blob: 1fa3de421eacffa5b6eda502c1a192dea92302dc [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/DenseMapInfo.h"
20#include "llvm/ADT/None.h"
Andrew Scullcdfcccc2018-10-05 20:58:37 +010021#include "llvm/CodeGen/LiveRegUnits.h"
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010022#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineCombinerPattern.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineLoopInfo.h"
27#include "llvm/CodeGen/MachineOperand.h"
Andrew Scullcdfcccc2018-10-05 20:58:37 +010028#include "llvm/CodeGen/MachineOutliner.h"
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010029#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/MC/MCInstrInfo.h"
31#include "llvm/Support/BranchProbability.h"
32#include "llvm/Support/ErrorHandling.h"
33#include <cassert>
34#include <cstddef>
35#include <cstdint>
36#include <utility>
37#include <vector>
38
39namespace llvm {
40
41class DFAPacketizer;
42class InstrItineraryData;
43class LiveIntervals;
44class LiveVariables;
45class MachineMemOperand;
46class MachineRegisterInfo;
47class MCAsmInfo;
48class MCInst;
49struct MCSchedModel;
50class Module;
51class ScheduleDAG;
52class ScheduleHazardRecognizer;
53class SDNode;
54class SelectionDAG;
55class RegScavenger;
56class TargetRegisterClass;
57class TargetRegisterInfo;
58class TargetSchedModel;
59class TargetSubtargetInfo;
60
61template <class T> class SmallVectorImpl;
62
63//---------------------------------------------------------------------------
64///
65/// TargetInstrInfo - Interface to description of machine instruction set
66///
67class TargetInstrInfo : public MCInstrInfo {
68public:
69 TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
70 unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
71 : CallFrameSetupOpcode(CFSetupOpcode),
72 CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
73 ReturnOpcode(ReturnOpcode) {}
74 TargetInstrInfo(const TargetInstrInfo &) = delete;
75 TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
76 virtual ~TargetInstrInfo();
77
78 static bool isGenericOpcode(unsigned Opc) {
79 return Opc <= TargetOpcode::GENERIC_OP_END;
80 }
81
82 /// Given a machine instruction descriptor, returns the register
83 /// class constraint for OpNum, or NULL.
Andrew Scullcdfcccc2018-10-05 20:58:37 +010084 const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010085 const TargetRegisterInfo *TRI,
86 const MachineFunction &MF) const;
87
88 /// Return true if the instruction is trivially rematerializable, meaning it
89 /// has no side effects and requires no operands that aren't always available.
90 /// This means the only allowed uses are constants and unallocatable physical
91 /// registers so that the instructions result is independent of the place
92 /// in the function.
93 bool isTriviallyReMaterializable(const MachineInstr &MI,
94 AliasAnalysis *AA = nullptr) const {
95 return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
96 (MI.getDesc().isRematerializable() &&
97 (isReallyTriviallyReMaterializable(MI, AA) ||
98 isReallyTriviallyReMaterializableGeneric(MI, AA)));
99 }
100
101protected:
102 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
103 /// set, this hook lets the target specify whether the instruction is actually
104 /// trivially rematerializable, taking into consideration its operands. This
105 /// predicate must return false if the instruction has any side effects other
106 /// than producing a value, or if it requres any address registers that are
107 /// not always available.
108 /// Requirements must be check as stated in isTriviallyReMaterializable() .
109 virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
110 AliasAnalysis *AA) const {
111 return false;
112 }
113
114 /// This method commutes the operands of the given machine instruction MI.
115 /// The operands to be commuted are specified by their indices OpIdx1 and
116 /// OpIdx2.
117 ///
118 /// If a target has any instructions that are commutable but require
119 /// converting to different instructions or making non-trivial changes
120 /// to commute them, this method can be overloaded to do that.
121 /// The default implementation simply swaps the commutable operands.
122 ///
123 /// If NewMI is false, MI is modified in place and returned; otherwise, a
124 /// new machine instruction is created and returned.
125 ///
126 /// Do not call this method for a non-commutable instruction.
127 /// Even though the instruction is commutable, the method may still
128 /// fail to commute the operands, null pointer is returned in such cases.
129 virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
130 unsigned OpIdx1,
131 unsigned OpIdx2) const;
132
133 /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
134 /// operand indices to (ResultIdx1, ResultIdx2).
135 /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
136 /// predefined to some indices or be undefined (designated by the special
137 /// value 'CommuteAnyOperandIndex').
138 /// The predefined result indices cannot be re-defined.
139 /// The function returns true iff after the result pair redefinition
140 /// the fixed result pair is equal to or equivalent to the source pair of
141 /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
142 /// the pairs (x,y) and (y,x) are equivalent.
143 static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
144 unsigned CommutableOpIdx1,
145 unsigned CommutableOpIdx2);
146
147private:
148 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
149 /// set and the target hook isReallyTriviallyReMaterializable returns false,
150 /// this function does target-independent tests to determine if the
151 /// instruction is really trivially rematerializable.
152 bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI,
153 AliasAnalysis *AA) const;
154
155public:
156 /// These methods return the opcode of the frame setup/destroy instructions
157 /// if they exist (-1 otherwise). Some targets use pseudo instructions in
158 /// order to abstract away the difference between operating with a frame
159 /// pointer and operating without, through the use of these two instructions.
160 ///
161 unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
162 unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
163
164 /// Returns true if the argument is a frame pseudo instruction.
165 bool isFrameInstr(const MachineInstr &I) const {
166 return I.getOpcode() == getCallFrameSetupOpcode() ||
167 I.getOpcode() == getCallFrameDestroyOpcode();
168 }
169
170 /// Returns true if the argument is a frame setup pseudo instruction.
171 bool isFrameSetup(const MachineInstr &I) const {
172 return I.getOpcode() == getCallFrameSetupOpcode();
173 }
174
175 /// Returns size of the frame associated with the given frame instruction.
176 /// For frame setup instruction this is frame that is set up space set up
177 /// after the instruction. For frame destroy instruction this is the frame
178 /// freed by the caller.
179 /// Note, in some cases a call frame (or a part of it) may be prepared prior
180 /// to the frame setup instruction. It occurs in the calls that involve
181 /// inalloca arguments. This function reports only the size of the frame part
182 /// that is set up between the frame setup and destroy pseudo instructions.
183 int64_t getFrameSize(const MachineInstr &I) const {
184 assert(isFrameInstr(I) && "Not a frame instruction");
185 assert(I.getOperand(0).getImm() >= 0);
186 return I.getOperand(0).getImm();
187 }
188
189 /// Returns the total frame size, which is made up of the space set up inside
190 /// the pair of frame start-stop instructions and the space that is set up
191 /// prior to the pair.
192 int64_t getFrameTotalSize(const MachineInstr &I) const {
193 if (isFrameSetup(I)) {
194 assert(I.getOperand(1).getImm() >= 0 &&
195 "Frame size must not be negative");
196 return getFrameSize(I) + I.getOperand(1).getImm();
197 }
198 return getFrameSize(I);
199 }
200
201 unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
202 unsigned getReturnOpcode() const { return ReturnOpcode; }
203
204 /// Returns the actual stack pointer adjustment made by an instruction
205 /// as part of a call sequence. By default, only call frame setup/destroy
206 /// instructions adjust the stack, but targets may want to override this
207 /// to enable more fine-grained adjustment, or adjust by a different value.
208 virtual int getSPAdjust(const MachineInstr &MI) const;
209
210 /// Return true if the instruction is a "coalescable" extension instruction.
211 /// That is, it's like a copy where it's legal for the source to overlap the
212 /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
213 /// expected the pre-extension value is available as a subreg of the result
214 /// register. This also returns the sub-register index in SubIdx.
215 virtual bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
216 unsigned &DstReg, unsigned &SubIdx) const {
217 return false;
218 }
219
220 /// If the specified machine instruction is a direct
221 /// load from a stack slot, return the virtual or physical register number of
222 /// the destination along with the FrameIndex of the loaded stack slot. If
223 /// not, return 0. This predicate must return 0 if the instruction has
224 /// any side effects other than loading from the stack slot.
225 virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
226 int &FrameIndex) const {
227 return 0;
228 }
229
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100230 /// Optional extension of isLoadFromStackSlot that returns the number of
231 /// bytes loaded from the stack. This must be implemented if a backend
232 /// supports partial stack slot spills/loads to further disambiguate
233 /// what the load does.
234 virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
235 int &FrameIndex,
236 unsigned &MemBytes) const {
237 MemBytes = 0;
238 return isLoadFromStackSlot(MI, FrameIndex);
239 }
240
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100241 /// Check for post-frame ptr elimination stack locations as well.
242 /// This uses a heuristic so it isn't reliable for correctness.
243 virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
244 int &FrameIndex) const {
245 return 0;
246 }
247
248 /// If the specified machine instruction has a load from a stack slot,
Andrew Scull0372a572018-11-16 15:47:06 +0000249 /// return true along with the FrameIndices of the loaded stack slot and the
250 /// machine mem operands containing the reference.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100251 /// If not, return false. Unlike isLoadFromStackSlot, this returns true for
252 /// any instructions that loads from the stack. This is just a hint, as some
253 /// cases may be missed.
Andrew Scull0372a572018-11-16 15:47:06 +0000254 virtual bool hasLoadFromStackSlot(
255 const MachineInstr &MI,
256 SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100257
258 /// If the specified machine instruction is a direct
259 /// store to a stack slot, return the virtual or physical register number of
260 /// the source reg along with the FrameIndex of the loaded stack slot. If
261 /// not, return 0. This predicate must return 0 if the instruction has
262 /// any side effects other than storing to the stack slot.
263 virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
264 int &FrameIndex) const {
265 return 0;
266 }
267
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100268 /// Optional extension of isStoreToStackSlot that returns the number of
269 /// bytes stored to the stack. This must be implemented if a backend
270 /// supports partial stack slot spills/loads to further disambiguate
271 /// what the store does.
272 virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
273 int &FrameIndex,
274 unsigned &MemBytes) const {
275 MemBytes = 0;
276 return isStoreToStackSlot(MI, FrameIndex);
277 }
278
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100279 /// Check for post-frame ptr elimination stack locations as well.
280 /// This uses a heuristic, so it isn't reliable for correctness.
281 virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
282 int &FrameIndex) const {
283 return 0;
284 }
285
286 /// If the specified machine instruction has a store to a stack slot,
Andrew Scull0372a572018-11-16 15:47:06 +0000287 /// return true along with the FrameIndices of the loaded stack slot and the
288 /// machine mem operands containing the reference.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100289 /// If not, return false. Unlike isStoreToStackSlot,
290 /// this returns true for any instructions that stores to the
291 /// stack. This is just a hint, as some cases may be missed.
Andrew Scull0372a572018-11-16 15:47:06 +0000292 virtual bool hasStoreToStackSlot(
293 const MachineInstr &MI,
294 SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100295
296 /// Return true if the specified machine instruction
297 /// is a copy of one stack slot to another and has no other effect.
298 /// Provide the identity of the two frame indices.
299 virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
300 int &SrcFrameIndex) const {
301 return false;
302 }
303
304 /// Compute the size in bytes and offset within a stack slot of a spilled
305 /// register or subregister.
306 ///
307 /// \param [out] Size in bytes of the spilled value.
308 /// \param [out] Offset in bytes within the stack slot.
309 /// \returns true if both Size and Offset are successfully computed.
310 ///
311 /// Not all subregisters have computable spill slots. For example,
312 /// subregisters registers may not be byte-sized, and a pair of discontiguous
313 /// subregisters has no single offset.
314 ///
315 /// Targets with nontrivial bigendian implementations may need to override
316 /// this, particularly to support spilled vector registers.
317 virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
318 unsigned &Size, unsigned &Offset,
319 const MachineFunction &MF) const;
320
321 /// Returns the size in bytes of the specified MachineInstr, or ~0U
322 /// when this function is not implemented by a target.
323 virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
324 return ~0U;
325 }
326
327 /// Return true if the instruction is as cheap as a move instruction.
328 ///
329 /// Targets for different archs need to override this, and different
330 /// micro-architectures can also be finely tuned inside.
331 virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
332 return MI.isAsCheapAsAMove();
333 }
334
335 /// Return true if the instruction should be sunk by MachineSink.
336 ///
337 /// MachineSink determines on its own whether the instruction is safe to sink;
338 /// this gives the target a hook to override the default behavior with regards
339 /// to which instructions should be sunk.
340 virtual bool shouldSink(const MachineInstr &MI) const { return true; }
341
342 /// Re-issue the specified 'original' instruction at the
343 /// specific location targeting a new destination register.
344 /// The register in Orig->getOperand(0).getReg() will be substituted by
345 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
346 /// SubIdx.
347 virtual void reMaterialize(MachineBasicBlock &MBB,
348 MachineBasicBlock::iterator MI, unsigned DestReg,
349 unsigned SubIdx, const MachineInstr &Orig,
350 const TargetRegisterInfo &TRI) const;
351
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100352 /// Clones instruction or the whole instruction bundle \p Orig and
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100353 /// insert into \p MBB before \p InsertBefore. The target may update operands
354 /// that are required to be unique.
355 ///
356 /// \p Orig must not return true for MachineInstr::isNotDuplicable().
357 virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
358 MachineBasicBlock::iterator InsertBefore,
359 const MachineInstr &Orig) const;
360
361 /// This method must be implemented by targets that
362 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
363 /// may be able to convert a two-address instruction into one or more true
364 /// three-address instructions on demand. This allows the X86 target (for
365 /// example) to convert ADD and SHL instructions into LEA instructions if they
366 /// would require register copies due to two-addressness.
367 ///
368 /// This method returns a null pointer if the transformation cannot be
369 /// performed, otherwise it returns the last new instruction.
370 ///
371 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
372 MachineInstr &MI,
373 LiveVariables *LV) const {
374 return nullptr;
375 }
376
377 // This constant can be used as an input value of operand index passed to
378 // the method findCommutedOpIndices() to tell the method that the
379 // corresponding operand index is not pre-defined and that the method
380 // can pick any commutable operand.
381 static const unsigned CommuteAnyOperandIndex = ~0U;
382
383 /// This method commutes the operands of the given machine instruction MI.
384 ///
385 /// The operands to be commuted are specified by their indices OpIdx1 and
386 /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
387 /// 'CommuteAnyOperandIndex', which means that the method is free to choose
388 /// any arbitrarily chosen commutable operand. If both arguments are set to
389 /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
390 /// operands; then commutes them if such operands could be found.
391 ///
392 /// If NewMI is false, MI is modified in place and returned; otherwise, a
393 /// new machine instruction is created and returned.
394 ///
395 /// Do not call this method for a non-commutable instruction or
396 /// for non-commuable operands.
397 /// Even though the instruction is commutable, the method may still
398 /// fail to commute the operands, null pointer is returned in such cases.
399 MachineInstr *
400 commuteInstruction(MachineInstr &MI, bool NewMI = false,
401 unsigned OpIdx1 = CommuteAnyOperandIndex,
402 unsigned OpIdx2 = CommuteAnyOperandIndex) const;
403
404 /// Returns true iff the routine could find two commutable operands in the
405 /// given machine instruction.
406 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
407 /// If any of the INPUT values is set to the special value
408 /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
409 /// operand, then returns its index in the corresponding argument.
410 /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
411 /// looks for 2 commutable operands.
412 /// If INPUT values refer to some operands of MI, then the method simply
413 /// returns true if the corresponding operands are commutable and returns
414 /// false otherwise.
415 ///
416 /// For example, calling this method this way:
417 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
418 /// findCommutedOpIndices(MI, Op1, Op2);
419 /// can be interpreted as a query asking to find an operand that would be
420 /// commutable with the operand#1.
421 virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
422 unsigned &SrcOpIdx2) const;
423
424 /// A pair composed of a register and a sub-register index.
425 /// Used to give some type checking when modeling Reg:SubReg.
426 struct RegSubRegPair {
427 unsigned Reg;
428 unsigned SubReg;
429
430 RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
431 : Reg(Reg), SubReg(SubReg) {}
432 };
433
434 /// A pair composed of a pair of a register and a sub-register index,
435 /// and another sub-register index.
436 /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
437 struct RegSubRegPairAndIdx : RegSubRegPair {
438 unsigned SubIdx;
439
440 RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
441 unsigned SubIdx = 0)
442 : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
443 };
444
445 /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
446 /// and \p DefIdx.
447 /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
448 /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
449 /// flag are not added to this list.
450 /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
451 /// two elements:
452 /// - %1:sub1, sub0
453 /// - %2<:0>, sub1
454 ///
455 /// \returns true if it is possible to build such an input sequence
456 /// with the pair \p MI, \p DefIdx. False otherwise.
457 ///
458 /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
459 ///
460 /// \note The generic implementation does not provide any support for
461 /// MI.isRegSequenceLike(). In other words, one has to override
462 /// getRegSequenceLikeInputs for target specific instructions.
463 bool
464 getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
465 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
466
467 /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
468 /// and \p DefIdx.
469 /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
470 /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
471 /// - %1:sub1, sub0
472 ///
473 /// \returns true if it is possible to build such an input sequence
474 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
475 /// False otherwise.
476 ///
477 /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
478 ///
479 /// \note The generic implementation does not provide any support for
480 /// MI.isExtractSubregLike(). In other words, one has to override
481 /// getExtractSubregLikeInputs for target specific instructions.
482 bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
483 RegSubRegPairAndIdx &InputReg) const;
484
485 /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
486 /// and \p DefIdx.
487 /// \p [out] BaseReg and \p [out] InsertedReg contain
488 /// the equivalent inputs of INSERT_SUBREG.
489 /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
490 /// - BaseReg: %0:sub0
491 /// - InsertedReg: %1:sub1, sub3
492 ///
493 /// \returns true if it is possible to build such an input sequence
494 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
495 /// False otherwise.
496 ///
497 /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
498 ///
499 /// \note The generic implementation does not provide any support for
500 /// MI.isInsertSubregLike(). In other words, one has to override
501 /// getInsertSubregLikeInputs for target specific instructions.
502 bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
503 RegSubRegPair &BaseReg,
504 RegSubRegPairAndIdx &InsertedReg) const;
505
506 /// Return true if two machine instructions would produce identical values.
507 /// By default, this is only true when the two instructions
508 /// are deemed identical except for defs. If this function is called when the
509 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
510 /// aggressive checks.
511 virtual bool produceSameValue(const MachineInstr &MI0,
512 const MachineInstr &MI1,
513 const MachineRegisterInfo *MRI = nullptr) const;
514
515 /// \returns true if a branch from an instruction with opcode \p BranchOpc
516 /// bytes is capable of jumping to a position \p BrOffset bytes away.
517 virtual bool isBranchOffsetInRange(unsigned BranchOpc,
518 int64_t BrOffset) const {
519 llvm_unreachable("target did not implement");
520 }
521
522 /// \returns The block that branch instruction \p MI jumps to.
523 virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
524 llvm_unreachable("target did not implement");
525 }
526
527 /// Insert an unconditional indirect branch at the end of \p MBB to \p
528 /// NewDestBB. \p BrOffset indicates the offset of \p NewDestBB relative to
529 /// the offset of the position to insert the new branch.
530 ///
531 /// \returns The number of bytes added to the block.
532 virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB,
533 MachineBasicBlock &NewDestBB,
534 const DebugLoc &DL,
535 int64_t BrOffset = 0,
536 RegScavenger *RS = nullptr) const {
537 llvm_unreachable("target did not implement");
538 }
539
540 /// Analyze the branching code at the end of MBB, returning
541 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
542 /// implemented for a target). Upon success, this returns false and returns
543 /// with the following information in various cases:
544 ///
545 /// 1. If this block ends with no branches (it just falls through to its succ)
546 /// just return false, leaving TBB/FBB null.
547 /// 2. If this block ends with only an unconditional branch, it sets TBB to be
548 /// the destination block.
549 /// 3. If this block ends with a conditional branch and it falls through to a
550 /// successor block, it sets TBB to be the branch destination block and a
551 /// list of operands that evaluate the condition. These operands can be
552 /// passed to other TargetInstrInfo methods to create new branches.
553 /// 4. If this block ends with a conditional branch followed by an
554 /// unconditional branch, it returns the 'true' destination in TBB, the
555 /// 'false' destination in FBB, and a list of operands that evaluate the
556 /// condition. These operands can be passed to other TargetInstrInfo
557 /// methods to create new branches.
558 ///
559 /// Note that removeBranch and insertBranch must be implemented to support
560 /// cases where this method returns success.
561 ///
562 /// If AllowModify is true, then this routine is allowed to modify the basic
563 /// block (e.g. delete instructions after the unconditional branch).
564 ///
565 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
566 /// before calling this function.
567 virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
568 MachineBasicBlock *&FBB,
569 SmallVectorImpl<MachineOperand> &Cond,
570 bool AllowModify = false) const {
571 return true;
572 }
573
574 /// Represents a predicate at the MachineFunction level. The control flow a
575 /// MachineBranchPredicate represents is:
576 ///
577 /// Reg = LHS `Predicate` RHS == ConditionDef
578 /// if Reg then goto TrueDest else goto FalseDest
579 ///
580 struct MachineBranchPredicate {
581 enum ComparePredicate {
582 PRED_EQ, // True if two values are equal
583 PRED_NE, // True if two values are not equal
584 PRED_INVALID // Sentinel value
585 };
586
587 ComparePredicate Predicate = PRED_INVALID;
588 MachineOperand LHS = MachineOperand::CreateImm(0);
589 MachineOperand RHS = MachineOperand::CreateImm(0);
590 MachineBasicBlock *TrueDest = nullptr;
591 MachineBasicBlock *FalseDest = nullptr;
592 MachineInstr *ConditionDef = nullptr;
593
594 /// SingleUseCondition is true if ConditionDef is dead except for the
595 /// branch(es) at the end of the basic block.
596 ///
597 bool SingleUseCondition = false;
598
599 explicit MachineBranchPredicate() = default;
600 };
601
602 /// Analyze the branching code at the end of MBB and parse it into the
603 /// MachineBranchPredicate structure if possible. Returns false on success
604 /// and true on failure.
605 ///
606 /// If AllowModify is true, then this routine is allowed to modify the basic
607 /// block (e.g. delete instructions after the unconditional branch).
608 ///
609 virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
610 MachineBranchPredicate &MBP,
611 bool AllowModify = false) const {
612 return true;
613 }
614
615 /// Remove the branching code at the end of the specific MBB.
616 /// This is only invoked in cases where AnalyzeBranch returns success. It
617 /// returns the number of instructions that were removed.
618 /// If \p BytesRemoved is non-null, report the change in code size from the
619 /// removed instructions.
620 virtual unsigned removeBranch(MachineBasicBlock &MBB,
621 int *BytesRemoved = nullptr) const {
622 llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
623 }
624
625 /// Insert branch code into the end of the specified MachineBasicBlock. The
626 /// operands to this method are the same as those returned by AnalyzeBranch.
627 /// This is only invoked in cases where AnalyzeBranch returns success. It
628 /// returns the number of instructions inserted. If \p BytesAdded is non-null,
629 /// report the change in code size from the added instructions.
630 ///
631 /// It is also invoked by tail merging to add unconditional branches in
632 /// cases where AnalyzeBranch doesn't apply because there was no original
633 /// branch to analyze. At least this much must be implemented, else tail
634 /// merging needs to be disabled.
635 ///
636 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
637 /// before calling this function.
638 virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
639 MachineBasicBlock *FBB,
640 ArrayRef<MachineOperand> Cond,
641 const DebugLoc &DL,
642 int *BytesAdded = nullptr) const {
643 llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
644 }
645
646 unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
647 MachineBasicBlock *DestBB,
648 const DebugLoc &DL,
649 int *BytesAdded = nullptr) const {
650 return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
651 BytesAdded);
652 }
653
654 /// Analyze the loop code, return true if it cannot be understoo. Upon
655 /// success, this function returns false and returns information about the
656 /// induction variable and compare instruction used at the end.
657 virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
658 MachineInstr *&CmpInst) const {
659 return true;
660 }
661
662 /// Generate code to reduce the loop iteration by one and check if the loop
663 /// is finished. Return the value/register of the new loop count. We need
664 /// this function when peeling off one or more iterations of a loop. This
665 /// function assumes the nth iteration is peeled first.
666 virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineInstr *IndVar,
667 MachineInstr &Cmp,
668 SmallVectorImpl<MachineOperand> &Cond,
669 SmallVectorImpl<MachineInstr *> &PrevInsts,
670 unsigned Iter, unsigned MaxIter) const {
671 llvm_unreachable("Target didn't implement ReduceLoopCount");
672 }
673
674 /// Delete the instruction OldInst and everything after it, replacing it with
675 /// an unconditional branch to NewDest. This is used by the tail merging pass.
676 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
677 MachineBasicBlock *NewDest) const;
678
679 /// Return true if it's legal to split the given basic
680 /// block at the specified instruction (i.e. instruction would be the start
681 /// of a new basic block).
682 virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
683 MachineBasicBlock::iterator MBBI) const {
684 return true;
685 }
686
687 /// Return true if it's profitable to predicate
688 /// instructions with accumulated instruction latency of "NumCycles"
689 /// of the specified basic block, where the probability of the instructions
690 /// being executed is given by Probability, and Confidence is a measure
691 /// of our confidence that it will be properly predicted.
692 virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
693 unsigned ExtraPredCycles,
694 BranchProbability Probability) const {
695 return false;
696 }
697
698 /// Second variant of isProfitableToIfCvt. This one
699 /// checks for the case where two basic blocks from true and false path
700 /// of a if-then-else (diamond) are predicated on mutally exclusive
701 /// predicates, where the probability of the true path being taken is given
702 /// by Probability, and Confidence is a measure of our confidence that it
703 /// will be properly predicted.
704 virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
705 unsigned ExtraTCycles,
706 MachineBasicBlock &FMBB, unsigned NumFCycles,
707 unsigned ExtraFCycles,
708 BranchProbability Probability) const {
709 return false;
710 }
711
712 /// Return true if it's profitable for if-converter to duplicate instructions
713 /// of specified accumulated instruction latencies in the specified MBB to
714 /// enable if-conversion.
715 /// The probability of the instructions being executed is given by
716 /// Probability, and Confidence is a measure of our confidence that it
717 /// will be properly predicted.
718 virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
719 unsigned NumCycles,
720 BranchProbability Probability) const {
721 return false;
722 }
723
724 /// Return true if it's profitable to unpredicate
725 /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
726 /// exclusive predicates.
727 /// e.g.
728 /// subeq r0, r1, #1
729 /// addne r0, r1, #1
730 /// =>
731 /// sub r0, r1, #1
732 /// addne r0, r1, #1
733 ///
734 /// This may be profitable is conditional instructions are always executed.
735 virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
736 MachineBasicBlock &FMBB) const {
737 return false;
738 }
739
740 /// Return true if it is possible to insert a select
741 /// instruction that chooses between TrueReg and FalseReg based on the
742 /// condition code in Cond.
743 ///
744 /// When successful, also return the latency in cycles from TrueReg,
745 /// FalseReg, and Cond to the destination register. In most cases, a select
746 /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
747 ///
748 /// Some x86 implementations have 2-cycle cmov instructions.
749 ///
750 /// @param MBB Block where select instruction would be inserted.
751 /// @param Cond Condition returned by AnalyzeBranch.
752 /// @param TrueReg Virtual register to select when Cond is true.
753 /// @param FalseReg Virtual register to select when Cond is false.
754 /// @param CondCycles Latency from Cond+Branch to select output.
755 /// @param TrueCycles Latency from TrueReg to select output.
756 /// @param FalseCycles Latency from FalseReg to select output.
757 virtual bool canInsertSelect(const MachineBasicBlock &MBB,
758 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
759 unsigned FalseReg, int &CondCycles,
760 int &TrueCycles, int &FalseCycles) const {
761 return false;
762 }
763
764 /// Insert a select instruction into MBB before I that will copy TrueReg to
765 /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
766 ///
767 /// This function can only be called after canInsertSelect() returned true.
768 /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
769 /// that the same flags or registers required by Cond are available at the
770 /// insertion point.
771 ///
772 /// @param MBB Block where select instruction should be inserted.
773 /// @param I Insertion point.
774 /// @param DL Source location for debugging.
775 /// @param DstReg Virtual register to be defined by select instruction.
776 /// @param Cond Condition as computed by AnalyzeBranch.
777 /// @param TrueReg Virtual register to copy when Cond is true.
778 /// @param FalseReg Virtual register to copy when Cons is false.
779 virtual void insertSelect(MachineBasicBlock &MBB,
780 MachineBasicBlock::iterator I, const DebugLoc &DL,
781 unsigned DstReg, ArrayRef<MachineOperand> Cond,
782 unsigned TrueReg, unsigned FalseReg) const {
783 llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
784 }
785
786 /// Analyze the given select instruction, returning true if
787 /// it cannot be understood. It is assumed that MI->isSelect() is true.
788 ///
789 /// When successful, return the controlling condition and the operands that
790 /// determine the true and false result values.
791 ///
792 /// Result = SELECT Cond, TrueOp, FalseOp
793 ///
794 /// Some targets can optimize select instructions, for example by predicating
795 /// the instruction defining one of the operands. Such targets should set
796 /// Optimizable.
797 ///
798 /// @param MI Select instruction to analyze.
799 /// @param Cond Condition controlling the select.
800 /// @param TrueOp Operand number of the value selected when Cond is true.
801 /// @param FalseOp Operand number of the value selected when Cond is false.
802 /// @param Optimizable Returned as true if MI is optimizable.
803 /// @returns False on success.
804 virtual bool analyzeSelect(const MachineInstr &MI,
805 SmallVectorImpl<MachineOperand> &Cond,
806 unsigned &TrueOp, unsigned &FalseOp,
807 bool &Optimizable) const {
808 assert(MI.getDesc().isSelect() && "MI must be a select instruction");
809 return true;
810 }
811
812 /// Given a select instruction that was understood by
813 /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
814 /// merging it with one of its operands. Returns NULL on failure.
815 ///
816 /// When successful, returns the new select instruction. The client is
817 /// responsible for deleting MI.
818 ///
819 /// If both sides of the select can be optimized, PreferFalse is used to pick
820 /// a side.
821 ///
822 /// @param MI Optimizable select instruction.
823 /// @param NewMIs Set that record all MIs in the basic block up to \p
824 /// MI. Has to be updated with any newly created MI or deleted ones.
825 /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
826 /// @returns Optimized instruction or NULL.
827 virtual MachineInstr *optimizeSelect(MachineInstr &MI,
828 SmallPtrSetImpl<MachineInstr *> &NewMIs,
829 bool PreferFalse = false) const {
830 // This function must be implemented if Optimizable is ever set.
831 llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
832 }
833
834 /// Emit instructions to copy a pair of physical registers.
835 ///
836 /// This function should support copies within any legal register class as
837 /// well as any cross-class copies created during instruction selection.
838 ///
839 /// The source and destination registers may overlap, which may require a
840 /// careful implementation when multiple copy instructions are required for
841 /// large registers. See for example the ARM target.
842 virtual void copyPhysReg(MachineBasicBlock &MBB,
843 MachineBasicBlock::iterator MI, const DebugLoc &DL,
844 unsigned DestReg, unsigned SrcReg,
845 bool KillSrc) const {
846 llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
847 }
848
Andrew Scull0372a572018-11-16 15:47:06 +0000849protected:
850 /// Target-dependent implemenation for IsCopyInstr.
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100851 /// If the specific machine instruction is a instruction that moves/copies
852 /// value from one register to another register return true along with
853 /// @Source machine operand and @Destination machine operand.
Andrew Scull0372a572018-11-16 15:47:06 +0000854 virtual bool isCopyInstrImpl(const MachineInstr &MI,
855 const MachineOperand *&Source,
856 const MachineOperand *&Destination) const {
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100857 return false;
858 }
859
Andrew Scull0372a572018-11-16 15:47:06 +0000860public:
861 /// If the specific machine instruction is a instruction that moves/copies
862 /// value from one register to another register return true along with
863 /// @Source machine operand and @Destination machine operand.
864 /// For COPY-instruction the method naturally returns true, for all other
865 /// instructions the method calls target-dependent implementation.
866 bool isCopyInstr(const MachineInstr &MI, const MachineOperand *&Source,
867 const MachineOperand *&Destination) const {
868 if (MI.isCopy()) {
869 Destination = &MI.getOperand(0);
870 Source = &MI.getOperand(1);
871 return true;
872 }
873 return isCopyInstrImpl(MI, Source, Destination);
874 }
875
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100876 /// Store the specified register of the given register class to the specified
877 /// stack frame index. The store instruction is to be added to the given
878 /// machine basic block before the specified machine instruction. If isKill
879 /// is true, the register operand is the last use and must be marked kill.
880 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
881 MachineBasicBlock::iterator MI,
882 unsigned SrcReg, bool isKill, int FrameIndex,
883 const TargetRegisterClass *RC,
884 const TargetRegisterInfo *TRI) const {
885 llvm_unreachable("Target didn't implement "
886 "TargetInstrInfo::storeRegToStackSlot!");
887 }
888
889 /// Load the specified register of the given register class from the specified
890 /// stack frame index. The load instruction is to be added to the given
891 /// machine basic block before the specified machine instruction.
892 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
893 MachineBasicBlock::iterator MI,
894 unsigned DestReg, int FrameIndex,
895 const TargetRegisterClass *RC,
896 const TargetRegisterInfo *TRI) const {
897 llvm_unreachable("Target didn't implement "
898 "TargetInstrInfo::loadRegFromStackSlot!");
899 }
900
901 /// This function is called for all pseudo instructions
902 /// that remain after register allocation. Many pseudo instructions are
903 /// created to help register allocation. This is the place to convert them
904 /// into real instructions. The target can edit MI in place, or it can insert
905 /// new instructions and erase MI. The function should return true if
906 /// anything was changed.
907 virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
908
909 /// Check whether the target can fold a load that feeds a subreg operand
910 /// (or a subreg operand that feeds a store).
911 /// For example, X86 may want to return true if it can fold
912 /// movl (%esp), %eax
913 /// subb, %al, ...
914 /// Into:
915 /// subb (%esp), ...
916 ///
917 /// Ideally, we'd like the target implementation of foldMemoryOperand() to
918 /// reject subregs - but since this behavior used to be enforced in the
919 /// target-independent code, moving this responsibility to the targets
920 /// has the potential of causing nasty silent breakage in out-of-tree targets.
921 virtual bool isSubregFoldable() const { return false; }
922
923 /// Attempt to fold a load or store of the specified stack
924 /// slot into the specified machine instruction for the specified operand(s).
925 /// If this is possible, a new instruction is returned with the specified
926 /// operand folded, otherwise NULL is returned.
927 /// The new instruction is inserted before MI, and the client is responsible
928 /// for removing the old instruction.
929 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100930 int FI,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100931 LiveIntervals *LIS = nullptr) const;
932
933 /// Same as the previous version except it allows folding of any load and
934 /// store from / to any address, not just from a specific stack slot.
935 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
936 MachineInstr &LoadMI,
937 LiveIntervals *LIS = nullptr) const;
938
939 /// Return true when there is potentially a faster code sequence
940 /// for an instruction chain ending in \p Root. All potential patterns are
941 /// returned in the \p Pattern vector. Pattern should be sorted in priority
942 /// order since the pattern evaluator stops checking as soon as it finds a
943 /// faster sequence.
944 /// \param Root - Instruction that could be combined with one of its operands
945 /// \param Patterns - Vector of possible combination patterns
946 virtual bool getMachineCombinerPatterns(
947 MachineInstr &Root,
948 SmallVectorImpl<MachineCombinerPattern> &Patterns) const;
949
950 /// Return true when a code sequence can improve throughput. It
951 /// should be called only for instructions in loops.
952 /// \param Pattern - combiner pattern
953 virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
954
955 /// Return true if the input \P Inst is part of a chain of dependent ops
956 /// that are suitable for reassociation, otherwise return false.
957 /// If the instruction's operands must be commuted to have a previous
958 /// instruction of the same type define the first source operand, \P Commuted
959 /// will be set to true.
960 bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
961
962 /// Return true when \P Inst is both associative and commutative.
963 virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
964 return false;
965 }
966
967 /// Return true when \P Inst has reassociable operands in the same \P MBB.
968 virtual bool hasReassociableOperands(const MachineInstr &Inst,
969 const MachineBasicBlock *MBB) const;
970
971 /// Return true when \P Inst has reassociable sibling.
972 bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
973
974 /// When getMachineCombinerPatterns() finds patterns, this function generates
975 /// the instructions that could replace the original code sequence. The client
976 /// has to decide whether the actual replacement is beneficial or not.
977 /// \param Root - Instruction that could be combined with one of its operands
978 /// \param Pattern - Combination pattern for Root
979 /// \param InsInstrs - Vector of new instructions that implement P
980 /// \param DelInstrs - Old instructions, including Root, that could be
981 /// replaced by InsInstr
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100982 /// \param InstIdxForVirtReg - map of virtual register to instruction in
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100983 /// InsInstr that defines it
984 virtual void genAlternativeCodeSequence(
985 MachineInstr &Root, MachineCombinerPattern Pattern,
986 SmallVectorImpl<MachineInstr *> &InsInstrs,
987 SmallVectorImpl<MachineInstr *> &DelInstrs,
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100988 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100989
990 /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
991 /// reduce critical path length.
992 void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
993 MachineCombinerPattern Pattern,
994 SmallVectorImpl<MachineInstr *> &InsInstrs,
995 SmallVectorImpl<MachineInstr *> &DelInstrs,
996 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
997
998 /// This is an architecture-specific helper function of reassociateOps.
999 /// Set special operand attributes for new instructions after reassociation.
1000 virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1001 MachineInstr &NewMI1,
1002 MachineInstr &NewMI2) const {}
1003
1004 /// Return true when a target supports MachineCombiner.
1005 virtual bool useMachineCombiner() const { return false; }
1006
1007 /// Return true if the given SDNode can be copied during scheduling
1008 /// even if it has glue.
1009 virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1010
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001011protected:
1012 /// Target-dependent implementation for foldMemoryOperand.
1013 /// Target-independent code in foldMemoryOperand will
1014 /// take care of adding a MachineMemOperand to the newly created instruction.
1015 /// The instruction and any auxiliary instructions necessary will be inserted
1016 /// at InsertPt.
1017 virtual MachineInstr *
1018 foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
1019 ArrayRef<unsigned> Ops,
1020 MachineBasicBlock::iterator InsertPt, int FrameIndex,
1021 LiveIntervals *LIS = nullptr) const {
1022 return nullptr;
1023 }
1024
1025 /// Target-dependent implementation for foldMemoryOperand.
1026 /// Target-independent code in foldMemoryOperand will
1027 /// take care of adding a MachineMemOperand to the newly created instruction.
1028 /// The instruction and any auxiliary instructions necessary will be inserted
1029 /// at InsertPt.
1030 virtual MachineInstr *foldMemoryOperandImpl(
1031 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1032 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1033 LiveIntervals *LIS = nullptr) const {
1034 return nullptr;
1035 }
1036
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001037 /// Target-dependent implementation of getRegSequenceInputs.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001038 ///
1039 /// \returns true if it is possible to build the equivalent
1040 /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1041 ///
1042 /// \pre MI.isRegSequenceLike().
1043 ///
1044 /// \see TargetInstrInfo::getRegSequenceInputs.
1045 virtual bool getRegSequenceLikeInputs(
1046 const MachineInstr &MI, unsigned DefIdx,
1047 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1048 return false;
1049 }
1050
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001051 /// Target-dependent implementation of getExtractSubregInputs.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001052 ///
1053 /// \returns true if it is possible to build the equivalent
1054 /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1055 ///
1056 /// \pre MI.isExtractSubregLike().
1057 ///
1058 /// \see TargetInstrInfo::getExtractSubregInputs.
1059 virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
1060 unsigned DefIdx,
1061 RegSubRegPairAndIdx &InputReg) const {
1062 return false;
1063 }
1064
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001065 /// Target-dependent implementation of getInsertSubregInputs.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001066 ///
1067 /// \returns true if it is possible to build the equivalent
1068 /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1069 ///
1070 /// \pre MI.isInsertSubregLike().
1071 ///
1072 /// \see TargetInstrInfo::getInsertSubregInputs.
1073 virtual bool
1074 getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1075 RegSubRegPair &BaseReg,
1076 RegSubRegPairAndIdx &InsertedReg) const {
1077 return false;
1078 }
1079
1080public:
1081 /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
1082 /// (e.g. stack) the target returns the corresponding address space.
1083 virtual unsigned
Andrew Scull0372a572018-11-16 15:47:06 +00001084 getAddressSpaceForPseudoSourceKind(unsigned Kind) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001085 return 0;
1086 }
1087
1088 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1089 /// a store or a load and a store into two or more instruction. If this is
1090 /// possible, returns true as well as the new instructions by reference.
1091 virtual bool
1092 unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1093 bool UnfoldLoad, bool UnfoldStore,
1094 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1095 return false;
1096 }
1097
1098 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1099 SmallVectorImpl<SDNode *> &NewNodes) const {
1100 return false;
1101 }
1102
1103 /// Returns the opcode of the would be new
1104 /// instruction after load / store are unfolded from an instruction of the
1105 /// specified opcode. It returns zero if the specified unfolding is not
1106 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1107 /// index of the operand which will hold the register holding the loaded
1108 /// value.
1109 virtual unsigned
1110 getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1111 unsigned *LoadRegIndex = nullptr) const {
1112 return 0;
1113 }
1114
1115 /// This is used by the pre-regalloc scheduler to determine if two loads are
1116 /// loading from the same base address. It should only return true if the base
1117 /// pointers are the same and the only differences between the two addresses
1118 /// are the offset. It also returns the offsets by reference.
1119 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1120 int64_t &Offset1,
1121 int64_t &Offset2) const {
1122 return false;
1123 }
1124
1125 /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1126 /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1127 /// On some targets if two loads are loading from
1128 /// addresses in the same cache line, it's better if they are scheduled
1129 /// together. This function takes two integers that represent the load offsets
1130 /// from the common base address. It returns true if it decides it's desirable
1131 /// to schedule the two loads together. "NumLoads" is the number of loads that
1132 /// have already been scheduled after Load1.
1133 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1134 int64_t Offset1, int64_t Offset2,
1135 unsigned NumLoads) const {
1136 return false;
1137 }
1138
1139 /// Get the base register and byte offset of an instruction that reads/writes
1140 /// memory.
1141 virtual bool getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg,
1142 int64_t &Offset,
1143 const TargetRegisterInfo *TRI) const {
1144 return false;
1145 }
1146
1147 /// Return true if the instruction contains a base register and offset. If
1148 /// true, the function also sets the operand position in the instruction
1149 /// for the base register and offset.
1150 virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1151 unsigned &BasePos,
1152 unsigned &OffsetPos) const {
1153 return false;
1154 }
1155
1156 /// If the instruction is an increment of a constant value, return the amount.
1157 virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1158 return false;
1159 }
1160
1161 /// Returns true if the two given memory operations should be scheduled
1162 /// adjacent. Note that you have to add:
1163 /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1164 /// or
1165 /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1166 /// to TargetPassConfig::createMachineScheduler() to have an effect.
1167 virtual bool shouldClusterMemOps(MachineInstr &FirstLdSt, unsigned BaseReg1,
1168 MachineInstr &SecondLdSt, unsigned BaseReg2,
1169 unsigned NumLoads) const {
1170 llvm_unreachable("target did not implement shouldClusterMemOps()");
1171 }
1172
1173 /// Reverses the branch condition of the specified condition list,
1174 /// returning false on success and true if it cannot be reversed.
1175 virtual bool
1176 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1177 return true;
1178 }
1179
1180 /// Insert a noop into the instruction stream at the specified point.
1181 virtual void insertNoop(MachineBasicBlock &MBB,
1182 MachineBasicBlock::iterator MI) const;
1183
1184 /// Return the noop instruction to use for a noop.
1185 virtual void getNoop(MCInst &NopInst) const;
1186
1187 /// Return true for post-incremented instructions.
1188 virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1189
1190 /// Returns true if the instruction is already predicated.
1191 virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1192
1193 /// Returns true if the instruction is a
1194 /// terminator instruction that has not been predicated.
1195 virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1196
1197 /// Returns true if MI is an unconditional tail call.
1198 virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1199 return false;
1200 }
1201
1202 /// Returns true if the tail call can be made conditional on BranchCond.
1203 virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1204 const MachineInstr &TailCall) const {
1205 return false;
1206 }
1207
1208 /// Replace the conditional branch in MBB with a conditional tail call.
1209 virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1210 SmallVectorImpl<MachineOperand> &Cond,
1211 const MachineInstr &TailCall) const {
1212 llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1213 }
1214
1215 /// Convert the instruction into a predicated instruction.
1216 /// It returns true if the operation was successful.
1217 virtual bool PredicateInstruction(MachineInstr &MI,
1218 ArrayRef<MachineOperand> Pred) const;
1219
1220 /// Returns true if the first specified predicate
1221 /// subsumes the second, e.g. GE subsumes GT.
1222 virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1223 ArrayRef<MachineOperand> Pred2) const {
1224 return false;
1225 }
1226
1227 /// If the specified instruction defines any predicate
1228 /// or condition code register(s) used for predication, returns true as well
1229 /// as the definition predicate(s) by reference.
1230 virtual bool DefinesPredicate(MachineInstr &MI,
1231 std::vector<MachineOperand> &Pred) const {
1232 return false;
1233 }
1234
1235 /// Return true if the specified instruction can be predicated.
1236 /// By default, this returns true for every instruction with a
1237 /// PredicateOperand.
1238 virtual bool isPredicable(const MachineInstr &MI) const {
1239 return MI.getDesc().isPredicable();
1240 }
1241
1242 /// Return true if it's safe to move a machine
1243 /// instruction that defines the specified register class.
1244 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1245 return true;
1246 }
1247
1248 /// Test if the given instruction should be considered a scheduling boundary.
1249 /// This primarily includes labels and terminators.
1250 virtual bool isSchedulingBoundary(const MachineInstr &MI,
1251 const MachineBasicBlock *MBB,
1252 const MachineFunction &MF) const;
1253
1254 /// Measure the specified inline asm to determine an approximation of its
1255 /// length.
1256 virtual unsigned getInlineAsmLength(const char *Str,
1257 const MCAsmInfo &MAI) const;
1258
1259 /// Allocate and return a hazard recognizer to use for this target when
1260 /// scheduling the machine instructions before register allocation.
1261 virtual ScheduleHazardRecognizer *
1262 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1263 const ScheduleDAG *DAG) const;
1264
1265 /// Allocate and return a hazard recognizer to use for this target when
1266 /// scheduling the machine instructions before register allocation.
1267 virtual ScheduleHazardRecognizer *
1268 CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1269 const ScheduleDAG *DAG) const;
1270
1271 /// Allocate and return a hazard recognizer to use for this target when
1272 /// scheduling the machine instructions after register allocation.
1273 virtual ScheduleHazardRecognizer *
1274 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1275 const ScheduleDAG *DAG) const;
1276
1277 /// Allocate and return a hazard recognizer to use for by non-scheduling
1278 /// passes.
1279 virtual ScheduleHazardRecognizer *
1280 CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1281 return nullptr;
1282 }
1283
1284 /// Provide a global flag for disabling the PreRA hazard recognizer that
1285 /// targets may choose to honor.
1286 bool usePreRAHazardRecognizer() const;
1287
1288 /// For a comparison instruction, return the source registers
1289 /// in SrcReg and SrcReg2 if having two register operands, and the value it
1290 /// compares against in CmpValue. Return true if the comparison instruction
1291 /// can be analyzed.
1292 virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1293 unsigned &SrcReg2, int &Mask, int &Value) const {
1294 return false;
1295 }
1296
1297 /// See if the comparison instruction can be converted
1298 /// into something more efficient. E.g., on ARM most instructions can set the
1299 /// flags register, obviating the need for a separate CMP.
1300 virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1301 unsigned SrcReg2, int Mask, int Value,
1302 const MachineRegisterInfo *MRI) const {
1303 return false;
1304 }
1305 virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1306
1307 /// Try to remove the load by folding it to a register operand at the use.
1308 /// We fold the load instructions if and only if the
1309 /// def and use are in the same BB. We only look at one load and see
1310 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1311 /// defined by the load we are trying to fold. DefMI returns the machine
1312 /// instruction that defines FoldAsLoadDefReg, and the function returns
1313 /// the machine instruction generated due to folding.
1314 virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1315 const MachineRegisterInfo *MRI,
1316 unsigned &FoldAsLoadDefReg,
1317 MachineInstr *&DefMI) const {
1318 return nullptr;
1319 }
1320
1321 /// 'Reg' is known to be defined by a move immediate instruction,
1322 /// try to fold the immediate into the use instruction.
1323 /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1324 /// then the caller may assume that DefMI has been erased from its parent
1325 /// block. The caller may assume that it will not be erased by this
1326 /// function otherwise.
1327 virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1328 unsigned Reg, MachineRegisterInfo *MRI) const {
1329 return false;
1330 }
1331
1332 /// Return the number of u-operations the given machine
1333 /// instruction will be decoded to on the target cpu. The itinerary's
1334 /// IssueWidth is the number of microops that can be dispatched each
1335 /// cycle. An instruction with zero microops takes no dispatch resources.
1336 virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1337 const MachineInstr &MI) const;
1338
1339 /// Return true for pseudo instructions that don't consume any
1340 /// machine resources in their current form. These are common cases that the
1341 /// scheduler should consider free, rather than conservatively handling them
1342 /// as instructions with no itinerary.
1343 bool isZeroCost(unsigned Opcode) const {
1344 return Opcode <= TargetOpcode::COPY;
1345 }
1346
1347 virtual int getOperandLatency(const InstrItineraryData *ItinData,
1348 SDNode *DefNode, unsigned DefIdx,
1349 SDNode *UseNode, unsigned UseIdx) const;
1350
1351 /// Compute and return the use operand latency of a given pair of def and use.
1352 /// In most cases, the static scheduling itinerary was enough to determine the
1353 /// operand latency. But it may not be possible for instructions with variable
1354 /// number of defs / uses.
1355 ///
1356 /// This is a raw interface to the itinerary that may be directly overridden
1357 /// by a target. Use computeOperandLatency to get the best estimate of
1358 /// latency.
1359 virtual int getOperandLatency(const InstrItineraryData *ItinData,
1360 const MachineInstr &DefMI, unsigned DefIdx,
1361 const MachineInstr &UseMI,
1362 unsigned UseIdx) const;
1363
1364 /// Compute the instruction latency of a given instruction.
1365 /// If the instruction has higher cost when predicated, it's returned via
1366 /// PredCost.
1367 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1368 const MachineInstr &MI,
1369 unsigned *PredCost = nullptr) const;
1370
1371 virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1372
1373 virtual int getInstrLatency(const InstrItineraryData *ItinData,
1374 SDNode *Node) const;
1375
1376 /// Return the default expected latency for a def based on its opcode.
1377 unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1378 const MachineInstr &DefMI) const;
1379
1380 int computeDefOperandLatency(const InstrItineraryData *ItinData,
1381 const MachineInstr &DefMI) const;
1382
1383 /// Return true if this opcode has high latency to its result.
1384 virtual bool isHighLatencyDef(int opc) const { return false; }
1385
1386 /// Compute operand latency between a def of 'Reg'
1387 /// and a use in the current loop. Return true if the target considered
1388 /// it 'high'. This is used by optimization passes such as machine LICM to
1389 /// determine whether it makes sense to hoist an instruction out even in a
1390 /// high register pressure situation.
1391 virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1392 const MachineRegisterInfo *MRI,
1393 const MachineInstr &DefMI, unsigned DefIdx,
1394 const MachineInstr &UseMI,
1395 unsigned UseIdx) const {
1396 return false;
1397 }
1398
1399 /// Compute operand latency of a def of 'Reg'. Return true
1400 /// if the target considered it 'low'.
1401 virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1402 const MachineInstr &DefMI,
1403 unsigned DefIdx) const;
1404
1405 /// Perform target-specific instruction verification.
1406 virtual bool verifyInstruction(const MachineInstr &MI,
1407 StringRef &ErrInfo) const {
1408 return true;
1409 }
1410
1411 /// Return the current execution domain and bit mask of
1412 /// possible domains for instruction.
1413 ///
1414 /// Some micro-architectures have multiple execution domains, and multiple
1415 /// opcodes that perform the same operation in different domains. For
1416 /// example, the x86 architecture provides the por, orps, and orpd
1417 /// instructions that all do the same thing. There is a latency penalty if a
1418 /// register is written in one domain and read in another.
1419 ///
1420 /// This function returns a pair (domain, mask) containing the execution
1421 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain
1422 /// function can be used to change the opcode to one of the domains in the
1423 /// bit mask. Instructions whose execution domain can't be changed should
1424 /// return a 0 mask.
1425 ///
1426 /// The execution domain numbers don't have any special meaning except domain
1427 /// 0 is used for instructions that are not associated with any interesting
1428 /// execution domain.
1429 ///
1430 virtual std::pair<uint16_t, uint16_t>
1431 getExecutionDomain(const MachineInstr &MI) const {
1432 return std::make_pair(0, 0);
1433 }
1434
1435 /// Change the opcode of MI to execute in Domain.
1436 ///
1437 /// The bit (1 << Domain) must be set in the mask returned from
1438 /// getExecutionDomain(MI).
1439 virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1440
1441 /// Returns the preferred minimum clearance
1442 /// before an instruction with an unwanted partial register update.
1443 ///
1444 /// Some instructions only write part of a register, and implicitly need to
1445 /// read the other parts of the register. This may cause unwanted stalls
1446 /// preventing otherwise unrelated instructions from executing in parallel in
1447 /// an out-of-order CPU.
1448 ///
1449 /// For example, the x86 instruction cvtsi2ss writes its result to bits
1450 /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1451 /// the instruction needs to wait for the old value of the register to become
1452 /// available:
1453 ///
1454 /// addps %xmm1, %xmm0
1455 /// movaps %xmm0, (%rax)
1456 /// cvtsi2ss %rbx, %xmm0
1457 ///
1458 /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1459 /// instruction before it can issue, even though the high bits of %xmm0
1460 /// probably aren't needed.
1461 ///
1462 /// This hook returns the preferred clearance before MI, measured in
1463 /// instructions. Other defs of MI's operand OpNum are avoided in the last N
1464 /// instructions before MI. It should only return a positive value for
1465 /// unwanted dependencies. If the old bits of the defined register have
1466 /// useful values, or if MI is determined to otherwise read the dependency,
1467 /// the hook should return 0.
1468 ///
1469 /// The unwanted dependency may be handled by:
1470 ///
1471 /// 1. Allocating the same register for an MI def and use. That makes the
1472 /// unwanted dependency identical to a required dependency.
1473 ///
1474 /// 2. Allocating a register for the def that has no defs in the previous N
1475 /// instructions.
1476 ///
1477 /// 3. Calling breakPartialRegDependency() with the same arguments. This
1478 /// allows the target to insert a dependency breaking instruction.
1479 ///
1480 virtual unsigned
1481 getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1482 const TargetRegisterInfo *TRI) const {
1483 // The default implementation returns 0 for no partial register dependency.
1484 return 0;
1485 }
1486
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001487 /// Return the minimum clearance before an instruction that reads an
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001488 /// unused register.
1489 ///
1490 /// For example, AVX instructions may copy part of a register operand into
1491 /// the unused high bits of the destination register.
1492 ///
1493 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1494 ///
1495 /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1496 /// false dependence on any previous write to %xmm0.
1497 ///
1498 /// This hook works similarly to getPartialRegUpdateClearance, except that it
1499 /// does not take an operand index. Instead sets \p OpNum to the index of the
1500 /// unused register.
1501 virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
1502 const TargetRegisterInfo *TRI) const {
1503 // The default implementation returns 0 for no undef register dependency.
1504 return 0;
1505 }
1506
1507 /// Insert a dependency-breaking instruction
1508 /// before MI to eliminate an unwanted dependency on OpNum.
1509 ///
1510 /// If it wasn't possible to avoid a def in the last N instructions before MI
1511 /// (see getPartialRegUpdateClearance), this hook will be called to break the
1512 /// unwanted dependency.
1513 ///
1514 /// On x86, an xorps instruction can be used as a dependency breaker:
1515 ///
1516 /// addps %xmm1, %xmm0
1517 /// movaps %xmm0, (%rax)
1518 /// xorps %xmm0, %xmm0
1519 /// cvtsi2ss %rbx, %xmm0
1520 ///
1521 /// An <imp-kill> operand should be added to MI if an instruction was
1522 /// inserted. This ties the instructions together in the post-ra scheduler.
1523 ///
1524 virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1525 const TargetRegisterInfo *TRI) const {}
1526
1527 /// Create machine specific model for scheduling.
1528 virtual DFAPacketizer *
1529 CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1530 return nullptr;
1531 }
1532
1533 /// Sometimes, it is possible for the target
1534 /// to tell, even without aliasing information, that two MIs access different
1535 /// memory addresses. This function returns true if two MIs access different
1536 /// memory addresses and false otherwise.
1537 ///
1538 /// Assumes any physical registers used to compute addresses have the same
1539 /// value for both instructions. (This is the most useful assumption for
1540 /// post-RA scheduling.)
1541 ///
1542 /// See also MachineInstr::mayAlias, which is implemented on top of this
1543 /// function.
1544 virtual bool
1545 areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
1546 AliasAnalysis *AA = nullptr) const {
1547 assert((MIa.mayLoad() || MIa.mayStore()) &&
1548 "MIa must load from or modify a memory location");
1549 assert((MIb.mayLoad() || MIb.mayStore()) &&
1550 "MIb must load from or modify a memory location");
1551 return false;
1552 }
1553
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001554 /// Return the value to use for the MachineCSE's LookAheadLimit,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001555 /// which is a heuristic used for CSE'ing phys reg defs.
1556 virtual unsigned getMachineCSELookAheadLimit() const {
1557 // The default lookahead is small to prevent unprofitable quadratic
1558 // behavior.
1559 return 5;
1560 }
1561
1562 /// Return an array that contains the ids of the target indices (used for the
1563 /// TargetIndex machine operand) and their names.
1564 ///
1565 /// MIR Serialization is able to serialize only the target indices that are
1566 /// defined by this method.
1567 virtual ArrayRef<std::pair<int, const char *>>
1568 getSerializableTargetIndices() const {
1569 return None;
1570 }
1571
1572 /// Decompose the machine operand's target flags into two values - the direct
1573 /// target flag value and any of bit flags that are applied.
1574 virtual std::pair<unsigned, unsigned>
1575 decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1576 return std::make_pair(0u, 0u);
1577 }
1578
1579 /// Return an array that contains the direct target flag values and their
1580 /// names.
1581 ///
1582 /// MIR Serialization is able to serialize only the target flags that are
1583 /// defined by this method.
1584 virtual ArrayRef<std::pair<unsigned, const char *>>
1585 getSerializableDirectMachineOperandTargetFlags() const {
1586 return None;
1587 }
1588
1589 /// Return an array that contains the bitmask target flag values and their
1590 /// names.
1591 ///
1592 /// MIR Serialization is able to serialize only the target flags that are
1593 /// defined by this method.
1594 virtual ArrayRef<std::pair<unsigned, const char *>>
1595 getSerializableBitmaskMachineOperandTargetFlags() const {
1596 return None;
1597 }
1598
1599 /// Return an array that contains the MMO target flag values and their
1600 /// names.
1601 ///
1602 /// MIR Serialization is able to serialize only the MMO target flags that are
1603 /// defined by this method.
1604 virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
1605 getSerializableMachineMemOperandTargetFlags() const {
1606 return None;
1607 }
1608
1609 /// Determines whether \p Inst is a tail call instruction. Override this
1610 /// method on targets that do not properly set MCID::Return and MCID::Call on
1611 /// tail call instructions."
1612 virtual bool isTailCall(const MachineInstr &Inst) const {
1613 return Inst.isReturn() && Inst.isCall();
1614 }
1615
1616 /// True if the instruction is bound to the top of its basic block and no
1617 /// other instructions shall be inserted before it. This can be implemented
1618 /// to prevent register allocator to insert spills before such instructions.
1619 virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
1620 return false;
1621 }
1622
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001623 /// Returns a \p outliner::OutlinedFunction struct containing target-specific
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001624 /// information for a set of outlining candidates.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001625 virtual outliner::OutlinedFunction getOutliningCandidateInfo(
1626 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001627 llvm_unreachable(
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001628 "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001629 }
1630
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001631 /// Returns how or if \p MI should be outlined.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001632 virtual outliner::InstrType
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001633 getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
1634 llvm_unreachable(
1635 "Target didn't implement TargetInstrInfo::getOutliningType!");
1636 }
1637
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001638 /// Returns target-defined flags defining properties of the MBB for
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001639 /// the outliner.
1640 virtual unsigned getMachineOutlinerMBBFlags(MachineBasicBlock &MBB) const {
1641 return 0x0;
1642 }
1643
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001644 /// Insert a custom frame for outlined functions.
1645 virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
1646 const outliner::OutlinedFunction &OF) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001647 llvm_unreachable(
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001648 "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001649 }
1650
1651 /// Insert a call to an outlined function into the program.
1652 /// Returns an iterator to the spot where we inserted the call. This must be
1653 /// implemented by the target.
1654 virtual MachineBasicBlock::iterator
1655 insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
1656 MachineBasicBlock::iterator &It, MachineFunction &MF,
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001657 const outliner::Candidate &C) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001658 llvm_unreachable(
1659 "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
1660 }
1661
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001662 /// Return true if the function can safely be outlined from.
1663 /// A function \p MF is considered safe for outlining if an outlined function
1664 /// produced from instructions in F will produce a program which produces the
1665 /// same output for any set of given inputs.
1666 virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
1667 bool OutlineFromLinkOnceODRs) const {
1668 llvm_unreachable("Target didn't implement "
1669 "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
1670 }
1671
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001672 /// Return true if the function should be outlined from by default.
1673 virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
1674 return false;
1675 }
1676
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001677private:
1678 unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
1679 unsigned CatchRetOpcode;
1680 unsigned ReturnOpcode;
1681};
1682
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001683/// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001684template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
1685 using RegInfo = DenseMapInfo<unsigned>;
1686
1687 static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
1688 return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
1689 RegInfo::getEmptyKey());
1690 }
1691
1692 static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
1693 return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
1694 RegInfo::getTombstoneKey());
1695 }
1696
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001697 /// Reuse getHashValue implementation from
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001698 /// std::pair<unsigned, unsigned>.
1699 static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
1700 std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
1701 return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
1702 }
1703
1704 static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
1705 const TargetInstrInfo::RegSubRegPair &RHS) {
1706 return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
1707 RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
1708 }
1709};
1710
1711} // end namespace llvm
1712
1713#endif // LLVM_TARGET_TARGETINSTRINFO_H