blob: 6d26954633a007e5645e7862240eeb33cfd635f4 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- CGSCCPassManager.h - Call graph pass management ----------*- C++ -*-===//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This header provides classes for managing passes over SCCs of the call
11/// graph. These passes form an important component of LLVM's interprocedural
12/// optimizations. Because they operate on the SCCs of the call graph, and they
13/// traverse the graph in post-order, they can effectively do pair-wise
14/// interprocedural optimizations for all call edges in the program while
15/// incrementally refining it and improving the context of these pair-wise
16/// optimizations. At each call site edge, the callee has already been
17/// optimized as much as is possible. This in turn allows very accurate
18/// analysis of it for IPO.
19///
20/// A secondary more general goal is to be able to isolate optimization on
21/// unrelated parts of the IR module. This is useful to ensure our
22/// optimizations are principled and don't miss oportunities where refinement
23/// of one part of the module influence transformations in another part of the
24/// module. But this is also useful if we want to parallelize the optimizations
25/// across common large module graph shapes which tend to be very wide and have
26/// large regions of unrelated cliques.
27///
28/// To satisfy these goals, we use the LazyCallGraph which provides two graphs
29/// nested inside each other (and built lazily from the bottom-up): the call
30/// graph proper, and a reference graph. The reference graph is super set of
31/// the call graph and is a conservative approximation of what could through
32/// scalar or CGSCC transforms *become* the call graph. Using this allows us to
33/// ensure we optimize functions prior to them being introduced into the call
34/// graph by devirtualization or other technique, and thus ensures that
35/// subsequent pair-wise interprocedural optimizations observe the optimized
36/// form of these functions. The (potentially transitive) reference
37/// reachability used by the reference graph is a conservative approximation
38/// that still allows us to have independent regions of the graph.
39///
40/// FIXME: There is one major drawback of the reference graph: in its naive
41/// form it is quadratic because it contains a distinct edge for each
42/// (potentially indirect) reference, even if are all through some common
43/// global table of function pointers. This can be fixed in a number of ways
44/// that essentially preserve enough of the normalization. While it isn't
45/// expected to completely preclude the usability of this, it will need to be
46/// addressed.
47///
48///
49/// All of these issues are made substantially more complex in the face of
50/// mutations to the call graph while optimization passes are being run. When
51/// mutations to the call graph occur we want to achieve two different things:
52///
53/// - We need to update the call graph in-flight and invalidate analyses
54/// cached on entities in the graph. Because of the cache-based analysis
55/// design of the pass manager, it is essential to have stable identities for
56/// the elements of the IR that passes traverse, and to invalidate any
57/// analyses cached on these elements as the mutations take place.
58///
59/// - We want to preserve the incremental and post-order traversal of the
60/// graph even as it is refined and mutated. This means we want optimization
61/// to observe the most refined form of the call graph and to do so in
62/// post-order.
63///
64/// To address this, the CGSCC manager uses both worklists that can be expanded
65/// by passes which transform the IR, and provides invalidation tests to skip
66/// entries that become dead. This extra data is provided to every SCC pass so
67/// that it can carefully update the manager's traversal as the call graph
68/// mutates.
69///
70/// We also provide support for running function passes within the CGSCC walk,
71/// and there we provide automatic update of the call graph including of the
72/// pass manager to reflect call graph changes that fall out naturally as part
73/// of scalar transformations.
74///
75/// The patterns used to ensure the goals of post-order visitation of the fully
76/// refined graph:
77///
78/// 1) Sink toward the "bottom" as the graph is refined. This means that any
79/// iteration continues in some valid post-order sequence after the mutation
80/// has altered the structure.
81///
82/// 2) Enqueue in post-order, including the current entity. If the current
83/// entity's shape changes, it and everything after it in post-order needs
84/// to be visited to observe that shape.
85///
86//===----------------------------------------------------------------------===//
87
88#ifndef LLVM_ANALYSIS_CGSCCPASSMANAGER_H
89#define LLVM_ANALYSIS_CGSCCPASSMANAGER_H
90
91#include "llvm/ADT/DenseSet.h"
92#include "llvm/ADT/PriorityWorklist.h"
93#include "llvm/ADT/STLExtras.h"
94#include "llvm/ADT/SmallPtrSet.h"
95#include "llvm/ADT/SmallVector.h"
96#include "llvm/Analysis/LazyCallGraph.h"
97#include "llvm/IR/CallSite.h"
98#include "llvm/IR/Function.h"
99#include "llvm/IR/InstIterator.h"
100#include "llvm/IR/PassManager.h"
101#include "llvm/IR/ValueHandle.h"
102#include "llvm/Support/Debug.h"
103#include "llvm/Support/raw_ostream.h"
104#include <algorithm>
105#include <cassert>
106#include <utility>
107
108namespace llvm {
109
110struct CGSCCUpdateResult;
111class Module;
112
113// Allow debug logging in this inline function.
114#define DEBUG_TYPE "cgscc"
115
116/// Extern template declaration for the analysis set for this IR unit.
117extern template class AllAnalysesOn<LazyCallGraph::SCC>;
118
119extern template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
120
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100121/// The CGSCC analysis manager.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100122///
123/// See the documentation for the AnalysisManager template for detail
124/// documentation. This type serves as a convenient way to refer to this
125/// construct in the adaptors and proxies used to integrate this into the larger
126/// pass manager infrastructure.
127using CGSCCAnalysisManager =
128 AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
129
130// Explicit specialization and instantiation declarations for the pass manager.
131// See the comments on the definition of the specialization for details on how
132// it differs from the primary template.
133template <>
134PreservedAnalyses
135PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
136 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
137 CGSCCAnalysisManager &AM,
138 LazyCallGraph &G, CGSCCUpdateResult &UR);
139extern template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
140 LazyCallGraph &, CGSCCUpdateResult &>;
141
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100142/// The CGSCC pass manager.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100143///
144/// See the documentation for the PassManager template for details. It runs
145/// a sequence of SCC passes over each SCC that the manager is run over. This
146/// type serves as a convenient way to refer to this construct.
147using CGSCCPassManager =
148 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
149 CGSCCUpdateResult &>;
150
151/// An explicit specialization of the require analysis template pass.
152template <typename AnalysisT>
153struct RequireAnalysisPass<AnalysisT, LazyCallGraph::SCC, CGSCCAnalysisManager,
154 LazyCallGraph &, CGSCCUpdateResult &>
155 : PassInfoMixin<RequireAnalysisPass<AnalysisT, LazyCallGraph::SCC,
156 CGSCCAnalysisManager, LazyCallGraph &,
157 CGSCCUpdateResult &>> {
158 PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
159 LazyCallGraph &CG, CGSCCUpdateResult &) {
160 (void)AM.template getResult<AnalysisT>(C, CG);
161 return PreservedAnalyses::all();
162 }
163};
164
165/// A proxy from a \c CGSCCAnalysisManager to a \c Module.
166using CGSCCAnalysisManagerModuleProxy =
167 InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
168
169/// We need a specialized result for the \c CGSCCAnalysisManagerModuleProxy so
170/// it can have access to the call graph in order to walk all the SCCs when
171/// invalidating things.
172template <> class CGSCCAnalysisManagerModuleProxy::Result {
173public:
174 explicit Result(CGSCCAnalysisManager &InnerAM, LazyCallGraph &G)
175 : InnerAM(&InnerAM), G(&G) {}
176
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100177 /// Accessor for the analysis manager.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100178 CGSCCAnalysisManager &getManager() { return *InnerAM; }
179
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100180 /// Handler for invalidation of the Module.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100181 ///
182 /// If the proxy analysis itself is preserved, then we assume that the set of
183 /// SCCs in the Module hasn't changed. Thus any pointers to SCCs in the
184 /// CGSCCAnalysisManager are still valid, and we don't need to call \c clear
185 /// on the CGSCCAnalysisManager.
186 ///
187 /// Regardless of whether this analysis is marked as preserved, all of the
188 /// analyses in the \c CGSCCAnalysisManager are potentially invalidated based
189 /// on the set of preserved analyses.
190 bool invalidate(Module &M, const PreservedAnalyses &PA,
191 ModuleAnalysisManager::Invalidator &Inv);
192
193private:
194 CGSCCAnalysisManager *InnerAM;
195 LazyCallGraph *G;
196};
197
198/// Provide a specialized run method for the \c CGSCCAnalysisManagerModuleProxy
199/// so it can pass the lazy call graph to the result.
200template <>
201CGSCCAnalysisManagerModuleProxy::Result
202CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM);
203
204// Ensure the \c CGSCCAnalysisManagerModuleProxy is provided as an extern
205// template.
206extern template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
207
208extern template class OuterAnalysisManagerProxy<
209 ModuleAnalysisManager, LazyCallGraph::SCC, LazyCallGraph &>;
210
211/// A proxy from a \c ModuleAnalysisManager to an \c SCC.
212using ModuleAnalysisManagerCGSCCProxy =
213 OuterAnalysisManagerProxy<ModuleAnalysisManager, LazyCallGraph::SCC,
214 LazyCallGraph &>;
215
216/// Support structure for SCC passes to communicate updates the call graph back
217/// to the CGSCC pass manager infrsatructure.
218///
219/// The CGSCC pass manager runs SCC passes which are allowed to update the call
220/// graph and SCC structures. This means the structure the pass manager works
221/// on is mutating underneath it. In order to support that, there needs to be
222/// careful communication about the precise nature and ramifications of these
223/// updates to the pass management infrastructure.
224///
225/// All SCC passes will have to accept a reference to the management layer's
226/// update result struct and use it to reflect the results of any CG updates
227/// performed.
228///
229/// Passes which do not change the call graph structure in any way can just
230/// ignore this argument to their run method.
231struct CGSCCUpdateResult {
232 /// Worklist of the RefSCCs queued for processing.
233 ///
234 /// When a pass refines the graph and creates new RefSCCs or causes them to
235 /// have a different shape or set of component SCCs it should add the RefSCCs
236 /// to this worklist so that we visit them in the refined form.
237 ///
238 /// This worklist is in reverse post-order, as we pop off the back in order
239 /// to observe RefSCCs in post-order. When adding RefSCCs, clients should add
240 /// them in reverse post-order.
241 SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> &RCWorklist;
242
243 /// Worklist of the SCCs queued for processing.
244 ///
245 /// When a pass refines the graph and creates new SCCs or causes them to have
246 /// a different shape or set of component functions it should add the SCCs to
247 /// this worklist so that we visit them in the refined form.
248 ///
249 /// Note that if the SCCs are part of a RefSCC that is added to the \c
250 /// RCWorklist, they don't need to be added here as visiting the RefSCC will
251 /// be sufficient to re-visit the SCCs within it.
252 ///
253 /// This worklist is in reverse post-order, as we pop off the back in order
254 /// to observe SCCs in post-order. When adding SCCs, clients should add them
255 /// in reverse post-order.
256 SmallPriorityWorklist<LazyCallGraph::SCC *, 1> &CWorklist;
257
258 /// The set of invalidated RefSCCs which should be skipped if they are found
259 /// in \c RCWorklist.
260 ///
261 /// This is used to quickly prune out RefSCCs when they get deleted and
262 /// happen to already be on the worklist. We use this primarily to avoid
263 /// scanning the list and removing entries from it.
264 SmallPtrSetImpl<LazyCallGraph::RefSCC *> &InvalidatedRefSCCs;
265
266 /// The set of invalidated SCCs which should be skipped if they are found
267 /// in \c CWorklist.
268 ///
269 /// This is used to quickly prune out SCCs when they get deleted and happen
270 /// to already be on the worklist. We use this primarily to avoid scanning
271 /// the list and removing entries from it.
272 SmallPtrSetImpl<LazyCallGraph::SCC *> &InvalidatedSCCs;
273
274 /// If non-null, the updated current \c RefSCC being processed.
275 ///
276 /// This is set when a graph refinement takes place an the "current" point in
277 /// the graph moves "down" or earlier in the post-order walk. This will often
278 /// cause the "current" RefSCC to be a newly created RefSCC object and the
279 /// old one to be added to the above worklist. When that happens, this
280 /// pointer is non-null and can be used to continue processing the "top" of
281 /// the post-order walk.
282 LazyCallGraph::RefSCC *UpdatedRC;
283
284 /// If non-null, the updated current \c SCC being processed.
285 ///
286 /// This is set when a graph refinement takes place an the "current" point in
287 /// the graph moves "down" or earlier in the post-order walk. This will often
288 /// cause the "current" SCC to be a newly created SCC object and the old one
289 /// to be added to the above worklist. When that happens, this pointer is
290 /// non-null and can be used to continue processing the "top" of the
291 /// post-order walk.
292 LazyCallGraph::SCC *UpdatedC;
293
294 /// A hacky area where the inliner can retain history about inlining
295 /// decisions that mutated the call graph's SCC structure in order to avoid
296 /// infinite inlining. See the comments in the inliner's CG update logic.
297 ///
298 /// FIXME: Keeping this here seems like a big layering issue, we should look
299 /// for a better technique.
300 SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
301 &InlinedInternalEdges;
302};
303
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100304/// The core module pass which does a post-order walk of the SCCs and
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100305/// runs a CGSCC pass over each one.
306///
307/// Designed to allow composition of a CGSCCPass(Manager) and
308/// a ModulePassManager. Note that this pass must be run with a module analysis
309/// manager as it uses the LazyCallGraph analysis. It will also run the
310/// \c CGSCCAnalysisManagerModuleProxy analysis prior to running the CGSCC
311/// pass over the module to enable a \c FunctionAnalysisManager to be used
312/// within this run safely.
313template <typename CGSCCPassT>
314class ModuleToPostOrderCGSCCPassAdaptor
315 : public PassInfoMixin<ModuleToPostOrderCGSCCPassAdaptor<CGSCCPassT>> {
316public:
317 explicit ModuleToPostOrderCGSCCPassAdaptor(CGSCCPassT Pass)
318 : Pass(std::move(Pass)) {}
319
320 // We have to explicitly define all the special member functions because MSVC
321 // refuses to generate them.
322 ModuleToPostOrderCGSCCPassAdaptor(
323 const ModuleToPostOrderCGSCCPassAdaptor &Arg)
324 : Pass(Arg.Pass) {}
325
326 ModuleToPostOrderCGSCCPassAdaptor(ModuleToPostOrderCGSCCPassAdaptor &&Arg)
327 : Pass(std::move(Arg.Pass)) {}
328
329 friend void swap(ModuleToPostOrderCGSCCPassAdaptor &LHS,
330 ModuleToPostOrderCGSCCPassAdaptor &RHS) {
331 std::swap(LHS.Pass, RHS.Pass);
332 }
333
334 ModuleToPostOrderCGSCCPassAdaptor &
335 operator=(ModuleToPostOrderCGSCCPassAdaptor RHS) {
336 swap(*this, RHS);
337 return *this;
338 }
339
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100340 /// Runs the CGSCC pass across every SCC in the module.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100341 PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM) {
342 // Setup the CGSCC analysis manager from its proxy.
343 CGSCCAnalysisManager &CGAM =
344 AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager();
345
346 // Get the call graph for this module.
347 LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M);
348
349 // We keep worklists to allow us to push more work onto the pass manager as
350 // the passes are run.
351 SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist;
352 SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist;
353
354 // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
355 // iterating off the worklists.
356 SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet;
357 SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet;
358
359 SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
360 InlinedInternalEdges;
361
362 CGSCCUpdateResult UR = {RCWorklist, CWorklist, InvalidRefSCCSet,
363 InvalidSCCSet, nullptr, nullptr,
364 InlinedInternalEdges};
365
Andrew Scull0372a572018-11-16 15:47:06 +0000366 // Request PassInstrumentation from analysis manager, will use it to run
367 // instrumenting callbacks for the passes later.
368 PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
369
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100370 PreservedAnalyses PA = PreservedAnalyses::all();
371 CG.buildRefSCCs();
372 for (auto RCI = CG.postorder_ref_scc_begin(),
373 RCE = CG.postorder_ref_scc_end();
374 RCI != RCE;) {
375 assert(RCWorklist.empty() &&
376 "Should always start with an empty RefSCC worklist");
377 // The postorder_ref_sccs range we are walking is lazily constructed, so
378 // we only push the first one onto the worklist. The worklist allows us
379 // to capture *new* RefSCCs created during transformations.
380 //
381 // We really want to form RefSCCs lazily because that makes them cheaper
382 // to update as the program is simplified and allows us to have greater
383 // cache locality as forming a RefSCC touches all the parts of all the
384 // functions within that RefSCC.
385 //
386 // We also eagerly increment the iterator to the next position because
387 // the CGSCC passes below may delete the current RefSCC.
388 RCWorklist.insert(&*RCI++);
389
390 do {
391 LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val();
392 if (InvalidRefSCCSet.count(RC)) {
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100393 LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100394 continue;
395 }
396
397 assert(CWorklist.empty() &&
398 "Should always start with an empty SCC worklist");
399
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100400 LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
401 << "\n");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100402
403 // Push the initial SCCs in reverse post-order as we'll pop off the
404 // back and so see this in post-order.
405 for (LazyCallGraph::SCC &C : llvm::reverse(*RC))
406 CWorklist.insert(&C);
407
408 do {
409 LazyCallGraph::SCC *C = CWorklist.pop_back_val();
410 // Due to call graph mutations, we may have invalid SCCs or SCCs from
411 // other RefSCCs in the worklist. The invalid ones are dead and the
412 // other RefSCCs should be queued above, so we just need to skip both
413 // scenarios here.
414 if (InvalidSCCSet.count(C)) {
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100415 LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100416 continue;
417 }
418 if (&C->getOuterRefSCC() != RC) {
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100419 LLVM_DEBUG(dbgs()
420 << "Skipping an SCC that is now part of some other "
421 "RefSCC...\n");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100422 continue;
423 }
424
425 do {
426 // Check that we didn't miss any update scenario.
427 assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!");
428 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
429 assert(&C->getOuterRefSCC() == RC &&
430 "Processing an SCC in a different RefSCC!");
431
432 UR.UpdatedRC = nullptr;
433 UR.UpdatedC = nullptr;
Andrew Scull0372a572018-11-16 15:47:06 +0000434
435 // Check the PassInstrumentation's BeforePass callbacks before
436 // running the pass, skip its execution completely if asked to
437 // (callback returns false).
438 if (!PI.runBeforePass<LazyCallGraph::SCC>(Pass, *C))
439 continue;
440
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100441 PreservedAnalyses PassPA = Pass.run(*C, CGAM, CG, UR);
442
Andrew Walbran16937d02019-10-22 13:54:20 +0100443 if (UR.InvalidatedSCCs.count(C))
444 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(Pass);
445 else
446 PI.runAfterPass<LazyCallGraph::SCC>(Pass, *C);
Andrew Scull0372a572018-11-16 15:47:06 +0000447
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100448 // Update the SCC and RefSCC if necessary.
449 C = UR.UpdatedC ? UR.UpdatedC : C;
450 RC = UR.UpdatedRC ? UR.UpdatedRC : RC;
451
452 // If the CGSCC pass wasn't able to provide a valid updated SCC,
453 // the current SCC may simply need to be skipped if invalid.
454 if (UR.InvalidatedSCCs.count(C)) {
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100455 LLVM_DEBUG(dbgs()
456 << "Skipping invalidated root or island SCC!\n");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100457 break;
458 }
459 // Check that we didn't miss any update scenario.
460 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
461
462 // We handle invalidating the CGSCC analysis manager's information
463 // for the (potentially updated) SCC here. Note that any other SCCs
464 // whose structure has changed should have been invalidated by
465 // whatever was updating the call graph. This SCC gets invalidated
466 // late as it contains the nodes that were actively being
467 // processed.
468 CGAM.invalidate(*C, PassPA);
469
470 // Then intersect the preserved set so that invalidation of module
471 // analyses will eventually occur when the module pass completes.
472 PA.intersect(std::move(PassPA));
473
474 // The pass may have restructured the call graph and refined the
475 // current SCC and/or RefSCC. We need to update our current SCC and
476 // RefSCC pointers to follow these. Also, when the current SCC is
477 // refined, re-run the SCC pass over the newly refined SCC in order
478 // to observe the most precise SCC model available. This inherently
479 // cannot cycle excessively as it only happens when we split SCCs
480 // apart, at most converging on a DAG of single nodes.
481 // FIXME: If we ever start having RefSCC passes, we'll want to
482 // iterate there too.
483 if (UR.UpdatedC)
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100484 LLVM_DEBUG(dbgs()
485 << "Re-running SCC passes after a refinement of the "
486 "current SCC: "
487 << *UR.UpdatedC << "\n");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100488
489 // Note that both `C` and `RC` may at this point refer to deleted,
490 // invalid SCC and RefSCCs respectively. But we will short circuit
491 // the processing when we check them in the loop above.
492 } while (UR.UpdatedC);
493 } while (!CWorklist.empty());
494
495 // We only need to keep internal inlined edge information within
496 // a RefSCC, clear it to save on space and let the next time we visit
497 // any of these functions have a fresh start.
498 InlinedInternalEdges.clear();
499 } while (!RCWorklist.empty());
500 }
501
502 // By definition we preserve the call garph, all SCC analyses, and the
503 // analysis proxies by handling them above and in any nested pass managers.
504 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
505 PA.preserve<LazyCallGraphAnalysis>();
506 PA.preserve<CGSCCAnalysisManagerModuleProxy>();
507 PA.preserve<FunctionAnalysisManagerModuleProxy>();
508 return PA;
509 }
510
511private:
512 CGSCCPassT Pass;
513};
514
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100515/// A function to deduce a function pass type and wrap it in the
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100516/// templated adaptor.
517template <typename CGSCCPassT>
518ModuleToPostOrderCGSCCPassAdaptor<CGSCCPassT>
519createModuleToPostOrderCGSCCPassAdaptor(CGSCCPassT Pass) {
520 return ModuleToPostOrderCGSCCPassAdaptor<CGSCCPassT>(std::move(Pass));
521}
522
523/// A proxy from a \c FunctionAnalysisManager to an \c SCC.
524///
525/// When a module pass runs and triggers invalidation, both the CGSCC and
526/// Function analysis manager proxies on the module get an invalidation event.
527/// We don't want to fully duplicate responsibility for most of the
528/// invalidation logic. Instead, this layer is only responsible for SCC-local
529/// invalidation events. We work with the module's FunctionAnalysisManager to
530/// invalidate function analyses.
531class FunctionAnalysisManagerCGSCCProxy
532 : public AnalysisInfoMixin<FunctionAnalysisManagerCGSCCProxy> {
533public:
534 class Result {
535 public:
536 explicit Result(FunctionAnalysisManager &FAM) : FAM(&FAM) {}
537
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100538 /// Accessor for the analysis manager.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100539 FunctionAnalysisManager &getManager() { return *FAM; }
540
541 bool invalidate(LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
542 CGSCCAnalysisManager::Invalidator &Inv);
543
544 private:
545 FunctionAnalysisManager *FAM;
546 };
547
548 /// Computes the \c FunctionAnalysisManager and stores it in the result proxy.
549 Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &);
550
551private:
552 friend AnalysisInfoMixin<FunctionAnalysisManagerCGSCCProxy>;
553
554 static AnalysisKey Key;
555};
556
557extern template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
558
559/// A proxy from a \c CGSCCAnalysisManager to a \c Function.
560using CGSCCAnalysisManagerFunctionProxy =
561 OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
562
563/// Helper to update the call graph after running a function pass.
564///
565/// Function passes can only mutate the call graph in specific ways. This
566/// routine provides a helper that updates the call graph in those ways
567/// including returning whether any changes were made and populating a CG
568/// update result struct for the overall CGSCC walk.
569LazyCallGraph::SCC &updateCGAndAnalysisManagerForFunctionPass(
570 LazyCallGraph &G, LazyCallGraph::SCC &C, LazyCallGraph::Node &N,
571 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR);
572
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100573/// Adaptor that maps from a SCC to its functions.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100574///
575/// Designed to allow composition of a FunctionPass(Manager) and
576/// a CGSCCPassManager. Note that if this pass is constructed with a pointer
577/// to a \c CGSCCAnalysisManager it will run the
578/// \c FunctionAnalysisManagerCGSCCProxy analysis prior to running the function
579/// pass over the SCC to enable a \c FunctionAnalysisManager to be used
580/// within this run safely.
581template <typename FunctionPassT>
582class CGSCCToFunctionPassAdaptor
583 : public PassInfoMixin<CGSCCToFunctionPassAdaptor<FunctionPassT>> {
584public:
585 explicit CGSCCToFunctionPassAdaptor(FunctionPassT Pass)
586 : Pass(std::move(Pass)) {}
587
588 // We have to explicitly define all the special member functions because MSVC
589 // refuses to generate them.
590 CGSCCToFunctionPassAdaptor(const CGSCCToFunctionPassAdaptor &Arg)
591 : Pass(Arg.Pass) {}
592
593 CGSCCToFunctionPassAdaptor(CGSCCToFunctionPassAdaptor &&Arg)
594 : Pass(std::move(Arg.Pass)) {}
595
596 friend void swap(CGSCCToFunctionPassAdaptor &LHS,
597 CGSCCToFunctionPassAdaptor &RHS) {
598 std::swap(LHS.Pass, RHS.Pass);
599 }
600
601 CGSCCToFunctionPassAdaptor &operator=(CGSCCToFunctionPassAdaptor RHS) {
602 swap(*this, RHS);
603 return *this;
604 }
605
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100606 /// Runs the function pass across every function in the module.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100607 PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
608 LazyCallGraph &CG, CGSCCUpdateResult &UR) {
609 // Setup the function analysis manager from its proxy.
610 FunctionAnalysisManager &FAM =
611 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
612
613 SmallVector<LazyCallGraph::Node *, 4> Nodes;
614 for (LazyCallGraph::Node &N : C)
615 Nodes.push_back(&N);
616
617 // The SCC may get split while we are optimizing functions due to deleting
618 // edges. If this happens, the current SCC can shift, so keep track of
619 // a pointer we can overwrite.
620 LazyCallGraph::SCC *CurrentC = &C;
621
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100622 LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C
623 << "\n");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100624
625 PreservedAnalyses PA = PreservedAnalyses::all();
626 for (LazyCallGraph::Node *N : Nodes) {
627 // Skip nodes from other SCCs. These may have been split out during
628 // processing. We'll eventually visit those SCCs and pick up the nodes
629 // there.
630 if (CG.lookupSCC(*N) != CurrentC)
631 continue;
632
Andrew Scull0372a572018-11-16 15:47:06 +0000633 Function &F = N->getFunction();
634
635 PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F);
636 if (!PI.runBeforePass<Function>(Pass, F))
637 continue;
638
639 PreservedAnalyses PassPA = Pass.run(F, FAM);
640
641 PI.runAfterPass<Function>(Pass, F);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100642
643 // We know that the function pass couldn't have invalidated any other
644 // function's analyses (that's the contract of a function pass), so
645 // directly handle the function analysis manager's invalidation here.
Andrew Scull0372a572018-11-16 15:47:06 +0000646 FAM.invalidate(F, PassPA);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100647
648 // Then intersect the preserved set so that invalidation of module
649 // analyses will eventually occur when the module pass completes.
650 PA.intersect(std::move(PassPA));
651
652 // If the call graph hasn't been preserved, update it based on this
653 // function pass. This may also update the current SCC to point to
654 // a smaller, more refined SCC.
655 auto PAC = PA.getChecker<LazyCallGraphAnalysis>();
656 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) {
657 CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N,
658 AM, UR);
659 assert(
660 CG.lookupSCC(*N) == CurrentC &&
661 "Current SCC not updated to the SCC containing the current node!");
662 }
663 }
664
665 // By definition we preserve the proxy. And we preserve all analyses on
666 // Functions. This precludes *any* invalidation of function analyses by the
667 // proxy, but that's OK because we've taken care to invalidate analyses in
668 // the function analysis manager incrementally above.
669 PA.preserveSet<AllAnalysesOn<Function>>();
670 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
671
672 // We've also ensured that we updated the call graph along the way.
673 PA.preserve<LazyCallGraphAnalysis>();
674
675 return PA;
676 }
677
678private:
679 FunctionPassT Pass;
680};
681
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100682/// A function to deduce a function pass type and wrap it in the
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100683/// templated adaptor.
684template <typename FunctionPassT>
685CGSCCToFunctionPassAdaptor<FunctionPassT>
686createCGSCCToFunctionPassAdaptor(FunctionPassT Pass) {
687 return CGSCCToFunctionPassAdaptor<FunctionPassT>(std::move(Pass));
688}
689
690/// A helper that repeats an SCC pass each time an indirect call is refined to
691/// a direct call by that pass.
692///
693/// While the CGSCC pass manager works to re-visit SCCs and RefSCCs as they
694/// change shape, we may also want to repeat an SCC pass if it simply refines
695/// an indirect call to a direct call, even if doing so does not alter the
696/// shape of the graph. Note that this only pertains to direct calls to
697/// functions where IPO across the SCC may be able to compute more precise
698/// results. For intrinsics, we assume scalar optimizations already can fully
699/// reason about them.
700///
701/// This repetition has the potential to be very large however, as each one
702/// might refine a single call site. As a consequence, in practice we use an
703/// upper bound on the number of repetitions to limit things.
704template <typename PassT>
705class DevirtSCCRepeatedPass
706 : public PassInfoMixin<DevirtSCCRepeatedPass<PassT>> {
707public:
708 explicit DevirtSCCRepeatedPass(PassT Pass, int MaxIterations)
709 : Pass(std::move(Pass)), MaxIterations(MaxIterations) {}
710
711 /// Runs the wrapped pass up to \c MaxIterations on the SCC, iterating
712 /// whenever an indirect call is refined.
713 PreservedAnalyses run(LazyCallGraph::SCC &InitialC, CGSCCAnalysisManager &AM,
714 LazyCallGraph &CG, CGSCCUpdateResult &UR) {
715 PreservedAnalyses PA = PreservedAnalyses::all();
Andrew Scull0372a572018-11-16 15:47:06 +0000716 PassInstrumentation PI =
717 AM.getResult<PassInstrumentationAnalysis>(InitialC, CG);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100718
719 // The SCC may be refined while we are running passes over it, so set up
720 // a pointer that we can update.
721 LazyCallGraph::SCC *C = &InitialC;
722
723 // Collect value handles for all of the indirect call sites.
724 SmallVector<WeakTrackingVH, 8> CallHandles;
725
726 // Struct to track the counts of direct and indirect calls in each function
727 // of the SCC.
728 struct CallCount {
729 int Direct;
730 int Indirect;
731 };
732
733 // Put value handles on all of the indirect calls and return the number of
734 // direct calls for each function in the SCC.
735 auto ScanSCC = [](LazyCallGraph::SCC &C,
736 SmallVectorImpl<WeakTrackingVH> &CallHandles) {
737 assert(CallHandles.empty() && "Must start with a clear set of handles.");
738
739 SmallVector<CallCount, 4> CallCounts;
740 for (LazyCallGraph::Node &N : C) {
741 CallCounts.push_back({0, 0});
742 CallCount &Count = CallCounts.back();
743 for (Instruction &I : instructions(N.getFunction()))
744 if (auto CS = CallSite(&I)) {
745 if (CS.getCalledFunction()) {
746 ++Count.Direct;
747 } else {
748 ++Count.Indirect;
749 CallHandles.push_back(WeakTrackingVH(&I));
750 }
751 }
752 }
753
754 return CallCounts;
755 };
756
757 // Populate the initial call handles and get the initial call counts.
758 auto CallCounts = ScanSCC(*C, CallHandles);
759
760 for (int Iteration = 0;; ++Iteration) {
Andrew Scull0372a572018-11-16 15:47:06 +0000761
762 if (!PI.runBeforePass<LazyCallGraph::SCC>(Pass, *C))
763 continue;
764
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100765 PreservedAnalyses PassPA = Pass.run(*C, AM, CG, UR);
766
Andrew Walbran16937d02019-10-22 13:54:20 +0100767 if (UR.InvalidatedSCCs.count(C))
768 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(Pass);
769 else
770 PI.runAfterPass<LazyCallGraph::SCC>(Pass, *C);
Andrew Scull0372a572018-11-16 15:47:06 +0000771
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100772 // If the SCC structure has changed, bail immediately and let the outer
773 // CGSCC layer handle any iteration to reflect the refined structure.
774 if (UR.UpdatedC && UR.UpdatedC != C) {
775 PA.intersect(std::move(PassPA));
776 break;
777 }
778
779 // Check that we didn't miss any update scenario.
780 assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!");
781 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
782 assert((int)CallCounts.size() == C->size() &&
783 "Cannot have changed the size of the SCC!");
784
785 // Check whether any of the handles were devirtualized.
786 auto IsDevirtualizedHandle = [&](WeakTrackingVH &CallH) {
787 if (!CallH)
788 return false;
789 auto CS = CallSite(CallH);
790 if (!CS)
791 return false;
792
793 // If the call is still indirect, leave it alone.
794 Function *F = CS.getCalledFunction();
795 if (!F)
796 return false;
797
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100798 LLVM_DEBUG(dbgs() << "Found devirutalized call from "
799 << CS.getParent()->getParent()->getName() << " to "
800 << F->getName() << "\n");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100801
802 // We now have a direct call where previously we had an indirect call,
803 // so iterate to process this devirtualization site.
804 return true;
805 };
806 bool Devirt = llvm::any_of(CallHandles, IsDevirtualizedHandle);
807
808 // Rescan to build up a new set of handles and count how many direct
809 // calls remain. If we decide to iterate, this also sets up the input to
810 // the next iteration.
811 CallHandles.clear();
812 auto NewCallCounts = ScanSCC(*C, CallHandles);
813
814 // If we haven't found an explicit devirtualization already see if we
815 // have decreased the number of indirect calls and increased the number
816 // of direct calls for any function in the SCC. This can be fooled by all
817 // manner of transformations such as DCE and other things, but seems to
818 // work well in practice.
819 if (!Devirt)
820 for (int i = 0, Size = C->size(); i < Size; ++i)
821 if (CallCounts[i].Indirect > NewCallCounts[i].Indirect &&
822 CallCounts[i].Direct < NewCallCounts[i].Direct) {
823 Devirt = true;
824 break;
825 }
826
827 if (!Devirt) {
828 PA.intersect(std::move(PassPA));
829 break;
830 }
831
832 // Otherwise, if we've already hit our max, we're done.
833 if (Iteration >= MaxIterations) {
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100834 LLVM_DEBUG(
835 dbgs() << "Found another devirtualization after hitting the max "
836 "number of repetitions ("
837 << MaxIterations << ") on SCC: " << *C << "\n");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100838 PA.intersect(std::move(PassPA));
839 break;
840 }
841
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100842 LLVM_DEBUG(
843 dbgs()
844 << "Repeating an SCC pass after finding a devirtualization in: " << *C
845 << "\n");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100846
847 // Move over the new call counts in preparation for iterating.
848 CallCounts = std::move(NewCallCounts);
849
850 // Update the analysis manager with each run and intersect the total set
851 // of preserved analyses so we're ready to iterate.
852 AM.invalidate(*C, PassPA);
853 PA.intersect(std::move(PassPA));
854 }
855
856 // Note that we don't add any preserved entries here unlike a more normal
857 // "pass manager" because we only handle invalidation *between* iterations,
858 // not after the last iteration.
859 return PA;
860 }
861
862private:
863 PassT Pass;
864 int MaxIterations;
865};
866
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100867/// A function to deduce a function pass type and wrap it in the
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100868/// templated adaptor.
869template <typename PassT>
870DevirtSCCRepeatedPass<PassT> createDevirtSCCRepeatedPass(PassT Pass,
871 int MaxIterations) {
872 return DevirtSCCRepeatedPass<PassT>(std::move(Pass), MaxIterations);
873}
874
875// Clear out the debug logging macro.
876#undef DEBUG_TYPE
877
878} // end namespace llvm
879
880#endif // LLVM_ANALYSIS_CGSCCPASSMANAGER_H