blob: 8af5fb86995a10cd07412839fde2601ce73f58a5 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- CGSCCPassManager.h - Call graph pass management ----------*- C++ -*-===//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This header provides classes for managing passes over SCCs of the call
11/// graph. These passes form an important component of LLVM's interprocedural
12/// optimizations. Because they operate on the SCCs of the call graph, and they
13/// traverse the graph in post-order, they can effectively do pair-wise
14/// interprocedural optimizations for all call edges in the program while
15/// incrementally refining it and improving the context of these pair-wise
16/// optimizations. At each call site edge, the callee has already been
17/// optimized as much as is possible. This in turn allows very accurate
18/// analysis of it for IPO.
19///
20/// A secondary more general goal is to be able to isolate optimization on
21/// unrelated parts of the IR module. This is useful to ensure our
22/// optimizations are principled and don't miss oportunities where refinement
23/// of one part of the module influence transformations in another part of the
24/// module. But this is also useful if we want to parallelize the optimizations
25/// across common large module graph shapes which tend to be very wide and have
26/// large regions of unrelated cliques.
27///
28/// To satisfy these goals, we use the LazyCallGraph which provides two graphs
29/// nested inside each other (and built lazily from the bottom-up): the call
30/// graph proper, and a reference graph. The reference graph is super set of
31/// the call graph and is a conservative approximation of what could through
32/// scalar or CGSCC transforms *become* the call graph. Using this allows us to
33/// ensure we optimize functions prior to them being introduced into the call
34/// graph by devirtualization or other technique, and thus ensures that
35/// subsequent pair-wise interprocedural optimizations observe the optimized
36/// form of these functions. The (potentially transitive) reference
37/// reachability used by the reference graph is a conservative approximation
38/// that still allows us to have independent regions of the graph.
39///
40/// FIXME: There is one major drawback of the reference graph: in its naive
41/// form it is quadratic because it contains a distinct edge for each
42/// (potentially indirect) reference, even if are all through some common
43/// global table of function pointers. This can be fixed in a number of ways
44/// that essentially preserve enough of the normalization. While it isn't
45/// expected to completely preclude the usability of this, it will need to be
46/// addressed.
47///
48///
49/// All of these issues are made substantially more complex in the face of
50/// mutations to the call graph while optimization passes are being run. When
51/// mutations to the call graph occur we want to achieve two different things:
52///
53/// - We need to update the call graph in-flight and invalidate analyses
54/// cached on entities in the graph. Because of the cache-based analysis
55/// design of the pass manager, it is essential to have stable identities for
56/// the elements of the IR that passes traverse, and to invalidate any
57/// analyses cached on these elements as the mutations take place.
58///
59/// - We want to preserve the incremental and post-order traversal of the
60/// graph even as it is refined and mutated. This means we want optimization
61/// to observe the most refined form of the call graph and to do so in
62/// post-order.
63///
64/// To address this, the CGSCC manager uses both worklists that can be expanded
65/// by passes which transform the IR, and provides invalidation tests to skip
66/// entries that become dead. This extra data is provided to every SCC pass so
67/// that it can carefully update the manager's traversal as the call graph
68/// mutates.
69///
70/// We also provide support for running function passes within the CGSCC walk,
71/// and there we provide automatic update of the call graph including of the
72/// pass manager to reflect call graph changes that fall out naturally as part
73/// of scalar transformations.
74///
75/// The patterns used to ensure the goals of post-order visitation of the fully
76/// refined graph:
77///
78/// 1) Sink toward the "bottom" as the graph is refined. This means that any
79/// iteration continues in some valid post-order sequence after the mutation
80/// has altered the structure.
81///
82/// 2) Enqueue in post-order, including the current entity. If the current
83/// entity's shape changes, it and everything after it in post-order needs
84/// to be visited to observe that shape.
85///
86//===----------------------------------------------------------------------===//
87
88#ifndef LLVM_ANALYSIS_CGSCCPASSMANAGER_H
89#define LLVM_ANALYSIS_CGSCCPASSMANAGER_H
90
91#include "llvm/ADT/DenseSet.h"
92#include "llvm/ADT/PriorityWorklist.h"
93#include "llvm/ADT/STLExtras.h"
94#include "llvm/ADT/SmallPtrSet.h"
95#include "llvm/ADT/SmallVector.h"
96#include "llvm/Analysis/LazyCallGraph.h"
97#include "llvm/IR/CallSite.h"
98#include "llvm/IR/Function.h"
99#include "llvm/IR/InstIterator.h"
100#include "llvm/IR/PassManager.h"
101#include "llvm/IR/ValueHandle.h"
102#include "llvm/Support/Debug.h"
103#include "llvm/Support/raw_ostream.h"
104#include <algorithm>
105#include <cassert>
106#include <utility>
107
108namespace llvm {
109
110struct CGSCCUpdateResult;
111class Module;
112
113// Allow debug logging in this inline function.
114#define DEBUG_TYPE "cgscc"
115
116/// Extern template declaration for the analysis set for this IR unit.
117extern template class AllAnalysesOn<LazyCallGraph::SCC>;
118
119extern template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
120
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100121/// The CGSCC analysis manager.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100122///
123/// See the documentation for the AnalysisManager template for detail
124/// documentation. This type serves as a convenient way to refer to this
125/// construct in the adaptors and proxies used to integrate this into the larger
126/// pass manager infrastructure.
127using CGSCCAnalysisManager =
128 AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
129
130// Explicit specialization and instantiation declarations for the pass manager.
131// See the comments on the definition of the specialization for details on how
132// it differs from the primary template.
133template <>
134PreservedAnalyses
135PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
136 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
137 CGSCCAnalysisManager &AM,
138 LazyCallGraph &G, CGSCCUpdateResult &UR);
139extern template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
140 LazyCallGraph &, CGSCCUpdateResult &>;
141
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100142/// The CGSCC pass manager.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100143///
144/// See the documentation for the PassManager template for details. It runs
145/// a sequence of SCC passes over each SCC that the manager is run over. This
146/// type serves as a convenient way to refer to this construct.
147using CGSCCPassManager =
148 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
149 CGSCCUpdateResult &>;
150
151/// An explicit specialization of the require analysis template pass.
152template <typename AnalysisT>
153struct RequireAnalysisPass<AnalysisT, LazyCallGraph::SCC, CGSCCAnalysisManager,
154 LazyCallGraph &, CGSCCUpdateResult &>
155 : PassInfoMixin<RequireAnalysisPass<AnalysisT, LazyCallGraph::SCC,
156 CGSCCAnalysisManager, LazyCallGraph &,
157 CGSCCUpdateResult &>> {
158 PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
159 LazyCallGraph &CG, CGSCCUpdateResult &) {
160 (void)AM.template getResult<AnalysisT>(C, CG);
161 return PreservedAnalyses::all();
162 }
163};
164
165/// A proxy from a \c CGSCCAnalysisManager to a \c Module.
166using CGSCCAnalysisManagerModuleProxy =
167 InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
168
169/// We need a specialized result for the \c CGSCCAnalysisManagerModuleProxy so
170/// it can have access to the call graph in order to walk all the SCCs when
171/// invalidating things.
172template <> class CGSCCAnalysisManagerModuleProxy::Result {
173public:
174 explicit Result(CGSCCAnalysisManager &InnerAM, LazyCallGraph &G)
175 : InnerAM(&InnerAM), G(&G) {}
176
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100177 /// Accessor for the analysis manager.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100178 CGSCCAnalysisManager &getManager() { return *InnerAM; }
179
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100180 /// Handler for invalidation of the Module.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100181 ///
182 /// If the proxy analysis itself is preserved, then we assume that the set of
183 /// SCCs in the Module hasn't changed. Thus any pointers to SCCs in the
184 /// CGSCCAnalysisManager are still valid, and we don't need to call \c clear
185 /// on the CGSCCAnalysisManager.
186 ///
187 /// Regardless of whether this analysis is marked as preserved, all of the
188 /// analyses in the \c CGSCCAnalysisManager are potentially invalidated based
189 /// on the set of preserved analyses.
190 bool invalidate(Module &M, const PreservedAnalyses &PA,
191 ModuleAnalysisManager::Invalidator &Inv);
192
193private:
194 CGSCCAnalysisManager *InnerAM;
195 LazyCallGraph *G;
196};
197
198/// Provide a specialized run method for the \c CGSCCAnalysisManagerModuleProxy
199/// so it can pass the lazy call graph to the result.
200template <>
201CGSCCAnalysisManagerModuleProxy::Result
202CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM);
203
204// Ensure the \c CGSCCAnalysisManagerModuleProxy is provided as an extern
205// template.
206extern template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
207
208extern template class OuterAnalysisManagerProxy<
209 ModuleAnalysisManager, LazyCallGraph::SCC, LazyCallGraph &>;
210
211/// A proxy from a \c ModuleAnalysisManager to an \c SCC.
212using ModuleAnalysisManagerCGSCCProxy =
213 OuterAnalysisManagerProxy<ModuleAnalysisManager, LazyCallGraph::SCC,
214 LazyCallGraph &>;
215
216/// Support structure for SCC passes to communicate updates the call graph back
217/// to the CGSCC pass manager infrsatructure.
218///
219/// The CGSCC pass manager runs SCC passes which are allowed to update the call
220/// graph and SCC structures. This means the structure the pass manager works
221/// on is mutating underneath it. In order to support that, there needs to be
222/// careful communication about the precise nature and ramifications of these
223/// updates to the pass management infrastructure.
224///
225/// All SCC passes will have to accept a reference to the management layer's
226/// update result struct and use it to reflect the results of any CG updates
227/// performed.
228///
229/// Passes which do not change the call graph structure in any way can just
230/// ignore this argument to their run method.
231struct CGSCCUpdateResult {
232 /// Worklist of the RefSCCs queued for processing.
233 ///
234 /// When a pass refines the graph and creates new RefSCCs or causes them to
235 /// have a different shape or set of component SCCs it should add the RefSCCs
236 /// to this worklist so that we visit them in the refined form.
237 ///
238 /// This worklist is in reverse post-order, as we pop off the back in order
239 /// to observe RefSCCs in post-order. When adding RefSCCs, clients should add
240 /// them in reverse post-order.
241 SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> &RCWorklist;
242
243 /// Worklist of the SCCs queued for processing.
244 ///
245 /// When a pass refines the graph and creates new SCCs or causes them to have
246 /// a different shape or set of component functions it should add the SCCs to
247 /// this worklist so that we visit them in the refined form.
248 ///
249 /// Note that if the SCCs are part of a RefSCC that is added to the \c
250 /// RCWorklist, they don't need to be added here as visiting the RefSCC will
251 /// be sufficient to re-visit the SCCs within it.
252 ///
253 /// This worklist is in reverse post-order, as we pop off the back in order
254 /// to observe SCCs in post-order. When adding SCCs, clients should add them
255 /// in reverse post-order.
256 SmallPriorityWorklist<LazyCallGraph::SCC *, 1> &CWorklist;
257
258 /// The set of invalidated RefSCCs which should be skipped if they are found
259 /// in \c RCWorklist.
260 ///
261 /// This is used to quickly prune out RefSCCs when they get deleted and
262 /// happen to already be on the worklist. We use this primarily to avoid
263 /// scanning the list and removing entries from it.
264 SmallPtrSetImpl<LazyCallGraph::RefSCC *> &InvalidatedRefSCCs;
265
266 /// The set of invalidated SCCs which should be skipped if they are found
267 /// in \c CWorklist.
268 ///
269 /// This is used to quickly prune out SCCs when they get deleted and happen
270 /// to already be on the worklist. We use this primarily to avoid scanning
271 /// the list and removing entries from it.
272 SmallPtrSetImpl<LazyCallGraph::SCC *> &InvalidatedSCCs;
273
274 /// If non-null, the updated current \c RefSCC being processed.
275 ///
276 /// This is set when a graph refinement takes place an the "current" point in
277 /// the graph moves "down" or earlier in the post-order walk. This will often
278 /// cause the "current" RefSCC to be a newly created RefSCC object and the
279 /// old one to be added to the above worklist. When that happens, this
280 /// pointer is non-null and can be used to continue processing the "top" of
281 /// the post-order walk.
282 LazyCallGraph::RefSCC *UpdatedRC;
283
284 /// If non-null, the updated current \c SCC being processed.
285 ///
286 /// This is set when a graph refinement takes place an the "current" point in
287 /// the graph moves "down" or earlier in the post-order walk. This will often
288 /// cause the "current" SCC to be a newly created SCC object and the old one
289 /// to be added to the above worklist. When that happens, this pointer is
290 /// non-null and can be used to continue processing the "top" of the
291 /// post-order walk.
292 LazyCallGraph::SCC *UpdatedC;
293
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100294 /// Preserved analyses across SCCs.
295 ///
296 /// We specifically want to allow CGSCC passes to mutate ancestor IR
297 /// (changing both the CG structure and the function IR itself). However,
298 /// this means we need to take special care to correctly mark what analyses
299 /// are preserved *across* SCCs. We have to track this out-of-band here
300 /// because within the main `PassManeger` infrastructure we need to mark
301 /// everything within an SCC as preserved in order to avoid repeatedly
302 /// invalidating the same analyses as we unnest pass managers and adaptors.
303 /// So we track the cross-SCC version of the preserved analyses here from any
304 /// code that does direct invalidation of SCC analyses, and then use it
305 /// whenever we move forward in the post-order walk of SCCs before running
306 /// passes over the new SCC.
307 PreservedAnalyses CrossSCCPA;
308
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100309 /// A hacky area where the inliner can retain history about inlining
310 /// decisions that mutated the call graph's SCC structure in order to avoid
311 /// infinite inlining. See the comments in the inliner's CG update logic.
312 ///
313 /// FIXME: Keeping this here seems like a big layering issue, we should look
314 /// for a better technique.
315 SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
316 &InlinedInternalEdges;
317};
318
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100319/// The core module pass which does a post-order walk of the SCCs and
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100320/// runs a CGSCC pass over each one.
321///
322/// Designed to allow composition of a CGSCCPass(Manager) and
323/// a ModulePassManager. Note that this pass must be run with a module analysis
324/// manager as it uses the LazyCallGraph analysis. It will also run the
325/// \c CGSCCAnalysisManagerModuleProxy analysis prior to running the CGSCC
326/// pass over the module to enable a \c FunctionAnalysisManager to be used
327/// within this run safely.
328template <typename CGSCCPassT>
329class ModuleToPostOrderCGSCCPassAdaptor
330 : public PassInfoMixin<ModuleToPostOrderCGSCCPassAdaptor<CGSCCPassT>> {
331public:
332 explicit ModuleToPostOrderCGSCCPassAdaptor(CGSCCPassT Pass)
333 : Pass(std::move(Pass)) {}
334
335 // We have to explicitly define all the special member functions because MSVC
336 // refuses to generate them.
337 ModuleToPostOrderCGSCCPassAdaptor(
338 const ModuleToPostOrderCGSCCPassAdaptor &Arg)
339 : Pass(Arg.Pass) {}
340
341 ModuleToPostOrderCGSCCPassAdaptor(ModuleToPostOrderCGSCCPassAdaptor &&Arg)
342 : Pass(std::move(Arg.Pass)) {}
343
344 friend void swap(ModuleToPostOrderCGSCCPassAdaptor &LHS,
345 ModuleToPostOrderCGSCCPassAdaptor &RHS) {
346 std::swap(LHS.Pass, RHS.Pass);
347 }
348
349 ModuleToPostOrderCGSCCPassAdaptor &
350 operator=(ModuleToPostOrderCGSCCPassAdaptor RHS) {
351 swap(*this, RHS);
352 return *this;
353 }
354
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100355 /// Runs the CGSCC pass across every SCC in the module.
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100356 PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100357
358private:
359 CGSCCPassT Pass;
360};
361
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100362/// A function to deduce a function pass type and wrap it in the
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100363/// templated adaptor.
364template <typename CGSCCPassT>
365ModuleToPostOrderCGSCCPassAdaptor<CGSCCPassT>
366createModuleToPostOrderCGSCCPassAdaptor(CGSCCPassT Pass) {
367 return ModuleToPostOrderCGSCCPassAdaptor<CGSCCPassT>(std::move(Pass));
368}
369
370/// A proxy from a \c FunctionAnalysisManager to an \c SCC.
371///
372/// When a module pass runs and triggers invalidation, both the CGSCC and
373/// Function analysis manager proxies on the module get an invalidation event.
374/// We don't want to fully duplicate responsibility for most of the
375/// invalidation logic. Instead, this layer is only responsible for SCC-local
376/// invalidation events. We work with the module's FunctionAnalysisManager to
377/// invalidate function analyses.
378class FunctionAnalysisManagerCGSCCProxy
379 : public AnalysisInfoMixin<FunctionAnalysisManagerCGSCCProxy> {
380public:
381 class Result {
382 public:
383 explicit Result(FunctionAnalysisManager &FAM) : FAM(&FAM) {}
384
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100385 /// Accessor for the analysis manager.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100386 FunctionAnalysisManager &getManager() { return *FAM; }
387
388 bool invalidate(LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
389 CGSCCAnalysisManager::Invalidator &Inv);
390
391 private:
392 FunctionAnalysisManager *FAM;
393 };
394
395 /// Computes the \c FunctionAnalysisManager and stores it in the result proxy.
396 Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &);
397
398private:
399 friend AnalysisInfoMixin<FunctionAnalysisManagerCGSCCProxy>;
400
401 static AnalysisKey Key;
402};
403
404extern template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
405
406/// A proxy from a \c CGSCCAnalysisManager to a \c Function.
407using CGSCCAnalysisManagerFunctionProxy =
408 OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
409
410/// Helper to update the call graph after running a function pass.
411///
412/// Function passes can only mutate the call graph in specific ways. This
413/// routine provides a helper that updates the call graph in those ways
414/// including returning whether any changes were made and populating a CG
415/// update result struct for the overall CGSCC walk.
416LazyCallGraph::SCC &updateCGAndAnalysisManagerForFunctionPass(
417 LazyCallGraph &G, LazyCallGraph::SCC &C, LazyCallGraph::Node &N,
418 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR);
419
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100420/// Adaptor that maps from a SCC to its functions.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100421///
422/// Designed to allow composition of a FunctionPass(Manager) and
423/// a CGSCCPassManager. Note that if this pass is constructed with a pointer
424/// to a \c CGSCCAnalysisManager it will run the
425/// \c FunctionAnalysisManagerCGSCCProxy analysis prior to running the function
426/// pass over the SCC to enable a \c FunctionAnalysisManager to be used
427/// within this run safely.
428template <typename FunctionPassT>
429class CGSCCToFunctionPassAdaptor
430 : public PassInfoMixin<CGSCCToFunctionPassAdaptor<FunctionPassT>> {
431public:
432 explicit CGSCCToFunctionPassAdaptor(FunctionPassT Pass)
433 : Pass(std::move(Pass)) {}
434
435 // We have to explicitly define all the special member functions because MSVC
436 // refuses to generate them.
437 CGSCCToFunctionPassAdaptor(const CGSCCToFunctionPassAdaptor &Arg)
438 : Pass(Arg.Pass) {}
439
440 CGSCCToFunctionPassAdaptor(CGSCCToFunctionPassAdaptor &&Arg)
441 : Pass(std::move(Arg.Pass)) {}
442
443 friend void swap(CGSCCToFunctionPassAdaptor &LHS,
444 CGSCCToFunctionPassAdaptor &RHS) {
445 std::swap(LHS.Pass, RHS.Pass);
446 }
447
448 CGSCCToFunctionPassAdaptor &operator=(CGSCCToFunctionPassAdaptor RHS) {
449 swap(*this, RHS);
450 return *this;
451 }
452
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100453 /// Runs the function pass across every function in the module.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100454 PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
455 LazyCallGraph &CG, CGSCCUpdateResult &UR) {
456 // Setup the function analysis manager from its proxy.
457 FunctionAnalysisManager &FAM =
458 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
459
460 SmallVector<LazyCallGraph::Node *, 4> Nodes;
461 for (LazyCallGraph::Node &N : C)
462 Nodes.push_back(&N);
463
464 // The SCC may get split while we are optimizing functions due to deleting
465 // edges. If this happens, the current SCC can shift, so keep track of
466 // a pointer we can overwrite.
467 LazyCallGraph::SCC *CurrentC = &C;
468
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100469 LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C
470 << "\n");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100471
472 PreservedAnalyses PA = PreservedAnalyses::all();
473 for (LazyCallGraph::Node *N : Nodes) {
474 // Skip nodes from other SCCs. These may have been split out during
475 // processing. We'll eventually visit those SCCs and pick up the nodes
476 // there.
477 if (CG.lookupSCC(*N) != CurrentC)
478 continue;
479
Andrew Scull0372a572018-11-16 15:47:06 +0000480 Function &F = N->getFunction();
481
482 PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F);
483 if (!PI.runBeforePass<Function>(Pass, F))
484 continue;
485
486 PreservedAnalyses PassPA = Pass.run(F, FAM);
487
488 PI.runAfterPass<Function>(Pass, F);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100489
490 // We know that the function pass couldn't have invalidated any other
491 // function's analyses (that's the contract of a function pass), so
492 // directly handle the function analysis manager's invalidation here.
Andrew Scull0372a572018-11-16 15:47:06 +0000493 FAM.invalidate(F, PassPA);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100494
495 // Then intersect the preserved set so that invalidation of module
496 // analyses will eventually occur when the module pass completes.
497 PA.intersect(std::move(PassPA));
498
499 // If the call graph hasn't been preserved, update it based on this
500 // function pass. This may also update the current SCC to point to
501 // a smaller, more refined SCC.
502 auto PAC = PA.getChecker<LazyCallGraphAnalysis>();
503 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) {
504 CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N,
505 AM, UR);
506 assert(
507 CG.lookupSCC(*N) == CurrentC &&
508 "Current SCC not updated to the SCC containing the current node!");
509 }
510 }
511
512 // By definition we preserve the proxy. And we preserve all analyses on
513 // Functions. This precludes *any* invalidation of function analyses by the
514 // proxy, but that's OK because we've taken care to invalidate analyses in
515 // the function analysis manager incrementally above.
516 PA.preserveSet<AllAnalysesOn<Function>>();
517 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
518
519 // We've also ensured that we updated the call graph along the way.
520 PA.preserve<LazyCallGraphAnalysis>();
521
522 return PA;
523 }
524
525private:
526 FunctionPassT Pass;
527};
528
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100529/// A function to deduce a function pass type and wrap it in the
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100530/// templated adaptor.
531template <typename FunctionPassT>
532CGSCCToFunctionPassAdaptor<FunctionPassT>
533createCGSCCToFunctionPassAdaptor(FunctionPassT Pass) {
534 return CGSCCToFunctionPassAdaptor<FunctionPassT>(std::move(Pass));
535}
536
537/// A helper that repeats an SCC pass each time an indirect call is refined to
538/// a direct call by that pass.
539///
540/// While the CGSCC pass manager works to re-visit SCCs and RefSCCs as they
541/// change shape, we may also want to repeat an SCC pass if it simply refines
542/// an indirect call to a direct call, even if doing so does not alter the
543/// shape of the graph. Note that this only pertains to direct calls to
544/// functions where IPO across the SCC may be able to compute more precise
545/// results. For intrinsics, we assume scalar optimizations already can fully
546/// reason about them.
547///
548/// This repetition has the potential to be very large however, as each one
549/// might refine a single call site. As a consequence, in practice we use an
550/// upper bound on the number of repetitions to limit things.
551template <typename PassT>
552class DevirtSCCRepeatedPass
553 : public PassInfoMixin<DevirtSCCRepeatedPass<PassT>> {
554public:
555 explicit DevirtSCCRepeatedPass(PassT Pass, int MaxIterations)
556 : Pass(std::move(Pass)), MaxIterations(MaxIterations) {}
557
558 /// Runs the wrapped pass up to \c MaxIterations on the SCC, iterating
559 /// whenever an indirect call is refined.
560 PreservedAnalyses run(LazyCallGraph::SCC &InitialC, CGSCCAnalysisManager &AM,
561 LazyCallGraph &CG, CGSCCUpdateResult &UR) {
562 PreservedAnalyses PA = PreservedAnalyses::all();
Andrew Scull0372a572018-11-16 15:47:06 +0000563 PassInstrumentation PI =
564 AM.getResult<PassInstrumentationAnalysis>(InitialC, CG);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100565
566 // The SCC may be refined while we are running passes over it, so set up
567 // a pointer that we can update.
568 LazyCallGraph::SCC *C = &InitialC;
569
570 // Collect value handles for all of the indirect call sites.
571 SmallVector<WeakTrackingVH, 8> CallHandles;
572
573 // Struct to track the counts of direct and indirect calls in each function
574 // of the SCC.
575 struct CallCount {
576 int Direct;
577 int Indirect;
578 };
579
580 // Put value handles on all of the indirect calls and return the number of
581 // direct calls for each function in the SCC.
582 auto ScanSCC = [](LazyCallGraph::SCC &C,
583 SmallVectorImpl<WeakTrackingVH> &CallHandles) {
584 assert(CallHandles.empty() && "Must start with a clear set of handles.");
585
586 SmallVector<CallCount, 4> CallCounts;
587 for (LazyCallGraph::Node &N : C) {
588 CallCounts.push_back({0, 0});
589 CallCount &Count = CallCounts.back();
590 for (Instruction &I : instructions(N.getFunction()))
591 if (auto CS = CallSite(&I)) {
592 if (CS.getCalledFunction()) {
593 ++Count.Direct;
594 } else {
595 ++Count.Indirect;
596 CallHandles.push_back(WeakTrackingVH(&I));
597 }
598 }
599 }
600
601 return CallCounts;
602 };
603
604 // Populate the initial call handles and get the initial call counts.
605 auto CallCounts = ScanSCC(*C, CallHandles);
606
607 for (int Iteration = 0;; ++Iteration) {
Andrew Scull0372a572018-11-16 15:47:06 +0000608
609 if (!PI.runBeforePass<LazyCallGraph::SCC>(Pass, *C))
610 continue;
611
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100612 PreservedAnalyses PassPA = Pass.run(*C, AM, CG, UR);
613
Andrew Walbran16937d02019-10-22 13:54:20 +0100614 if (UR.InvalidatedSCCs.count(C))
615 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(Pass);
616 else
617 PI.runAfterPass<LazyCallGraph::SCC>(Pass, *C);
Andrew Scull0372a572018-11-16 15:47:06 +0000618
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100619 // If the SCC structure has changed, bail immediately and let the outer
620 // CGSCC layer handle any iteration to reflect the refined structure.
621 if (UR.UpdatedC && UR.UpdatedC != C) {
622 PA.intersect(std::move(PassPA));
623 break;
624 }
625
626 // Check that we didn't miss any update scenario.
627 assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!");
628 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
629 assert((int)CallCounts.size() == C->size() &&
630 "Cannot have changed the size of the SCC!");
631
632 // Check whether any of the handles were devirtualized.
633 auto IsDevirtualizedHandle = [&](WeakTrackingVH &CallH) {
634 if (!CallH)
635 return false;
636 auto CS = CallSite(CallH);
637 if (!CS)
638 return false;
639
640 // If the call is still indirect, leave it alone.
641 Function *F = CS.getCalledFunction();
642 if (!F)
643 return false;
644
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100645 LLVM_DEBUG(dbgs() << "Found devirutalized call from "
646 << CS.getParent()->getParent()->getName() << " to "
647 << F->getName() << "\n");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100648
649 // We now have a direct call where previously we had an indirect call,
650 // so iterate to process this devirtualization site.
651 return true;
652 };
653 bool Devirt = llvm::any_of(CallHandles, IsDevirtualizedHandle);
654
655 // Rescan to build up a new set of handles and count how many direct
656 // calls remain. If we decide to iterate, this also sets up the input to
657 // the next iteration.
658 CallHandles.clear();
659 auto NewCallCounts = ScanSCC(*C, CallHandles);
660
661 // If we haven't found an explicit devirtualization already see if we
662 // have decreased the number of indirect calls and increased the number
663 // of direct calls for any function in the SCC. This can be fooled by all
664 // manner of transformations such as DCE and other things, but seems to
665 // work well in practice.
666 if (!Devirt)
667 for (int i = 0, Size = C->size(); i < Size; ++i)
668 if (CallCounts[i].Indirect > NewCallCounts[i].Indirect &&
669 CallCounts[i].Direct < NewCallCounts[i].Direct) {
670 Devirt = true;
671 break;
672 }
673
674 if (!Devirt) {
675 PA.intersect(std::move(PassPA));
676 break;
677 }
678
679 // Otherwise, if we've already hit our max, we're done.
680 if (Iteration >= MaxIterations) {
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100681 LLVM_DEBUG(
682 dbgs() << "Found another devirtualization after hitting the max "
683 "number of repetitions ("
684 << MaxIterations << ") on SCC: " << *C << "\n");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100685 PA.intersect(std::move(PassPA));
686 break;
687 }
688
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100689 LLVM_DEBUG(
690 dbgs()
691 << "Repeating an SCC pass after finding a devirtualization in: " << *C
692 << "\n");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100693
694 // Move over the new call counts in preparation for iterating.
695 CallCounts = std::move(NewCallCounts);
696
697 // Update the analysis manager with each run and intersect the total set
698 // of preserved analyses so we're ready to iterate.
699 AM.invalidate(*C, PassPA);
700 PA.intersect(std::move(PassPA));
701 }
702
703 // Note that we don't add any preserved entries here unlike a more normal
704 // "pass manager" because we only handle invalidation *between* iterations,
705 // not after the last iteration.
706 return PA;
707 }
708
709private:
710 PassT Pass;
711 int MaxIterations;
712};
713
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100714/// A function to deduce a function pass type and wrap it in the
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100715/// templated adaptor.
716template <typename PassT>
717DevirtSCCRepeatedPass<PassT> createDevirtSCCRepeatedPass(PassT Pass,
718 int MaxIterations) {
719 return DevirtSCCRepeatedPass<PassT>(std::move(Pass), MaxIterations);
720}
721
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100722// Out-of-line implementation details for templates below this point.
723
724template <typename CGSCCPassT>
725PreservedAnalyses
726ModuleToPostOrderCGSCCPassAdaptor<CGSCCPassT>::run(Module &M,
727 ModuleAnalysisManager &AM) {
728 // Setup the CGSCC analysis manager from its proxy.
729 CGSCCAnalysisManager &CGAM =
730 AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager();
731
732 // Get the call graph for this module.
733 LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M);
734
735 // We keep worklists to allow us to push more work onto the pass manager as
736 // the passes are run.
737 SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist;
738 SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist;
739
740 // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
741 // iterating off the worklists.
742 SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet;
743 SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet;
744
745 SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
746 InlinedInternalEdges;
747
748 CGSCCUpdateResult UR = {
749 RCWorklist, CWorklist, InvalidRefSCCSet, InvalidSCCSet,
750 nullptr, nullptr, PreservedAnalyses::all(), InlinedInternalEdges};
751
752 // Request PassInstrumentation from analysis manager, will use it to run
753 // instrumenting callbacks for the passes later.
754 PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
755
756 PreservedAnalyses PA = PreservedAnalyses::all();
757 CG.buildRefSCCs();
758 for (auto RCI = CG.postorder_ref_scc_begin(),
759 RCE = CG.postorder_ref_scc_end();
760 RCI != RCE;) {
761 assert(RCWorklist.empty() &&
762 "Should always start with an empty RefSCC worklist");
763 // The postorder_ref_sccs range we are walking is lazily constructed, so
764 // we only push the first one onto the worklist. The worklist allows us
765 // to capture *new* RefSCCs created during transformations.
766 //
767 // We really want to form RefSCCs lazily because that makes them cheaper
768 // to update as the program is simplified and allows us to have greater
769 // cache locality as forming a RefSCC touches all the parts of all the
770 // functions within that RefSCC.
771 //
772 // We also eagerly increment the iterator to the next position because
773 // the CGSCC passes below may delete the current RefSCC.
774 RCWorklist.insert(&*RCI++);
775
776 do {
777 LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val();
778 if (InvalidRefSCCSet.count(RC)) {
779 LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
780 continue;
781 }
782
783 assert(CWorklist.empty() &&
784 "Should always start with an empty SCC worklist");
785
786 LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
787 << "\n");
788
789 // Push the initial SCCs in reverse post-order as we'll pop off the
790 // back and so see this in post-order.
791 for (LazyCallGraph::SCC &C : llvm::reverse(*RC))
792 CWorklist.insert(&C);
793
794 do {
795 LazyCallGraph::SCC *C = CWorklist.pop_back_val();
796 // Due to call graph mutations, we may have invalid SCCs or SCCs from
797 // other RefSCCs in the worklist. The invalid ones are dead and the
798 // other RefSCCs should be queued above, so we just need to skip both
799 // scenarios here.
800 if (InvalidSCCSet.count(C)) {
801 LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
802 continue;
803 }
804 if (&C->getOuterRefSCC() != RC) {
805 LLVM_DEBUG(dbgs() << "Skipping an SCC that is now part of some other "
806 "RefSCC...\n");
807 continue;
808 }
809
810 // Ensure we can proxy analysis updates from from the CGSCC analysis
811 // manager into the Function analysis manager by getting a proxy here.
812 // FIXME: This seems like a bit of a hack. We should find a cleaner
813 // or more costructive way to ensure this happens.
814 (void)CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG);
815
816 // Each time we visit a new SCC pulled off the worklist,
817 // a transformation of a child SCC may have also modified this parent
818 // and invalidated analyses. So we invalidate using the update record's
819 // cross-SCC preserved set. This preserved set is intersected by any
820 // CGSCC pass that handles invalidation (primarily pass managers) prior
821 // to marking its SCC as preserved. That lets us track everything that
822 // might need invalidation across SCCs without excessive invalidations
823 // on a single SCC.
824 //
825 // This essentially allows SCC passes to freely invalidate analyses
826 // of any ancestor SCC. If this becomes detrimental to successfully
827 // caching analyses, we could force each SCC pass to manually
828 // invalidate the analyses for any SCCs other than themselves which
829 // are mutated. However, that seems to lose the robustness of the
830 // pass-manager driven invalidation scheme.
831 //
832 // FIXME: This is redundant in one case -- the top of the worklist may
833 // *also* be the same SCC we just ran over (and invalidated for). In
834 // that case, we'll end up doing a redundant invalidation here as
835 // a consequence.
836 CGAM.invalidate(*C, UR.CrossSCCPA);
837
838 do {
839 // Check that we didn't miss any update scenario.
840 assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!");
841 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
842 assert(&C->getOuterRefSCC() == RC &&
843 "Processing an SCC in a different RefSCC!");
844
845 UR.UpdatedRC = nullptr;
846 UR.UpdatedC = nullptr;
847
848 // Check the PassInstrumentation's BeforePass callbacks before
849 // running the pass, skip its execution completely if asked to
850 // (callback returns false).
851 if (!PI.runBeforePass<LazyCallGraph::SCC>(Pass, *C))
852 continue;
853
854 PreservedAnalyses PassPA = Pass.run(*C, CGAM, CG, UR);
855
856 if (UR.InvalidatedSCCs.count(C))
857 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(Pass);
858 else
859 PI.runAfterPass<LazyCallGraph::SCC>(Pass, *C);
860
861 // Update the SCC and RefSCC if necessary.
862 C = UR.UpdatedC ? UR.UpdatedC : C;
863 RC = UR.UpdatedRC ? UR.UpdatedRC : RC;
864
865 // If the CGSCC pass wasn't able to provide a valid updated SCC,
866 // the current SCC may simply need to be skipped if invalid.
867 if (UR.InvalidatedSCCs.count(C)) {
868 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
869 break;
870 }
871 // Check that we didn't miss any update scenario.
872 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
873
874 // We handle invalidating the CGSCC analysis manager's information
875 // for the (potentially updated) SCC here. Note that any other SCCs
876 // whose structure has changed should have been invalidated by
877 // whatever was updating the call graph. This SCC gets invalidated
878 // late as it contains the nodes that were actively being
879 // processed.
880 CGAM.invalidate(*C, PassPA);
881
882 // Then intersect the preserved set so that invalidation of module
883 // analyses will eventually occur when the module pass completes.
884 // Also intersect with the cross-SCC preserved set to capture any
885 // cross-SCC invalidation.
886 UR.CrossSCCPA.intersect(PassPA);
887 PA.intersect(std::move(PassPA));
888
889 // The pass may have restructured the call graph and refined the
890 // current SCC and/or RefSCC. We need to update our current SCC and
891 // RefSCC pointers to follow these. Also, when the current SCC is
892 // refined, re-run the SCC pass over the newly refined SCC in order
893 // to observe the most precise SCC model available. This inherently
894 // cannot cycle excessively as it only happens when we split SCCs
895 // apart, at most converging on a DAG of single nodes.
896 // FIXME: If we ever start having RefSCC passes, we'll want to
897 // iterate there too.
898 if (UR.UpdatedC)
899 LLVM_DEBUG(dbgs()
900 << "Re-running SCC passes after a refinement of the "
901 "current SCC: "
902 << *UR.UpdatedC << "\n");
903
904 // Note that both `C` and `RC` may at this point refer to deleted,
905 // invalid SCC and RefSCCs respectively. But we will short circuit
906 // the processing when we check them in the loop above.
907 } while (UR.UpdatedC);
908 } while (!CWorklist.empty());
909
910 // We only need to keep internal inlined edge information within
911 // a RefSCC, clear it to save on space and let the next time we visit
912 // any of these functions have a fresh start.
913 InlinedInternalEdges.clear();
914 } while (!RCWorklist.empty());
915 }
916
917 // By definition we preserve the call garph, all SCC analyses, and the
918 // analysis proxies by handling them above and in any nested pass managers.
919 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
920 PA.preserve<LazyCallGraphAnalysis>();
921 PA.preserve<CGSCCAnalysisManagerModuleProxy>();
922 PA.preserve<FunctionAnalysisManagerModuleProxy>();
923 return PA;
924}
925
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100926// Clear out the debug logging macro.
927#undef DEBUG_TYPE
928
929} // end namespace llvm
930
931#endif // LLVM_ANALYSIS_CGSCCPASSMANAGER_H