blob: 5c2a530762a9fbbc1ae29e479a5c01c198c169f1 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/DenseMapInfo.h"
20#include "llvm/ADT/None.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineCombinerPattern.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineLoopInfo.h"
26#include "llvm/CodeGen/MachineOperand.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/MC/MCInstrInfo.h"
29#include "llvm/Support/BranchProbability.h"
30#include "llvm/Support/ErrorHandling.h"
31#include <cassert>
32#include <cstddef>
33#include <cstdint>
34#include <utility>
35#include <vector>
36
37namespace llvm {
38
39class DFAPacketizer;
40class InstrItineraryData;
41class LiveIntervals;
42class LiveVariables;
43class MachineMemOperand;
44class MachineRegisterInfo;
45class MCAsmInfo;
46class MCInst;
47struct MCSchedModel;
48class Module;
49class ScheduleDAG;
50class ScheduleHazardRecognizer;
51class SDNode;
52class SelectionDAG;
53class RegScavenger;
54class TargetRegisterClass;
55class TargetRegisterInfo;
56class TargetSchedModel;
57class TargetSubtargetInfo;
58
59template <class T> class SmallVectorImpl;
60
61//---------------------------------------------------------------------------
62///
63/// TargetInstrInfo - Interface to description of machine instruction set
64///
65class TargetInstrInfo : public MCInstrInfo {
66public:
67 TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
68 unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
69 : CallFrameSetupOpcode(CFSetupOpcode),
70 CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
71 ReturnOpcode(ReturnOpcode) {}
72 TargetInstrInfo(const TargetInstrInfo &) = delete;
73 TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
74 virtual ~TargetInstrInfo();
75
76 static bool isGenericOpcode(unsigned Opc) {
77 return Opc <= TargetOpcode::GENERIC_OP_END;
78 }
79
80 /// Given a machine instruction descriptor, returns the register
81 /// class constraint for OpNum, or NULL.
82 const TargetRegisterClass *getRegClass(const MCInstrDesc &TID, unsigned OpNum,
83 const TargetRegisterInfo *TRI,
84 const MachineFunction &MF) const;
85
86 /// Return true if the instruction is trivially rematerializable, meaning it
87 /// has no side effects and requires no operands that aren't always available.
88 /// This means the only allowed uses are constants and unallocatable physical
89 /// registers so that the instructions result is independent of the place
90 /// in the function.
91 bool isTriviallyReMaterializable(const MachineInstr &MI,
92 AliasAnalysis *AA = nullptr) const {
93 return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
94 (MI.getDesc().isRematerializable() &&
95 (isReallyTriviallyReMaterializable(MI, AA) ||
96 isReallyTriviallyReMaterializableGeneric(MI, AA)));
97 }
98
99protected:
100 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
101 /// set, this hook lets the target specify whether the instruction is actually
102 /// trivially rematerializable, taking into consideration its operands. This
103 /// predicate must return false if the instruction has any side effects other
104 /// than producing a value, or if it requres any address registers that are
105 /// not always available.
106 /// Requirements must be check as stated in isTriviallyReMaterializable() .
107 virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
108 AliasAnalysis *AA) const {
109 return false;
110 }
111
112 /// This method commutes the operands of the given machine instruction MI.
113 /// The operands to be commuted are specified by their indices OpIdx1 and
114 /// OpIdx2.
115 ///
116 /// If a target has any instructions that are commutable but require
117 /// converting to different instructions or making non-trivial changes
118 /// to commute them, this method can be overloaded to do that.
119 /// The default implementation simply swaps the commutable operands.
120 ///
121 /// If NewMI is false, MI is modified in place and returned; otherwise, a
122 /// new machine instruction is created and returned.
123 ///
124 /// Do not call this method for a non-commutable instruction.
125 /// Even though the instruction is commutable, the method may still
126 /// fail to commute the operands, null pointer is returned in such cases.
127 virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
128 unsigned OpIdx1,
129 unsigned OpIdx2) const;
130
131 /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
132 /// operand indices to (ResultIdx1, ResultIdx2).
133 /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
134 /// predefined to some indices or be undefined (designated by the special
135 /// value 'CommuteAnyOperandIndex').
136 /// The predefined result indices cannot be re-defined.
137 /// The function returns true iff after the result pair redefinition
138 /// the fixed result pair is equal to or equivalent to the source pair of
139 /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
140 /// the pairs (x,y) and (y,x) are equivalent.
141 static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
142 unsigned CommutableOpIdx1,
143 unsigned CommutableOpIdx2);
144
145private:
146 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
147 /// set and the target hook isReallyTriviallyReMaterializable returns false,
148 /// this function does target-independent tests to determine if the
149 /// instruction is really trivially rematerializable.
150 bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI,
151 AliasAnalysis *AA) const;
152
153public:
154 /// These methods return the opcode of the frame setup/destroy instructions
155 /// if they exist (-1 otherwise). Some targets use pseudo instructions in
156 /// order to abstract away the difference between operating with a frame
157 /// pointer and operating without, through the use of these two instructions.
158 ///
159 unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
160 unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
161
162 /// Returns true if the argument is a frame pseudo instruction.
163 bool isFrameInstr(const MachineInstr &I) const {
164 return I.getOpcode() == getCallFrameSetupOpcode() ||
165 I.getOpcode() == getCallFrameDestroyOpcode();
166 }
167
168 /// Returns true if the argument is a frame setup pseudo instruction.
169 bool isFrameSetup(const MachineInstr &I) const {
170 return I.getOpcode() == getCallFrameSetupOpcode();
171 }
172
173 /// Returns size of the frame associated with the given frame instruction.
174 /// For frame setup instruction this is frame that is set up space set up
175 /// after the instruction. For frame destroy instruction this is the frame
176 /// freed by the caller.
177 /// Note, in some cases a call frame (or a part of it) may be prepared prior
178 /// to the frame setup instruction. It occurs in the calls that involve
179 /// inalloca arguments. This function reports only the size of the frame part
180 /// that is set up between the frame setup and destroy pseudo instructions.
181 int64_t getFrameSize(const MachineInstr &I) const {
182 assert(isFrameInstr(I) && "Not a frame instruction");
183 assert(I.getOperand(0).getImm() >= 0);
184 return I.getOperand(0).getImm();
185 }
186
187 /// Returns the total frame size, which is made up of the space set up inside
188 /// the pair of frame start-stop instructions and the space that is set up
189 /// prior to the pair.
190 int64_t getFrameTotalSize(const MachineInstr &I) const {
191 if (isFrameSetup(I)) {
192 assert(I.getOperand(1).getImm() >= 0 &&
193 "Frame size must not be negative");
194 return getFrameSize(I) + I.getOperand(1).getImm();
195 }
196 return getFrameSize(I);
197 }
198
199 unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
200 unsigned getReturnOpcode() const { return ReturnOpcode; }
201
202 /// Returns the actual stack pointer adjustment made by an instruction
203 /// as part of a call sequence. By default, only call frame setup/destroy
204 /// instructions adjust the stack, but targets may want to override this
205 /// to enable more fine-grained adjustment, or adjust by a different value.
206 virtual int getSPAdjust(const MachineInstr &MI) const;
207
208 /// Return true if the instruction is a "coalescable" extension instruction.
209 /// That is, it's like a copy where it's legal for the source to overlap the
210 /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
211 /// expected the pre-extension value is available as a subreg of the result
212 /// register. This also returns the sub-register index in SubIdx.
213 virtual bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
214 unsigned &DstReg, unsigned &SubIdx) const {
215 return false;
216 }
217
218 /// If the specified machine instruction is a direct
219 /// load from a stack slot, return the virtual or physical register number of
220 /// the destination along with the FrameIndex of the loaded stack slot. If
221 /// not, return 0. This predicate must return 0 if the instruction has
222 /// any side effects other than loading from the stack slot.
223 virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
224 int &FrameIndex) const {
225 return 0;
226 }
227
228 /// Check for post-frame ptr elimination stack locations as well.
229 /// This uses a heuristic so it isn't reliable for correctness.
230 virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
231 int &FrameIndex) const {
232 return 0;
233 }
234
235 /// If the specified machine instruction has a load from a stack slot,
236 /// return true along with the FrameIndex of the loaded stack slot and the
237 /// machine mem operand containing the reference.
238 /// If not, return false. Unlike isLoadFromStackSlot, this returns true for
239 /// any instructions that loads from the stack. This is just a hint, as some
240 /// cases may be missed.
241 virtual bool hasLoadFromStackSlot(const MachineInstr &MI,
242 const MachineMemOperand *&MMO,
243 int &FrameIndex) const;
244
245 /// If the specified machine instruction is a direct
246 /// store to a stack slot, return the virtual or physical register number of
247 /// the source reg along with the FrameIndex of the loaded stack slot. If
248 /// not, return 0. This predicate must return 0 if the instruction has
249 /// any side effects other than storing to the stack slot.
250 virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
251 int &FrameIndex) const {
252 return 0;
253 }
254
255 /// Check for post-frame ptr elimination stack locations as well.
256 /// This uses a heuristic, so it isn't reliable for correctness.
257 virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
258 int &FrameIndex) const {
259 return 0;
260 }
261
262 /// If the specified machine instruction has a store to a stack slot,
263 /// return true along with the FrameIndex of the loaded stack slot and the
264 /// machine mem operand containing the reference.
265 /// If not, return false. Unlike isStoreToStackSlot,
266 /// this returns true for any instructions that stores to the
267 /// stack. This is just a hint, as some cases may be missed.
268 virtual bool hasStoreToStackSlot(const MachineInstr &MI,
269 const MachineMemOperand *&MMO,
270 int &FrameIndex) const;
271
272 /// Return true if the specified machine instruction
273 /// is a copy of one stack slot to another and has no other effect.
274 /// Provide the identity of the two frame indices.
275 virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
276 int &SrcFrameIndex) const {
277 return false;
278 }
279
280 /// Compute the size in bytes and offset within a stack slot of a spilled
281 /// register or subregister.
282 ///
283 /// \param [out] Size in bytes of the spilled value.
284 /// \param [out] Offset in bytes within the stack slot.
285 /// \returns true if both Size and Offset are successfully computed.
286 ///
287 /// Not all subregisters have computable spill slots. For example,
288 /// subregisters registers may not be byte-sized, and a pair of discontiguous
289 /// subregisters has no single offset.
290 ///
291 /// Targets with nontrivial bigendian implementations may need to override
292 /// this, particularly to support spilled vector registers.
293 virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
294 unsigned &Size, unsigned &Offset,
295 const MachineFunction &MF) const;
296
297 /// Returns the size in bytes of the specified MachineInstr, or ~0U
298 /// when this function is not implemented by a target.
299 virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
300 return ~0U;
301 }
302
303 /// Return true if the instruction is as cheap as a move instruction.
304 ///
305 /// Targets for different archs need to override this, and different
306 /// micro-architectures can also be finely tuned inside.
307 virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
308 return MI.isAsCheapAsAMove();
309 }
310
311 /// Return true if the instruction should be sunk by MachineSink.
312 ///
313 /// MachineSink determines on its own whether the instruction is safe to sink;
314 /// this gives the target a hook to override the default behavior with regards
315 /// to which instructions should be sunk.
316 virtual bool shouldSink(const MachineInstr &MI) const { return true; }
317
318 /// Re-issue the specified 'original' instruction at the
319 /// specific location targeting a new destination register.
320 /// The register in Orig->getOperand(0).getReg() will be substituted by
321 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
322 /// SubIdx.
323 virtual void reMaterialize(MachineBasicBlock &MBB,
324 MachineBasicBlock::iterator MI, unsigned DestReg,
325 unsigned SubIdx, const MachineInstr &Orig,
326 const TargetRegisterInfo &TRI) const;
327
328 /// \brief Clones instruction or the whole instruction bundle \p Orig and
329 /// insert into \p MBB before \p InsertBefore. The target may update operands
330 /// that are required to be unique.
331 ///
332 /// \p Orig must not return true for MachineInstr::isNotDuplicable().
333 virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
334 MachineBasicBlock::iterator InsertBefore,
335 const MachineInstr &Orig) const;
336
337 /// This method must be implemented by targets that
338 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
339 /// may be able to convert a two-address instruction into one or more true
340 /// three-address instructions on demand. This allows the X86 target (for
341 /// example) to convert ADD and SHL instructions into LEA instructions if they
342 /// would require register copies due to two-addressness.
343 ///
344 /// This method returns a null pointer if the transformation cannot be
345 /// performed, otherwise it returns the last new instruction.
346 ///
347 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
348 MachineInstr &MI,
349 LiveVariables *LV) const {
350 return nullptr;
351 }
352
353 // This constant can be used as an input value of operand index passed to
354 // the method findCommutedOpIndices() to tell the method that the
355 // corresponding operand index is not pre-defined and that the method
356 // can pick any commutable operand.
357 static const unsigned CommuteAnyOperandIndex = ~0U;
358
359 /// This method commutes the operands of the given machine instruction MI.
360 ///
361 /// The operands to be commuted are specified by their indices OpIdx1 and
362 /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
363 /// 'CommuteAnyOperandIndex', which means that the method is free to choose
364 /// any arbitrarily chosen commutable operand. If both arguments are set to
365 /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
366 /// operands; then commutes them if such operands could be found.
367 ///
368 /// If NewMI is false, MI is modified in place and returned; otherwise, a
369 /// new machine instruction is created and returned.
370 ///
371 /// Do not call this method for a non-commutable instruction or
372 /// for non-commuable operands.
373 /// Even though the instruction is commutable, the method may still
374 /// fail to commute the operands, null pointer is returned in such cases.
375 MachineInstr *
376 commuteInstruction(MachineInstr &MI, bool NewMI = false,
377 unsigned OpIdx1 = CommuteAnyOperandIndex,
378 unsigned OpIdx2 = CommuteAnyOperandIndex) const;
379
380 /// Returns true iff the routine could find two commutable operands in the
381 /// given machine instruction.
382 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
383 /// If any of the INPUT values is set to the special value
384 /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
385 /// operand, then returns its index in the corresponding argument.
386 /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
387 /// looks for 2 commutable operands.
388 /// If INPUT values refer to some operands of MI, then the method simply
389 /// returns true if the corresponding operands are commutable and returns
390 /// false otherwise.
391 ///
392 /// For example, calling this method this way:
393 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
394 /// findCommutedOpIndices(MI, Op1, Op2);
395 /// can be interpreted as a query asking to find an operand that would be
396 /// commutable with the operand#1.
397 virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
398 unsigned &SrcOpIdx2) const;
399
400 /// A pair composed of a register and a sub-register index.
401 /// Used to give some type checking when modeling Reg:SubReg.
402 struct RegSubRegPair {
403 unsigned Reg;
404 unsigned SubReg;
405
406 RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
407 : Reg(Reg), SubReg(SubReg) {}
408 };
409
410 /// A pair composed of a pair of a register and a sub-register index,
411 /// and another sub-register index.
412 /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
413 struct RegSubRegPairAndIdx : RegSubRegPair {
414 unsigned SubIdx;
415
416 RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
417 unsigned SubIdx = 0)
418 : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
419 };
420
421 /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
422 /// and \p DefIdx.
423 /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
424 /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
425 /// flag are not added to this list.
426 /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
427 /// two elements:
428 /// - %1:sub1, sub0
429 /// - %2<:0>, sub1
430 ///
431 /// \returns true if it is possible to build such an input sequence
432 /// with the pair \p MI, \p DefIdx. False otherwise.
433 ///
434 /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
435 ///
436 /// \note The generic implementation does not provide any support for
437 /// MI.isRegSequenceLike(). In other words, one has to override
438 /// getRegSequenceLikeInputs for target specific instructions.
439 bool
440 getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
441 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
442
443 /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
444 /// and \p DefIdx.
445 /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
446 /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
447 /// - %1:sub1, sub0
448 ///
449 /// \returns true if it is possible to build such an input sequence
450 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
451 /// False otherwise.
452 ///
453 /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
454 ///
455 /// \note The generic implementation does not provide any support for
456 /// MI.isExtractSubregLike(). In other words, one has to override
457 /// getExtractSubregLikeInputs for target specific instructions.
458 bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
459 RegSubRegPairAndIdx &InputReg) const;
460
461 /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
462 /// and \p DefIdx.
463 /// \p [out] BaseReg and \p [out] InsertedReg contain
464 /// the equivalent inputs of INSERT_SUBREG.
465 /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
466 /// - BaseReg: %0:sub0
467 /// - InsertedReg: %1:sub1, sub3
468 ///
469 /// \returns true if it is possible to build such an input sequence
470 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
471 /// False otherwise.
472 ///
473 /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
474 ///
475 /// \note The generic implementation does not provide any support for
476 /// MI.isInsertSubregLike(). In other words, one has to override
477 /// getInsertSubregLikeInputs for target specific instructions.
478 bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
479 RegSubRegPair &BaseReg,
480 RegSubRegPairAndIdx &InsertedReg) const;
481
482 /// Return true if two machine instructions would produce identical values.
483 /// By default, this is only true when the two instructions
484 /// are deemed identical except for defs. If this function is called when the
485 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
486 /// aggressive checks.
487 virtual bool produceSameValue(const MachineInstr &MI0,
488 const MachineInstr &MI1,
489 const MachineRegisterInfo *MRI = nullptr) const;
490
491 /// \returns true if a branch from an instruction with opcode \p BranchOpc
492 /// bytes is capable of jumping to a position \p BrOffset bytes away.
493 virtual bool isBranchOffsetInRange(unsigned BranchOpc,
494 int64_t BrOffset) const {
495 llvm_unreachable("target did not implement");
496 }
497
498 /// \returns The block that branch instruction \p MI jumps to.
499 virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
500 llvm_unreachable("target did not implement");
501 }
502
503 /// Insert an unconditional indirect branch at the end of \p MBB to \p
504 /// NewDestBB. \p BrOffset indicates the offset of \p NewDestBB relative to
505 /// the offset of the position to insert the new branch.
506 ///
507 /// \returns The number of bytes added to the block.
508 virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB,
509 MachineBasicBlock &NewDestBB,
510 const DebugLoc &DL,
511 int64_t BrOffset = 0,
512 RegScavenger *RS = nullptr) const {
513 llvm_unreachable("target did not implement");
514 }
515
516 /// Analyze the branching code at the end of MBB, returning
517 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
518 /// implemented for a target). Upon success, this returns false and returns
519 /// with the following information in various cases:
520 ///
521 /// 1. If this block ends with no branches (it just falls through to its succ)
522 /// just return false, leaving TBB/FBB null.
523 /// 2. If this block ends with only an unconditional branch, it sets TBB to be
524 /// the destination block.
525 /// 3. If this block ends with a conditional branch and it falls through to a
526 /// successor block, it sets TBB to be the branch destination block and a
527 /// list of operands that evaluate the condition. These operands can be
528 /// passed to other TargetInstrInfo methods to create new branches.
529 /// 4. If this block ends with a conditional branch followed by an
530 /// unconditional branch, it returns the 'true' destination in TBB, the
531 /// 'false' destination in FBB, and a list of operands that evaluate the
532 /// condition. These operands can be passed to other TargetInstrInfo
533 /// methods to create new branches.
534 ///
535 /// Note that removeBranch and insertBranch must be implemented to support
536 /// cases where this method returns success.
537 ///
538 /// If AllowModify is true, then this routine is allowed to modify the basic
539 /// block (e.g. delete instructions after the unconditional branch).
540 ///
541 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
542 /// before calling this function.
543 virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
544 MachineBasicBlock *&FBB,
545 SmallVectorImpl<MachineOperand> &Cond,
546 bool AllowModify = false) const {
547 return true;
548 }
549
550 /// Represents a predicate at the MachineFunction level. The control flow a
551 /// MachineBranchPredicate represents is:
552 ///
553 /// Reg = LHS `Predicate` RHS == ConditionDef
554 /// if Reg then goto TrueDest else goto FalseDest
555 ///
556 struct MachineBranchPredicate {
557 enum ComparePredicate {
558 PRED_EQ, // True if two values are equal
559 PRED_NE, // True if two values are not equal
560 PRED_INVALID // Sentinel value
561 };
562
563 ComparePredicate Predicate = PRED_INVALID;
564 MachineOperand LHS = MachineOperand::CreateImm(0);
565 MachineOperand RHS = MachineOperand::CreateImm(0);
566 MachineBasicBlock *TrueDest = nullptr;
567 MachineBasicBlock *FalseDest = nullptr;
568 MachineInstr *ConditionDef = nullptr;
569
570 /// SingleUseCondition is true if ConditionDef is dead except for the
571 /// branch(es) at the end of the basic block.
572 ///
573 bool SingleUseCondition = false;
574
575 explicit MachineBranchPredicate() = default;
576 };
577
578 /// Analyze the branching code at the end of MBB and parse it into the
579 /// MachineBranchPredicate structure if possible. Returns false on success
580 /// and true on failure.
581 ///
582 /// If AllowModify is true, then this routine is allowed to modify the basic
583 /// block (e.g. delete instructions after the unconditional branch).
584 ///
585 virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
586 MachineBranchPredicate &MBP,
587 bool AllowModify = false) const {
588 return true;
589 }
590
591 /// Remove the branching code at the end of the specific MBB.
592 /// This is only invoked in cases where AnalyzeBranch returns success. It
593 /// returns the number of instructions that were removed.
594 /// If \p BytesRemoved is non-null, report the change in code size from the
595 /// removed instructions.
596 virtual unsigned removeBranch(MachineBasicBlock &MBB,
597 int *BytesRemoved = nullptr) const {
598 llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
599 }
600
601 /// Insert branch code into the end of the specified MachineBasicBlock. The
602 /// operands to this method are the same as those returned by AnalyzeBranch.
603 /// This is only invoked in cases where AnalyzeBranch returns success. It
604 /// returns the number of instructions inserted. If \p BytesAdded is non-null,
605 /// report the change in code size from the added instructions.
606 ///
607 /// It is also invoked by tail merging to add unconditional branches in
608 /// cases where AnalyzeBranch doesn't apply because there was no original
609 /// branch to analyze. At least this much must be implemented, else tail
610 /// merging needs to be disabled.
611 ///
612 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
613 /// before calling this function.
614 virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
615 MachineBasicBlock *FBB,
616 ArrayRef<MachineOperand> Cond,
617 const DebugLoc &DL,
618 int *BytesAdded = nullptr) const {
619 llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
620 }
621
622 unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
623 MachineBasicBlock *DestBB,
624 const DebugLoc &DL,
625 int *BytesAdded = nullptr) const {
626 return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
627 BytesAdded);
628 }
629
630 /// Analyze the loop code, return true if it cannot be understoo. Upon
631 /// success, this function returns false and returns information about the
632 /// induction variable and compare instruction used at the end.
633 virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
634 MachineInstr *&CmpInst) const {
635 return true;
636 }
637
638 /// Generate code to reduce the loop iteration by one and check if the loop
639 /// is finished. Return the value/register of the new loop count. We need
640 /// this function when peeling off one or more iterations of a loop. This
641 /// function assumes the nth iteration is peeled first.
642 virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineInstr *IndVar,
643 MachineInstr &Cmp,
644 SmallVectorImpl<MachineOperand> &Cond,
645 SmallVectorImpl<MachineInstr *> &PrevInsts,
646 unsigned Iter, unsigned MaxIter) const {
647 llvm_unreachable("Target didn't implement ReduceLoopCount");
648 }
649
650 /// Delete the instruction OldInst and everything after it, replacing it with
651 /// an unconditional branch to NewDest. This is used by the tail merging pass.
652 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
653 MachineBasicBlock *NewDest) const;
654
655 /// Return true if it's legal to split the given basic
656 /// block at the specified instruction (i.e. instruction would be the start
657 /// of a new basic block).
658 virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
659 MachineBasicBlock::iterator MBBI) const {
660 return true;
661 }
662
663 /// Return true if it's profitable to predicate
664 /// instructions with accumulated instruction latency of "NumCycles"
665 /// of the specified basic block, where the probability of the instructions
666 /// being executed is given by Probability, and Confidence is a measure
667 /// of our confidence that it will be properly predicted.
668 virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
669 unsigned ExtraPredCycles,
670 BranchProbability Probability) const {
671 return false;
672 }
673
674 /// Second variant of isProfitableToIfCvt. This one
675 /// checks for the case where two basic blocks from true and false path
676 /// of a if-then-else (diamond) are predicated on mutally exclusive
677 /// predicates, where the probability of the true path being taken is given
678 /// by Probability, and Confidence is a measure of our confidence that it
679 /// will be properly predicted.
680 virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
681 unsigned ExtraTCycles,
682 MachineBasicBlock &FMBB, unsigned NumFCycles,
683 unsigned ExtraFCycles,
684 BranchProbability Probability) const {
685 return false;
686 }
687
688 /// Return true if it's profitable for if-converter to duplicate instructions
689 /// of specified accumulated instruction latencies in the specified MBB to
690 /// enable if-conversion.
691 /// The probability of the instructions being executed is given by
692 /// Probability, and Confidence is a measure of our confidence that it
693 /// will be properly predicted.
694 virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
695 unsigned NumCycles,
696 BranchProbability Probability) const {
697 return false;
698 }
699
700 /// Return true if it's profitable to unpredicate
701 /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
702 /// exclusive predicates.
703 /// e.g.
704 /// subeq r0, r1, #1
705 /// addne r0, r1, #1
706 /// =>
707 /// sub r0, r1, #1
708 /// addne r0, r1, #1
709 ///
710 /// This may be profitable is conditional instructions are always executed.
711 virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
712 MachineBasicBlock &FMBB) const {
713 return false;
714 }
715
716 /// Return true if it is possible to insert a select
717 /// instruction that chooses between TrueReg and FalseReg based on the
718 /// condition code in Cond.
719 ///
720 /// When successful, also return the latency in cycles from TrueReg,
721 /// FalseReg, and Cond to the destination register. In most cases, a select
722 /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
723 ///
724 /// Some x86 implementations have 2-cycle cmov instructions.
725 ///
726 /// @param MBB Block where select instruction would be inserted.
727 /// @param Cond Condition returned by AnalyzeBranch.
728 /// @param TrueReg Virtual register to select when Cond is true.
729 /// @param FalseReg Virtual register to select when Cond is false.
730 /// @param CondCycles Latency from Cond+Branch to select output.
731 /// @param TrueCycles Latency from TrueReg to select output.
732 /// @param FalseCycles Latency from FalseReg to select output.
733 virtual bool canInsertSelect(const MachineBasicBlock &MBB,
734 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
735 unsigned FalseReg, int &CondCycles,
736 int &TrueCycles, int &FalseCycles) const {
737 return false;
738 }
739
740 /// Insert a select instruction into MBB before I that will copy TrueReg to
741 /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
742 ///
743 /// This function can only be called after canInsertSelect() returned true.
744 /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
745 /// that the same flags or registers required by Cond are available at the
746 /// insertion point.
747 ///
748 /// @param MBB Block where select instruction should be inserted.
749 /// @param I Insertion point.
750 /// @param DL Source location for debugging.
751 /// @param DstReg Virtual register to be defined by select instruction.
752 /// @param Cond Condition as computed by AnalyzeBranch.
753 /// @param TrueReg Virtual register to copy when Cond is true.
754 /// @param FalseReg Virtual register to copy when Cons is false.
755 virtual void insertSelect(MachineBasicBlock &MBB,
756 MachineBasicBlock::iterator I, const DebugLoc &DL,
757 unsigned DstReg, ArrayRef<MachineOperand> Cond,
758 unsigned TrueReg, unsigned FalseReg) const {
759 llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
760 }
761
762 /// Analyze the given select instruction, returning true if
763 /// it cannot be understood. It is assumed that MI->isSelect() is true.
764 ///
765 /// When successful, return the controlling condition and the operands that
766 /// determine the true and false result values.
767 ///
768 /// Result = SELECT Cond, TrueOp, FalseOp
769 ///
770 /// Some targets can optimize select instructions, for example by predicating
771 /// the instruction defining one of the operands. Such targets should set
772 /// Optimizable.
773 ///
774 /// @param MI Select instruction to analyze.
775 /// @param Cond Condition controlling the select.
776 /// @param TrueOp Operand number of the value selected when Cond is true.
777 /// @param FalseOp Operand number of the value selected when Cond is false.
778 /// @param Optimizable Returned as true if MI is optimizable.
779 /// @returns False on success.
780 virtual bool analyzeSelect(const MachineInstr &MI,
781 SmallVectorImpl<MachineOperand> &Cond,
782 unsigned &TrueOp, unsigned &FalseOp,
783 bool &Optimizable) const {
784 assert(MI.getDesc().isSelect() && "MI must be a select instruction");
785 return true;
786 }
787
788 /// Given a select instruction that was understood by
789 /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
790 /// merging it with one of its operands. Returns NULL on failure.
791 ///
792 /// When successful, returns the new select instruction. The client is
793 /// responsible for deleting MI.
794 ///
795 /// If both sides of the select can be optimized, PreferFalse is used to pick
796 /// a side.
797 ///
798 /// @param MI Optimizable select instruction.
799 /// @param NewMIs Set that record all MIs in the basic block up to \p
800 /// MI. Has to be updated with any newly created MI or deleted ones.
801 /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
802 /// @returns Optimized instruction or NULL.
803 virtual MachineInstr *optimizeSelect(MachineInstr &MI,
804 SmallPtrSetImpl<MachineInstr *> &NewMIs,
805 bool PreferFalse = false) const {
806 // This function must be implemented if Optimizable is ever set.
807 llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
808 }
809
810 /// Emit instructions to copy a pair of physical registers.
811 ///
812 /// This function should support copies within any legal register class as
813 /// well as any cross-class copies created during instruction selection.
814 ///
815 /// The source and destination registers may overlap, which may require a
816 /// careful implementation when multiple copy instructions are required for
817 /// large registers. See for example the ARM target.
818 virtual void copyPhysReg(MachineBasicBlock &MBB,
819 MachineBasicBlock::iterator MI, const DebugLoc &DL,
820 unsigned DestReg, unsigned SrcReg,
821 bool KillSrc) const {
822 llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
823 }
824
825 /// Store the specified register of the given register class to the specified
826 /// stack frame index. The store instruction is to be added to the given
827 /// machine basic block before the specified machine instruction. If isKill
828 /// is true, the register operand is the last use and must be marked kill.
829 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
830 MachineBasicBlock::iterator MI,
831 unsigned SrcReg, bool isKill, int FrameIndex,
832 const TargetRegisterClass *RC,
833 const TargetRegisterInfo *TRI) const {
834 llvm_unreachable("Target didn't implement "
835 "TargetInstrInfo::storeRegToStackSlot!");
836 }
837
838 /// Load the specified register of the given register class from the specified
839 /// stack frame index. The load instruction is to be added to the given
840 /// machine basic block before the specified machine instruction.
841 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
842 MachineBasicBlock::iterator MI,
843 unsigned DestReg, int FrameIndex,
844 const TargetRegisterClass *RC,
845 const TargetRegisterInfo *TRI) const {
846 llvm_unreachable("Target didn't implement "
847 "TargetInstrInfo::loadRegFromStackSlot!");
848 }
849
850 /// This function is called for all pseudo instructions
851 /// that remain after register allocation. Many pseudo instructions are
852 /// created to help register allocation. This is the place to convert them
853 /// into real instructions. The target can edit MI in place, or it can insert
854 /// new instructions and erase MI. The function should return true if
855 /// anything was changed.
856 virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
857
858 /// Check whether the target can fold a load that feeds a subreg operand
859 /// (or a subreg operand that feeds a store).
860 /// For example, X86 may want to return true if it can fold
861 /// movl (%esp), %eax
862 /// subb, %al, ...
863 /// Into:
864 /// subb (%esp), ...
865 ///
866 /// Ideally, we'd like the target implementation of foldMemoryOperand() to
867 /// reject subregs - but since this behavior used to be enforced in the
868 /// target-independent code, moving this responsibility to the targets
869 /// has the potential of causing nasty silent breakage in out-of-tree targets.
870 virtual bool isSubregFoldable() const { return false; }
871
872 /// Attempt to fold a load or store of the specified stack
873 /// slot into the specified machine instruction for the specified operand(s).
874 /// If this is possible, a new instruction is returned with the specified
875 /// operand folded, otherwise NULL is returned.
876 /// The new instruction is inserted before MI, and the client is responsible
877 /// for removing the old instruction.
878 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
879 int FrameIndex,
880 LiveIntervals *LIS = nullptr) const;
881
882 /// Same as the previous version except it allows folding of any load and
883 /// store from / to any address, not just from a specific stack slot.
884 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
885 MachineInstr &LoadMI,
886 LiveIntervals *LIS = nullptr) const;
887
888 /// Return true when there is potentially a faster code sequence
889 /// for an instruction chain ending in \p Root. All potential patterns are
890 /// returned in the \p Pattern vector. Pattern should be sorted in priority
891 /// order since the pattern evaluator stops checking as soon as it finds a
892 /// faster sequence.
893 /// \param Root - Instruction that could be combined with one of its operands
894 /// \param Patterns - Vector of possible combination patterns
895 virtual bool getMachineCombinerPatterns(
896 MachineInstr &Root,
897 SmallVectorImpl<MachineCombinerPattern> &Patterns) const;
898
899 /// Return true when a code sequence can improve throughput. It
900 /// should be called only for instructions in loops.
901 /// \param Pattern - combiner pattern
902 virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
903
904 /// Return true if the input \P Inst is part of a chain of dependent ops
905 /// that are suitable for reassociation, otherwise return false.
906 /// If the instruction's operands must be commuted to have a previous
907 /// instruction of the same type define the first source operand, \P Commuted
908 /// will be set to true.
909 bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
910
911 /// Return true when \P Inst is both associative and commutative.
912 virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
913 return false;
914 }
915
916 /// Return true when \P Inst has reassociable operands in the same \P MBB.
917 virtual bool hasReassociableOperands(const MachineInstr &Inst,
918 const MachineBasicBlock *MBB) const;
919
920 /// Return true when \P Inst has reassociable sibling.
921 bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
922
923 /// When getMachineCombinerPatterns() finds patterns, this function generates
924 /// the instructions that could replace the original code sequence. The client
925 /// has to decide whether the actual replacement is beneficial or not.
926 /// \param Root - Instruction that could be combined with one of its operands
927 /// \param Pattern - Combination pattern for Root
928 /// \param InsInstrs - Vector of new instructions that implement P
929 /// \param DelInstrs - Old instructions, including Root, that could be
930 /// replaced by InsInstr
931 /// \param InstrIdxForVirtReg - map of virtual register to instruction in
932 /// InsInstr that defines it
933 virtual void genAlternativeCodeSequence(
934 MachineInstr &Root, MachineCombinerPattern Pattern,
935 SmallVectorImpl<MachineInstr *> &InsInstrs,
936 SmallVectorImpl<MachineInstr *> &DelInstrs,
937 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
938
939 /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
940 /// reduce critical path length.
941 void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
942 MachineCombinerPattern Pattern,
943 SmallVectorImpl<MachineInstr *> &InsInstrs,
944 SmallVectorImpl<MachineInstr *> &DelInstrs,
945 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
946
947 /// This is an architecture-specific helper function of reassociateOps.
948 /// Set special operand attributes for new instructions after reassociation.
949 virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
950 MachineInstr &NewMI1,
951 MachineInstr &NewMI2) const {}
952
953 /// Return true when a target supports MachineCombiner.
954 virtual bool useMachineCombiner() const { return false; }
955
956 /// Return true if the given SDNode can be copied during scheduling
957 /// even if it has glue.
958 virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
959
960 /// Remember what registers the specified instruction uses and modifies.
961 virtual void trackRegDefsUses(const MachineInstr &MI, BitVector &ModifiedRegs,
962 BitVector &UsedRegs,
963 const TargetRegisterInfo *TRI) const;
964
965protected:
966 /// Target-dependent implementation for foldMemoryOperand.
967 /// Target-independent code in foldMemoryOperand will
968 /// take care of adding a MachineMemOperand to the newly created instruction.
969 /// The instruction and any auxiliary instructions necessary will be inserted
970 /// at InsertPt.
971 virtual MachineInstr *
972 foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
973 ArrayRef<unsigned> Ops,
974 MachineBasicBlock::iterator InsertPt, int FrameIndex,
975 LiveIntervals *LIS = nullptr) const {
976 return nullptr;
977 }
978
979 /// Target-dependent implementation for foldMemoryOperand.
980 /// Target-independent code in foldMemoryOperand will
981 /// take care of adding a MachineMemOperand to the newly created instruction.
982 /// The instruction and any auxiliary instructions necessary will be inserted
983 /// at InsertPt.
984 virtual MachineInstr *foldMemoryOperandImpl(
985 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
986 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
987 LiveIntervals *LIS = nullptr) const {
988 return nullptr;
989 }
990
991 /// \brief Target-dependent implementation of getRegSequenceInputs.
992 ///
993 /// \returns true if it is possible to build the equivalent
994 /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
995 ///
996 /// \pre MI.isRegSequenceLike().
997 ///
998 /// \see TargetInstrInfo::getRegSequenceInputs.
999 virtual bool getRegSequenceLikeInputs(
1000 const MachineInstr &MI, unsigned DefIdx,
1001 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1002 return false;
1003 }
1004
1005 /// \brief Target-dependent implementation of getExtractSubregInputs.
1006 ///
1007 /// \returns true if it is possible to build the equivalent
1008 /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1009 ///
1010 /// \pre MI.isExtractSubregLike().
1011 ///
1012 /// \see TargetInstrInfo::getExtractSubregInputs.
1013 virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
1014 unsigned DefIdx,
1015 RegSubRegPairAndIdx &InputReg) const {
1016 return false;
1017 }
1018
1019 /// \brief Target-dependent implementation of getInsertSubregInputs.
1020 ///
1021 /// \returns true if it is possible to build the equivalent
1022 /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1023 ///
1024 /// \pre MI.isInsertSubregLike().
1025 ///
1026 /// \see TargetInstrInfo::getInsertSubregInputs.
1027 virtual bool
1028 getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1029 RegSubRegPair &BaseReg,
1030 RegSubRegPairAndIdx &InsertedReg) const {
1031 return false;
1032 }
1033
1034public:
1035 /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
1036 /// (e.g. stack) the target returns the corresponding address space.
1037 virtual unsigned
1038 getAddressSpaceForPseudoSourceKind(PseudoSourceValue::PSVKind Kind) const {
1039 return 0;
1040 }
1041
1042 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1043 /// a store or a load and a store into two or more instruction. If this is
1044 /// possible, returns true as well as the new instructions by reference.
1045 virtual bool
1046 unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1047 bool UnfoldLoad, bool UnfoldStore,
1048 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1049 return false;
1050 }
1051
1052 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1053 SmallVectorImpl<SDNode *> &NewNodes) const {
1054 return false;
1055 }
1056
1057 /// Returns the opcode of the would be new
1058 /// instruction after load / store are unfolded from an instruction of the
1059 /// specified opcode. It returns zero if the specified unfolding is not
1060 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1061 /// index of the operand which will hold the register holding the loaded
1062 /// value.
1063 virtual unsigned
1064 getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1065 unsigned *LoadRegIndex = nullptr) const {
1066 return 0;
1067 }
1068
1069 /// This is used by the pre-regalloc scheduler to determine if two loads are
1070 /// loading from the same base address. It should only return true if the base
1071 /// pointers are the same and the only differences between the two addresses
1072 /// are the offset. It also returns the offsets by reference.
1073 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1074 int64_t &Offset1,
1075 int64_t &Offset2) const {
1076 return false;
1077 }
1078
1079 /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1080 /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1081 /// On some targets if two loads are loading from
1082 /// addresses in the same cache line, it's better if they are scheduled
1083 /// together. This function takes two integers that represent the load offsets
1084 /// from the common base address. It returns true if it decides it's desirable
1085 /// to schedule the two loads together. "NumLoads" is the number of loads that
1086 /// have already been scheduled after Load1.
1087 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1088 int64_t Offset1, int64_t Offset2,
1089 unsigned NumLoads) const {
1090 return false;
1091 }
1092
1093 /// Get the base register and byte offset of an instruction that reads/writes
1094 /// memory.
1095 virtual bool getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg,
1096 int64_t &Offset,
1097 const TargetRegisterInfo *TRI) const {
1098 return false;
1099 }
1100
1101 /// Return true if the instruction contains a base register and offset. If
1102 /// true, the function also sets the operand position in the instruction
1103 /// for the base register and offset.
1104 virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1105 unsigned &BasePos,
1106 unsigned &OffsetPos) const {
1107 return false;
1108 }
1109
1110 /// If the instruction is an increment of a constant value, return the amount.
1111 virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1112 return false;
1113 }
1114
1115 /// Returns true if the two given memory operations should be scheduled
1116 /// adjacent. Note that you have to add:
1117 /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1118 /// or
1119 /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1120 /// to TargetPassConfig::createMachineScheduler() to have an effect.
1121 virtual bool shouldClusterMemOps(MachineInstr &FirstLdSt, unsigned BaseReg1,
1122 MachineInstr &SecondLdSt, unsigned BaseReg2,
1123 unsigned NumLoads) const {
1124 llvm_unreachable("target did not implement shouldClusterMemOps()");
1125 }
1126
1127 /// Reverses the branch condition of the specified condition list,
1128 /// returning false on success and true if it cannot be reversed.
1129 virtual bool
1130 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1131 return true;
1132 }
1133
1134 /// Insert a noop into the instruction stream at the specified point.
1135 virtual void insertNoop(MachineBasicBlock &MBB,
1136 MachineBasicBlock::iterator MI) const;
1137
1138 /// Return the noop instruction to use for a noop.
1139 virtual void getNoop(MCInst &NopInst) const;
1140
1141 /// Return true for post-incremented instructions.
1142 virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1143
1144 /// Returns true if the instruction is already predicated.
1145 virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1146
1147 /// Returns true if the instruction is a
1148 /// terminator instruction that has not been predicated.
1149 virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1150
1151 /// Returns true if MI is an unconditional tail call.
1152 virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1153 return false;
1154 }
1155
1156 /// Returns true if the tail call can be made conditional on BranchCond.
1157 virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1158 const MachineInstr &TailCall) const {
1159 return false;
1160 }
1161
1162 /// Replace the conditional branch in MBB with a conditional tail call.
1163 virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1164 SmallVectorImpl<MachineOperand> &Cond,
1165 const MachineInstr &TailCall) const {
1166 llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1167 }
1168
1169 /// Convert the instruction into a predicated instruction.
1170 /// It returns true if the operation was successful.
1171 virtual bool PredicateInstruction(MachineInstr &MI,
1172 ArrayRef<MachineOperand> Pred) const;
1173
1174 /// Returns true if the first specified predicate
1175 /// subsumes the second, e.g. GE subsumes GT.
1176 virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1177 ArrayRef<MachineOperand> Pred2) const {
1178 return false;
1179 }
1180
1181 /// If the specified instruction defines any predicate
1182 /// or condition code register(s) used for predication, returns true as well
1183 /// as the definition predicate(s) by reference.
1184 virtual bool DefinesPredicate(MachineInstr &MI,
1185 std::vector<MachineOperand> &Pred) const {
1186 return false;
1187 }
1188
1189 /// Return true if the specified instruction can be predicated.
1190 /// By default, this returns true for every instruction with a
1191 /// PredicateOperand.
1192 virtual bool isPredicable(const MachineInstr &MI) const {
1193 return MI.getDesc().isPredicable();
1194 }
1195
1196 /// Return true if it's safe to move a machine
1197 /// instruction that defines the specified register class.
1198 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1199 return true;
1200 }
1201
1202 /// Test if the given instruction should be considered a scheduling boundary.
1203 /// This primarily includes labels and terminators.
1204 virtual bool isSchedulingBoundary(const MachineInstr &MI,
1205 const MachineBasicBlock *MBB,
1206 const MachineFunction &MF) const;
1207
1208 /// Measure the specified inline asm to determine an approximation of its
1209 /// length.
1210 virtual unsigned getInlineAsmLength(const char *Str,
1211 const MCAsmInfo &MAI) const;
1212
1213 /// Allocate and return a hazard recognizer to use for this target when
1214 /// scheduling the machine instructions before register allocation.
1215 virtual ScheduleHazardRecognizer *
1216 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1217 const ScheduleDAG *DAG) const;
1218
1219 /// Allocate and return a hazard recognizer to use for this target when
1220 /// scheduling the machine instructions before register allocation.
1221 virtual ScheduleHazardRecognizer *
1222 CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1223 const ScheduleDAG *DAG) const;
1224
1225 /// Allocate and return a hazard recognizer to use for this target when
1226 /// scheduling the machine instructions after register allocation.
1227 virtual ScheduleHazardRecognizer *
1228 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1229 const ScheduleDAG *DAG) const;
1230
1231 /// Allocate and return a hazard recognizer to use for by non-scheduling
1232 /// passes.
1233 virtual ScheduleHazardRecognizer *
1234 CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1235 return nullptr;
1236 }
1237
1238 /// Provide a global flag for disabling the PreRA hazard recognizer that
1239 /// targets may choose to honor.
1240 bool usePreRAHazardRecognizer() const;
1241
1242 /// For a comparison instruction, return the source registers
1243 /// in SrcReg and SrcReg2 if having two register operands, and the value it
1244 /// compares against in CmpValue. Return true if the comparison instruction
1245 /// can be analyzed.
1246 virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1247 unsigned &SrcReg2, int &Mask, int &Value) const {
1248 return false;
1249 }
1250
1251 /// See if the comparison instruction can be converted
1252 /// into something more efficient. E.g., on ARM most instructions can set the
1253 /// flags register, obviating the need for a separate CMP.
1254 virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1255 unsigned SrcReg2, int Mask, int Value,
1256 const MachineRegisterInfo *MRI) const {
1257 return false;
1258 }
1259 virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1260
1261 /// Try to remove the load by folding it to a register operand at the use.
1262 /// We fold the load instructions if and only if the
1263 /// def and use are in the same BB. We only look at one load and see
1264 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1265 /// defined by the load we are trying to fold. DefMI returns the machine
1266 /// instruction that defines FoldAsLoadDefReg, and the function returns
1267 /// the machine instruction generated due to folding.
1268 virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1269 const MachineRegisterInfo *MRI,
1270 unsigned &FoldAsLoadDefReg,
1271 MachineInstr *&DefMI) const {
1272 return nullptr;
1273 }
1274
1275 /// 'Reg' is known to be defined by a move immediate instruction,
1276 /// try to fold the immediate into the use instruction.
1277 /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1278 /// then the caller may assume that DefMI has been erased from its parent
1279 /// block. The caller may assume that it will not be erased by this
1280 /// function otherwise.
1281 virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1282 unsigned Reg, MachineRegisterInfo *MRI) const {
1283 return false;
1284 }
1285
1286 /// Return the number of u-operations the given machine
1287 /// instruction will be decoded to on the target cpu. The itinerary's
1288 /// IssueWidth is the number of microops that can be dispatched each
1289 /// cycle. An instruction with zero microops takes no dispatch resources.
1290 virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1291 const MachineInstr &MI) const;
1292
1293 /// Return true for pseudo instructions that don't consume any
1294 /// machine resources in their current form. These are common cases that the
1295 /// scheduler should consider free, rather than conservatively handling them
1296 /// as instructions with no itinerary.
1297 bool isZeroCost(unsigned Opcode) const {
1298 return Opcode <= TargetOpcode::COPY;
1299 }
1300
1301 virtual int getOperandLatency(const InstrItineraryData *ItinData,
1302 SDNode *DefNode, unsigned DefIdx,
1303 SDNode *UseNode, unsigned UseIdx) const;
1304
1305 /// Compute and return the use operand latency of a given pair of def and use.
1306 /// In most cases, the static scheduling itinerary was enough to determine the
1307 /// operand latency. But it may not be possible for instructions with variable
1308 /// number of defs / uses.
1309 ///
1310 /// This is a raw interface to the itinerary that may be directly overridden
1311 /// by a target. Use computeOperandLatency to get the best estimate of
1312 /// latency.
1313 virtual int getOperandLatency(const InstrItineraryData *ItinData,
1314 const MachineInstr &DefMI, unsigned DefIdx,
1315 const MachineInstr &UseMI,
1316 unsigned UseIdx) const;
1317
1318 /// Compute the instruction latency of a given instruction.
1319 /// If the instruction has higher cost when predicated, it's returned via
1320 /// PredCost.
1321 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1322 const MachineInstr &MI,
1323 unsigned *PredCost = nullptr) const;
1324
1325 virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1326
1327 virtual int getInstrLatency(const InstrItineraryData *ItinData,
1328 SDNode *Node) const;
1329
1330 /// Return the default expected latency for a def based on its opcode.
1331 unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1332 const MachineInstr &DefMI) const;
1333
1334 int computeDefOperandLatency(const InstrItineraryData *ItinData,
1335 const MachineInstr &DefMI) const;
1336
1337 /// Return true if this opcode has high latency to its result.
1338 virtual bool isHighLatencyDef(int opc) const { return false; }
1339
1340 /// Compute operand latency between a def of 'Reg'
1341 /// and a use in the current loop. Return true if the target considered
1342 /// it 'high'. This is used by optimization passes such as machine LICM to
1343 /// determine whether it makes sense to hoist an instruction out even in a
1344 /// high register pressure situation.
1345 virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1346 const MachineRegisterInfo *MRI,
1347 const MachineInstr &DefMI, unsigned DefIdx,
1348 const MachineInstr &UseMI,
1349 unsigned UseIdx) const {
1350 return false;
1351 }
1352
1353 /// Compute operand latency of a def of 'Reg'. Return true
1354 /// if the target considered it 'low'.
1355 virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1356 const MachineInstr &DefMI,
1357 unsigned DefIdx) const;
1358
1359 /// Perform target-specific instruction verification.
1360 virtual bool verifyInstruction(const MachineInstr &MI,
1361 StringRef &ErrInfo) const {
1362 return true;
1363 }
1364
1365 /// Return the current execution domain and bit mask of
1366 /// possible domains for instruction.
1367 ///
1368 /// Some micro-architectures have multiple execution domains, and multiple
1369 /// opcodes that perform the same operation in different domains. For
1370 /// example, the x86 architecture provides the por, orps, and orpd
1371 /// instructions that all do the same thing. There is a latency penalty if a
1372 /// register is written in one domain and read in another.
1373 ///
1374 /// This function returns a pair (domain, mask) containing the execution
1375 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain
1376 /// function can be used to change the opcode to one of the domains in the
1377 /// bit mask. Instructions whose execution domain can't be changed should
1378 /// return a 0 mask.
1379 ///
1380 /// The execution domain numbers don't have any special meaning except domain
1381 /// 0 is used for instructions that are not associated with any interesting
1382 /// execution domain.
1383 ///
1384 virtual std::pair<uint16_t, uint16_t>
1385 getExecutionDomain(const MachineInstr &MI) const {
1386 return std::make_pair(0, 0);
1387 }
1388
1389 /// Change the opcode of MI to execute in Domain.
1390 ///
1391 /// The bit (1 << Domain) must be set in the mask returned from
1392 /// getExecutionDomain(MI).
1393 virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1394
1395 /// Returns the preferred minimum clearance
1396 /// before an instruction with an unwanted partial register update.
1397 ///
1398 /// Some instructions only write part of a register, and implicitly need to
1399 /// read the other parts of the register. This may cause unwanted stalls
1400 /// preventing otherwise unrelated instructions from executing in parallel in
1401 /// an out-of-order CPU.
1402 ///
1403 /// For example, the x86 instruction cvtsi2ss writes its result to bits
1404 /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1405 /// the instruction needs to wait for the old value of the register to become
1406 /// available:
1407 ///
1408 /// addps %xmm1, %xmm0
1409 /// movaps %xmm0, (%rax)
1410 /// cvtsi2ss %rbx, %xmm0
1411 ///
1412 /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1413 /// instruction before it can issue, even though the high bits of %xmm0
1414 /// probably aren't needed.
1415 ///
1416 /// This hook returns the preferred clearance before MI, measured in
1417 /// instructions. Other defs of MI's operand OpNum are avoided in the last N
1418 /// instructions before MI. It should only return a positive value for
1419 /// unwanted dependencies. If the old bits of the defined register have
1420 /// useful values, or if MI is determined to otherwise read the dependency,
1421 /// the hook should return 0.
1422 ///
1423 /// The unwanted dependency may be handled by:
1424 ///
1425 /// 1. Allocating the same register for an MI def and use. That makes the
1426 /// unwanted dependency identical to a required dependency.
1427 ///
1428 /// 2. Allocating a register for the def that has no defs in the previous N
1429 /// instructions.
1430 ///
1431 /// 3. Calling breakPartialRegDependency() with the same arguments. This
1432 /// allows the target to insert a dependency breaking instruction.
1433 ///
1434 virtual unsigned
1435 getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1436 const TargetRegisterInfo *TRI) const {
1437 // The default implementation returns 0 for no partial register dependency.
1438 return 0;
1439 }
1440
1441 /// \brief Return the minimum clearance before an instruction that reads an
1442 /// unused register.
1443 ///
1444 /// For example, AVX instructions may copy part of a register operand into
1445 /// the unused high bits of the destination register.
1446 ///
1447 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1448 ///
1449 /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1450 /// false dependence on any previous write to %xmm0.
1451 ///
1452 /// This hook works similarly to getPartialRegUpdateClearance, except that it
1453 /// does not take an operand index. Instead sets \p OpNum to the index of the
1454 /// unused register.
1455 virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
1456 const TargetRegisterInfo *TRI) const {
1457 // The default implementation returns 0 for no undef register dependency.
1458 return 0;
1459 }
1460
1461 /// Insert a dependency-breaking instruction
1462 /// before MI to eliminate an unwanted dependency on OpNum.
1463 ///
1464 /// If it wasn't possible to avoid a def in the last N instructions before MI
1465 /// (see getPartialRegUpdateClearance), this hook will be called to break the
1466 /// unwanted dependency.
1467 ///
1468 /// On x86, an xorps instruction can be used as a dependency breaker:
1469 ///
1470 /// addps %xmm1, %xmm0
1471 /// movaps %xmm0, (%rax)
1472 /// xorps %xmm0, %xmm0
1473 /// cvtsi2ss %rbx, %xmm0
1474 ///
1475 /// An <imp-kill> operand should be added to MI if an instruction was
1476 /// inserted. This ties the instructions together in the post-ra scheduler.
1477 ///
1478 virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1479 const TargetRegisterInfo *TRI) const {}
1480
1481 /// Create machine specific model for scheduling.
1482 virtual DFAPacketizer *
1483 CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1484 return nullptr;
1485 }
1486
1487 /// Sometimes, it is possible for the target
1488 /// to tell, even without aliasing information, that two MIs access different
1489 /// memory addresses. This function returns true if two MIs access different
1490 /// memory addresses and false otherwise.
1491 ///
1492 /// Assumes any physical registers used to compute addresses have the same
1493 /// value for both instructions. (This is the most useful assumption for
1494 /// post-RA scheduling.)
1495 ///
1496 /// See also MachineInstr::mayAlias, which is implemented on top of this
1497 /// function.
1498 virtual bool
1499 areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
1500 AliasAnalysis *AA = nullptr) const {
1501 assert((MIa.mayLoad() || MIa.mayStore()) &&
1502 "MIa must load from or modify a memory location");
1503 assert((MIb.mayLoad() || MIb.mayStore()) &&
1504 "MIb must load from or modify a memory location");
1505 return false;
1506 }
1507
1508 /// \brief Return the value to use for the MachineCSE's LookAheadLimit,
1509 /// which is a heuristic used for CSE'ing phys reg defs.
1510 virtual unsigned getMachineCSELookAheadLimit() const {
1511 // The default lookahead is small to prevent unprofitable quadratic
1512 // behavior.
1513 return 5;
1514 }
1515
1516 /// Return an array that contains the ids of the target indices (used for the
1517 /// TargetIndex machine operand) and their names.
1518 ///
1519 /// MIR Serialization is able to serialize only the target indices that are
1520 /// defined by this method.
1521 virtual ArrayRef<std::pair<int, const char *>>
1522 getSerializableTargetIndices() const {
1523 return None;
1524 }
1525
1526 /// Decompose the machine operand's target flags into two values - the direct
1527 /// target flag value and any of bit flags that are applied.
1528 virtual std::pair<unsigned, unsigned>
1529 decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1530 return std::make_pair(0u, 0u);
1531 }
1532
1533 /// Return an array that contains the direct target flag values and their
1534 /// names.
1535 ///
1536 /// MIR Serialization is able to serialize only the target flags that are
1537 /// defined by this method.
1538 virtual ArrayRef<std::pair<unsigned, const char *>>
1539 getSerializableDirectMachineOperandTargetFlags() const {
1540 return None;
1541 }
1542
1543 /// Return an array that contains the bitmask target flag values and their
1544 /// names.
1545 ///
1546 /// MIR Serialization is able to serialize only the target flags that are
1547 /// defined by this method.
1548 virtual ArrayRef<std::pair<unsigned, const char *>>
1549 getSerializableBitmaskMachineOperandTargetFlags() const {
1550 return None;
1551 }
1552
1553 /// Return an array that contains the MMO target flag values and their
1554 /// names.
1555 ///
1556 /// MIR Serialization is able to serialize only the MMO target flags that are
1557 /// defined by this method.
1558 virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
1559 getSerializableMachineMemOperandTargetFlags() const {
1560 return None;
1561 }
1562
1563 /// Determines whether \p Inst is a tail call instruction. Override this
1564 /// method on targets that do not properly set MCID::Return and MCID::Call on
1565 /// tail call instructions."
1566 virtual bool isTailCall(const MachineInstr &Inst) const {
1567 return Inst.isReturn() && Inst.isCall();
1568 }
1569
1570 /// True if the instruction is bound to the top of its basic block and no
1571 /// other instructions shall be inserted before it. This can be implemented
1572 /// to prevent register allocator to insert spills before such instructions.
1573 virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
1574 return false;
1575 }
1576
1577 /// \brief Describes the number of instructions that it will take to call and
1578 /// construct a frame for a given outlining candidate.
1579 struct MachineOutlinerInfo {
1580 /// Number of instructions to call an outlined function for this candidate.
1581 unsigned CallOverhead;
1582
1583 /// \brief Number of instructions to construct an outlined function frame
1584 /// for this candidate.
1585 unsigned FrameOverhead;
1586
1587 /// \brief Represents the specific instructions that must be emitted to
1588 /// construct a call to this candidate.
1589 unsigned CallConstructionID;
1590
1591 /// \brief Represents the specific instructions that must be emitted to
1592 /// construct a frame for this candidate's outlined function.
1593 unsigned FrameConstructionID;
1594
1595 MachineOutlinerInfo() {}
1596 MachineOutlinerInfo(unsigned CallOverhead, unsigned FrameOverhead,
1597 unsigned CallConstructionID,
1598 unsigned FrameConstructionID)
1599 : CallOverhead(CallOverhead), FrameOverhead(FrameOverhead),
1600 CallConstructionID(CallConstructionID),
1601 FrameConstructionID(FrameConstructionID) {}
1602 };
1603
1604 /// \brief Returns a \p MachineOutlinerInfo struct containing target-specific
1605 /// information for a set of outlining candidates.
1606 virtual MachineOutlinerInfo getOutlininingCandidateInfo(
1607 std::vector<
1608 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
1609 &RepeatedSequenceLocs) const {
1610 llvm_unreachable(
1611 "Target didn't implement TargetInstrInfo::getOutliningOverhead!");
1612 }
1613
1614 /// Represents how an instruction should be mapped by the outliner.
1615 /// \p Legal instructions are those which are safe to outline.
1616 /// \p Illegal instructions are those which cannot be outlined.
1617 /// \p Invisible instructions are instructions which can be outlined, but
1618 /// shouldn't actually impact the outlining result.
1619 enum MachineOutlinerInstrType { Legal, Illegal, Invisible };
1620
1621 /// Returns how or if \p MI should be outlined.
1622 virtual MachineOutlinerInstrType
1623 getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
1624 llvm_unreachable(
1625 "Target didn't implement TargetInstrInfo::getOutliningType!");
1626 }
1627
1628 /// \brief Returns target-defined flags defining properties of the MBB for
1629 /// the outliner.
1630 virtual unsigned getMachineOutlinerMBBFlags(MachineBasicBlock &MBB) const {
1631 return 0x0;
1632 }
1633
1634 /// Insert a custom epilogue for outlined functions.
1635 /// This may be empty, in which case no epilogue or return statement will be
1636 /// emitted.
1637 virtual void insertOutlinerEpilogue(MachineBasicBlock &MBB,
1638 MachineFunction &MF,
1639 const MachineOutlinerInfo &MInfo) const {
1640 llvm_unreachable(
1641 "Target didn't implement TargetInstrInfo::insertOutlinerEpilogue!");
1642 }
1643
1644 /// Insert a call to an outlined function into the program.
1645 /// Returns an iterator to the spot where we inserted the call. This must be
1646 /// implemented by the target.
1647 virtual MachineBasicBlock::iterator
1648 insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
1649 MachineBasicBlock::iterator &It, MachineFunction &MF,
1650 const MachineOutlinerInfo &MInfo) const {
1651 llvm_unreachable(
1652 "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
1653 }
1654
1655 /// Insert a custom prologue for outlined functions.
1656 /// This may be empty, in which case no prologue will be emitted.
1657 virtual void insertOutlinerPrologue(MachineBasicBlock &MBB,
1658 MachineFunction &MF,
1659 const MachineOutlinerInfo &MInfo) const {
1660 llvm_unreachable(
1661 "Target didn't implement TargetInstrInfo::insertOutlinerPrologue!");
1662 }
1663
1664 /// Return true if the function can safely be outlined from.
1665 /// A function \p MF is considered safe for outlining if an outlined function
1666 /// produced from instructions in F will produce a program which produces the
1667 /// same output for any set of given inputs.
1668 virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
1669 bool OutlineFromLinkOnceODRs) const {
1670 llvm_unreachable("Target didn't implement "
1671 "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
1672 }
1673
1674private:
1675 unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
1676 unsigned CatchRetOpcode;
1677 unsigned ReturnOpcode;
1678};
1679
1680/// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
1681template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
1682 using RegInfo = DenseMapInfo<unsigned>;
1683
1684 static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
1685 return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
1686 RegInfo::getEmptyKey());
1687 }
1688
1689 static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
1690 return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
1691 RegInfo::getTombstoneKey());
1692 }
1693
1694 /// \brief Reuse getHashValue implementation from
1695 /// std::pair<unsigned, unsigned>.
1696 static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
1697 std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
1698 return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
1699 }
1700
1701 static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
1702 const TargetInstrInfo::RegSubRegPair &RHS) {
1703 return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
1704 RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
1705 }
1706};
1707
1708} // end namespace llvm
1709
1710#endif // LLVM_TARGET_TARGETINSTRINFO_H