372a572018-11-16 15:47:06 +0000432 const DominatorTree *DT,
433 bool UseInstrInfo = true);
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100434 OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
435 const DataLayout &DL,
436 AssumptionCache *AC,
437 const Instruction *CxtI,
Andrew Scull0372a572018-11-16 15:47:06 +0000438 const DominatorTree *DT,
439 bool UseInstrInfo = true);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100440 OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
441 const Value *RHS,
442 const DataLayout &DL,
443 AssumptionCache *AC,
444 const Instruction *CxtI,
Andrew Scull0372a572018-11-16 15:47:06 +0000445 const DominatorTree *DT,
446 bool UseInstrInfo = true);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100447 OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS,
448 const DataLayout &DL,
449 AssumptionCache *AC = nullptr,
450 const Instruction *CxtI = nullptr,
451 const DominatorTree *DT = nullptr);
452 /// This version also leverages the sign bit of Add if known.
453 OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
454 const DataLayout &DL,
455 AssumptionCache *AC = nullptr,
456 const Instruction *CxtI = nullptr,
457 const DominatorTree *DT = nullptr);
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100458 OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
459 const DataLayout &DL,
460 AssumptionCache *AC,
461 const Instruction *CxtI,
462 const DominatorTree *DT);
463 OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
464 const DataLayout &DL,
465 AssumptionCache *AC,
466 const Instruction *CxtI,
467 const DominatorTree *DT);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100468
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100469 /// Returns true if the arithmetic part of the \p WO 's result is
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100470 /// used only along the paths control dependent on the computation
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100471 /// not overflowing, \p WO being an <op>.with.overflow intrinsic.
472 bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100473 const DominatorTree &DT);
474
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100475
476 /// Determine the possible constant range of an integer or vector of integer
477 /// value. This is intended as a cheap, non-recursive check.
478 ConstantRange computeConstantRange(const Value *V, bool UseInstrInfo = true);
479
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100480 /// Return true if this function can prove that the instruction I will
481 /// always transfer execution to one of its successors (including the next
482 /// instruction that follows within a basic block). E.g. this is not
483 /// guaranteed for function calls that could loop infinitely.
484 ///
485 /// In other words, this function returns false for instructions that may
486 /// transfer execution or fail to transfer execution in a way that is not
487 /// captured in the CFG nor in the sequence of instructions within a basic
488 /// block.
489 ///
490 /// Undefined behavior is assumed not to happen, so e.g. division is
491 /// guaranteed to transfer execution to the following instruction even
492 /// though division by zero might cause undefined behavior.
493 bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
494
495 /// Returns true if this block does not contain a potential implicit exit.
496 /// This is equivelent to saying that all instructions within the basic block
497 /// are guaranteed to transfer execution to their successor within the basic
498 /// block. This has the same assumptions w.r.t. undefined behavior as the
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100499 /// instruction variant of this function.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100500 bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);
501
502 /// Return true if this function can prove that the instruction I
503 /// is executed for every iteration of the loop L.
504 ///
505 /// Note that this currently only considers the loop header.
506 bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
507 const Loop *L);
508
509 /// Return true if this function can prove that I is guaranteed to yield
510 /// full-poison (all bits poison) if at least one of its operands are
511 /// full-poison (all bits poison).
512 ///
513 /// The exact rules for how poison propagates through instructions have
514 /// not been settled as of 2015-07-10, so this function is conservative
515 /// and only considers poison to be propagated in uncontroversial
516 /// cases. There is no attempt to track values that may be only partially
517 /// poison.
518 bool propagatesFullPoison(const Instruction *I);
519
520 /// Return either nullptr or an operand of I such that I will trigger
521 /// undefined behavior if I is executed and that operand has a full-poison
522 /// value (all bits poison).
523 const Value *getGuaranteedNonFullPoisonOp(const Instruction *I);
524
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100525 /// Return true if the given instruction must trigger undefined behavior.
526 /// when I is executed with any operands which appear in KnownPoison holding
527 /// a full-poison value at the point of execution.
528 bool mustTriggerUB(const Instruction *I,
529 const SmallSet<const Value *, 16>& KnownPoison);
530
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100531 /// Return true if this function can prove that if PoisonI is executed
532 /// and yields a full-poison value (all bits poison), then that will
533 /// trigger undefined behavior.
534 ///
535 /// Note that this currently only considers the basic block that is
536 /// the parent of I.
537 bool programUndefinedIfFullPoison(const Instruction *PoisonI);
538
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100539 /// Specific patterns of select instructions we can match.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100540 enum SelectPatternFlavor {
541 SPF_UNKNOWN = 0,
542 SPF_SMIN, /// Signed minimum
543 SPF_UMIN, /// Unsigned minimum
544 SPF_SMAX, /// Signed maximum
545 SPF_UMAX, /// Unsigned maximum
546 SPF_FMINNUM, /// Floating point minnum
547 SPF_FMAXNUM, /// Floating point maxnum
548 SPF_ABS, /// Absolute value
549 SPF_NABS /// Negated absolute value
550 };
551
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100552 /// Behavior when a floating point min/max is given one NaN and one
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100553 /// non-NaN as input.
554 enum SelectPatternNaNBehavior {
555 SPNB_NA = 0, /// NaN behavior not applicable.
556 SPNB_RETURNS_NAN, /// Given one NaN input, returns the NaN.
557 SPNB_RETURNS_OTHER, /// Given one NaN input, returns the non-NaN.
558 SPNB_RETURNS_ANY /// Given one NaN input, can return either (or
559 /// it has been determined that no operands can
560 /// be NaN).
561 };
562
563 struct SelectPatternResult {
564 SelectPatternFlavor Flavor;
565 SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
566 /// SPF_FMINNUM or SPF_FMAXNUM.
567 bool Ordered; /// When implementing this min/max pattern as
568 /// fcmp; select, does the fcmp have to be
569 /// ordered?
570
571 /// Return true if \p SPF is a min or a max pattern.
572 static bool isMinOrMax(SelectPatternFlavor SPF) {
573 return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
574 }
575 };
576
577 /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
578 /// and providing the out parameter results if we successfully match.
579 ///
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100580 /// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
581 /// the negation instruction from the idiom.
582 ///
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100583 /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
584 /// not match that of the original select. If this is the case, the cast
585 /// operation (one of Trunc,SExt,Zext) that must be done to transform the
586 /// type of LHS and RHS into the type of V is returned in CastOp.
587 ///
588 /// For example:
589 /// %1 = icmp slt i32 %a, i32 4
590 /// %2 = sext i32 %a to i64
591 /// %3 = select i1 %1, i64 %2, i64 4
592 ///
593 /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
594 ///
595 SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
596 Instruction::CastOps *CastOp = nullptr,
597 unsigned Depth = 0);
598 inline SelectPatternResult
599 matchSelectPattern(const Value *V, const Value *&LHS, const Value *&RHS,
600 Instruction::CastOps *CastOp = nullptr) {
601 Value *L = const_cast<Value*>(LHS);
602 Value *R = const_cast<Value*>(RHS);
603 auto Result = matchSelectPattern(const_cast<Value*>(V), L, R);
604 LHS = L;
605 RHS = R;
606 return Result;
607 }
608
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100609 /// Determine the pattern that a select with the given compare as its
610 /// predicate and given values as its true/false operands would match.
611 SelectPatternResult matchDecomposedSelectPattern(
612 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
613 Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0);
614
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100615 /// Return the canonical comparison predicate for the specified
616 /// minimum/maximum flavor.
617 CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF,
618 bool Ordered = false);
619
620 /// Return the inverse minimum/maximum flavor of the specified flavor.
621 /// For example, signed minimum is the inverse of signed maximum.
622 SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF);
623
624 /// Return the canonical inverse comparison predicate for the specified
625 /// minimum/maximum flavor.
626 CmpInst::Predicate getInverseMinMaxPred(SelectPatternFlavor SPF);
627
628 /// Return true if RHS is known to be implied true by LHS. Return false if
629 /// RHS is known to be implied false by LHS. Otherwise, return None if no
630 /// implication can be made.
631 /// A & B must be i1 (boolean) values or a vector of such values. Note that
632 /// the truth table for implication is the same as <=u on i1 values (but not
633 /// <=s!). The truth table for both is:
634 /// | T | F (B)
635 /// T | T | F
636 /// F | T | T
637 /// (A)
638 Optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
639 const DataLayout &DL, bool LHSIsTrue = true,
640 unsigned Depth = 0);
Andrew Walbran16937d02019-10-22 13:54:20 +0100641
642 /// Return the boolean condition value in the context of the given instruction
643 /// if it is known based on dominating conditions.
644 Optional<bool> isImpliedByDomCondition(const Value *Cond,
645 const Instruction *ContextI,
646 const DataLayout &DL);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100647} // end namespace llvm
648
649#endif // LLVM_ANALYSIS_VALUETRACKING_H