Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file describes the target machine instruction set to the code generator. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_TARGET_TARGETINSTRINFO_H |
| 15 | #define LLVM_TARGET_TARGETINSTRINFO_H |
| 16 | |
| 17 | #include "llvm/ADT/ArrayRef.h" |
| 18 | #include "llvm/ADT/DenseMap.h" |
| 19 | #include "llvm/ADT/DenseMapInfo.h" |
| 20 | #include "llvm/ADT/None.h" |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 21 | #include "llvm/CodeGen/LiveRegUnits.h" |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 22 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 23 | #include "llvm/CodeGen/MachineCombinerPattern.h" |
| 24 | #include "llvm/CodeGen/MachineFunction.h" |
| 25 | #include "llvm/CodeGen/MachineInstr.h" |
| 26 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 27 | #include "llvm/CodeGen/MachineOperand.h" |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 28 | #include "llvm/CodeGen/MachineOutliner.h" |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 29 | #include "llvm/CodeGen/PseudoSourceValue.h" |
| 30 | #include "llvm/MC/MCInstrInfo.h" |
| 31 | #include "llvm/Support/BranchProbability.h" |
| 32 | #include "llvm/Support/ErrorHandling.h" |
| 33 | #include <cassert> |
| 34 | #include <cstddef> |
| 35 | #include <cstdint> |
| 36 | #include <utility> |
| 37 | #include <vector> |
| 38 | |
| 39 | namespace llvm { |
| 40 | |
| 41 | class DFAPacketizer; |
| 42 | class InstrItineraryData; |
| 43 | class LiveIntervals; |
| 44 | class LiveVariables; |
| 45 | class MachineMemOperand; |
| 46 | class MachineRegisterInfo; |
| 47 | class MCAsmInfo; |
| 48 | class MCInst; |
| 49 | struct MCSchedModel; |
| 50 | class Module; |
| 51 | class ScheduleDAG; |
| 52 | class ScheduleHazardRecognizer; |
| 53 | class SDNode; |
| 54 | class SelectionDAG; |
| 55 | class RegScavenger; |
| 56 | class TargetRegisterClass; |
| 57 | class TargetRegisterInfo; |
| 58 | class TargetSchedModel; |
| 59 | class TargetSubtargetInfo; |
| 60 | |
| 61 | template <class T> class SmallVectorImpl; |
| 62 | |
| 63 | //--------------------------------------------------------------------------- |
| 64 | /// |
| 65 | /// TargetInstrInfo - Interface to description of machine instruction set |
| 66 | /// |
| 67 | class TargetInstrInfo : public MCInstrInfo { |
| 68 | public: |
| 69 | TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u, |
| 70 | unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u) |
| 71 | : CallFrameSetupOpcode(CFSetupOpcode), |
| 72 | CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode), |
| 73 | ReturnOpcode(ReturnOpcode) {} |
| 74 | TargetInstrInfo(const TargetInstrInfo &) = delete; |
| 75 | TargetInstrInfo &operator=(const TargetInstrInfo &) = delete; |
| 76 | virtual ~TargetInstrInfo(); |
| 77 | |
| 78 | static bool isGenericOpcode(unsigned Opc) { |
| 79 | return Opc <= TargetOpcode::GENERIC_OP_END; |
| 80 | } |
| 81 | |
| 82 | /// Given a machine instruction descriptor, returns the register |
| 83 | /// class constraint for OpNum, or NULL. |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 84 | const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum, |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 85 | const TargetRegisterInfo *TRI, |
| 86 | const MachineFunction &MF) const; |
| 87 | |
| 88 | /// Return true if the instruction is trivially rematerializable, meaning it |
| 89 | /// has no side effects and requires no operands that aren't always available. |
| 90 | /// This means the only allowed uses are constants and unallocatable physical |
| 91 | /// registers so that the instructions result is independent of the place |
| 92 | /// in the function. |
| 93 | bool isTriviallyReMaterializable(const MachineInstr &MI, |
| 94 | AliasAnalysis *AA = nullptr) const { |
| 95 | return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF || |
| 96 | (MI.getDesc().isRematerializable() && |
| 97 | (isReallyTriviallyReMaterializable(MI, AA) || |
| 98 | isReallyTriviallyReMaterializableGeneric(MI, AA))); |
| 99 | } |
| 100 | |
| 101 | protected: |
| 102 | /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is |
| 103 | /// set, this hook lets the target specify whether the instruction is actually |
| 104 | /// trivially rematerializable, taking into consideration its operands. This |
| 105 | /// predicate must return false if the instruction has any side effects other |
| 106 | /// than producing a value, or if it requres any address registers that are |
| 107 | /// not always available. |
| 108 | /// Requirements must be check as stated in isTriviallyReMaterializable() . |
| 109 | virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI, |
| 110 | AliasAnalysis *AA) const { |
| 111 | return false; |
| 112 | } |
| 113 | |
| 114 | /// This method commutes the operands of the given machine instruction MI. |
| 115 | /// The operands to be commuted are specified by their indices OpIdx1 and |
| 116 | /// OpIdx2. |
| 117 | /// |
| 118 | /// If a target has any instructions that are commutable but require |
| 119 | /// converting to different instructions or making non-trivial changes |
| 120 | /// to commute them, this method can be overloaded to do that. |
| 121 | /// The default implementation simply swaps the commutable operands. |
| 122 | /// |
| 123 | /// If NewMI is false, MI is modified in place and returned; otherwise, a |
| 124 | /// new machine instruction is created and returned. |
| 125 | /// |
| 126 | /// Do not call this method for a non-commutable instruction. |
| 127 | /// Even though the instruction is commutable, the method may still |
| 128 | /// fail to commute the operands, null pointer is returned in such cases. |
| 129 | virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI, |
| 130 | unsigned OpIdx1, |
| 131 | unsigned OpIdx2) const; |
| 132 | |
| 133 | /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable |
| 134 | /// operand indices to (ResultIdx1, ResultIdx2). |
| 135 | /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be |
| 136 | /// predefined to some indices or be undefined (designated by the special |
| 137 | /// value 'CommuteAnyOperandIndex'). |
| 138 | /// The predefined result indices cannot be re-defined. |
| 139 | /// The function returns true iff after the result pair redefinition |
| 140 | /// the fixed result pair is equal to or equivalent to the source pair of |
| 141 | /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that |
| 142 | /// the pairs (x,y) and (y,x) are equivalent. |
| 143 | static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2, |
| 144 | unsigned CommutableOpIdx1, |
| 145 | unsigned CommutableOpIdx2); |
| 146 | |
| 147 | private: |
| 148 | /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is |
| 149 | /// set and the target hook isReallyTriviallyReMaterializable returns false, |
| 150 | /// this function does target-independent tests to determine if the |
| 151 | /// instruction is really trivially rematerializable. |
| 152 | bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI, |
| 153 | AliasAnalysis *AA) const; |
| 154 | |
| 155 | public: |
| 156 | /// These methods return the opcode of the frame setup/destroy instructions |
| 157 | /// if they exist (-1 otherwise). Some targets use pseudo instructions in |
| 158 | /// order to abstract away the difference between operating with a frame |
| 159 | /// pointer and operating without, through the use of these two instructions. |
| 160 | /// |
| 161 | unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; } |
| 162 | unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; } |
| 163 | |
| 164 | /// Returns true if the argument is a frame pseudo instruction. |
| 165 | bool isFrameInstr(const MachineInstr &I) const { |
| 166 | return I.getOpcode() == getCallFrameSetupOpcode() || |
| 167 | I.getOpcode() == getCallFrameDestroyOpcode(); |
| 168 | } |
| 169 | |
| 170 | /// Returns true if the argument is a frame setup pseudo instruction. |
| 171 | bool isFrameSetup(const MachineInstr &I) const { |
| 172 | return I.getOpcode() == getCallFrameSetupOpcode(); |
| 173 | } |
| 174 | |
| 175 | /// Returns size of the frame associated with the given frame instruction. |
| 176 | /// For frame setup instruction this is frame that is set up space set up |
| 177 | /// after the instruction. For frame destroy instruction this is the frame |
| 178 | /// freed by the caller. |
| 179 | /// Note, in some cases a call frame (or a part of it) may be prepared prior |
| 180 | /// to the frame setup instruction. It occurs in the calls that involve |
| 181 | /// inalloca arguments. This function reports only the size of the frame part |
| 182 | /// that is set up between the frame setup and destroy pseudo instructions. |
| 183 | int64_t getFrameSize(const MachineInstr &I) const { |
| 184 | assert(isFrameInstr(I) && "Not a frame instruction"); |
| 185 | assert(I.getOperand(0).getImm() >= 0); |
| 186 | return I.getOperand(0).getImm(); |
| 187 | } |
| 188 | |
| 189 | /// Returns the total frame size, which is made up of the space set up inside |
| 190 | /// the pair of frame start-stop instructions and the space that is set up |
| 191 | /// prior to the pair. |
| 192 | int64_t getFrameTotalSize(const MachineInstr &I) const { |
| 193 | if (isFrameSetup(I)) { |
| 194 | assert(I.getOperand(1).getImm() >= 0 && |
| 195 | "Frame size must not be negative"); |
| 196 | return getFrameSize(I) + I.getOperand(1).getImm(); |
| 197 | } |
| 198 | return getFrameSize(I); |
| 199 | } |
| 200 | |
| 201 | unsigned getCatchReturnOpcode() const { return CatchRetOpcode; } |
| 202 | unsigned getReturnOpcode() const { return ReturnOpcode; } |
| 203 | |
| 204 | /// Returns the actual stack pointer adjustment made by an instruction |
| 205 | /// as part of a call sequence. By default, only call frame setup/destroy |
| 206 | /// instructions adjust the stack, but targets may want to override this |
| 207 | /// to enable more fine-grained adjustment, or adjust by a different value. |
| 208 | virtual int getSPAdjust(const MachineInstr &MI) const; |
| 209 | |
| 210 | /// Return true if the instruction is a "coalescable" extension instruction. |
| 211 | /// That is, it's like a copy where it's legal for the source to overlap the |
| 212 | /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's |
| 213 | /// expected the pre-extension value is available as a subreg of the result |
| 214 | /// register. This also returns the sub-register index in SubIdx. |
| 215 | virtual bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg, |
| 216 | unsigned &DstReg, unsigned &SubIdx) const { |
| 217 | return false; |
| 218 | } |
| 219 | |
| 220 | /// If the specified machine instruction is a direct |
| 221 | /// load from a stack slot, return the virtual or physical register number of |
| 222 | /// the destination along with the FrameIndex of the loaded stack slot. If |
| 223 | /// not, return 0. This predicate must return 0 if the instruction has |
| 224 | /// any side effects other than loading from the stack slot. |
| 225 | virtual unsigned isLoadFromStackSlot(const MachineInstr &MI, |
| 226 | int &FrameIndex) const { |
| 227 | return 0; |
| 228 | } |
| 229 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 230 | /// Optional extension of isLoadFromStackSlot that returns the number of |
| 231 | /// bytes loaded from the stack. This must be implemented if a backend |
| 232 | /// supports partial stack slot spills/loads to further disambiguate |
| 233 | /// what the load does. |
| 234 | virtual unsigned isLoadFromStackSlot(const MachineInstr &MI, |
| 235 | int &FrameIndex, |
| 236 | unsigned &MemBytes) const { |
| 237 | MemBytes = 0; |
| 238 | return isLoadFromStackSlot(MI, FrameIndex); |
| 239 | } |
| 240 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 241 | /// Check for post-frame ptr elimination stack locations as well. |
| 242 | /// This uses a heuristic so it isn't reliable for correctness. |
| 243 | virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI, |
| 244 | int &FrameIndex) const { |
| 245 | return 0; |
| 246 | } |
| 247 | |
| 248 | /// If the specified machine instruction has a load from a stack slot, |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame^] | 249 | /// return true along with the FrameIndices of the loaded stack slot and the |
| 250 | /// machine mem operands containing the reference. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 251 | /// If not, return false. Unlike isLoadFromStackSlot, this returns true for |
| 252 | /// any instructions that loads from the stack. This is just a hint, as some |
| 253 | /// cases may be missed. |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame^] | 254 | virtual bool hasLoadFromStackSlot( |
| 255 | const MachineInstr &MI, |
| 256 | SmallVectorImpl<const MachineMemOperand *> &Accesses) const; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 257 | |
| 258 | /// If the specified machine instruction is a direct |
| 259 | /// store to a stack slot, return the virtual or physical register number of |
| 260 | /// the source reg along with the FrameIndex of the loaded stack slot. If |
| 261 | /// not, return 0. This predicate must return 0 if the instruction has |
| 262 | /// any side effects other than storing to the stack slot. |
| 263 | virtual unsigned isStoreToStackSlot(const MachineInstr &MI, |
| 264 | int &FrameIndex) const { |
| 265 | return 0; |
| 266 | } |
| 267 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 268 | /// Optional extension of isStoreToStackSlot that returns the number of |
| 269 | /// bytes stored to the stack. This must be implemented if a backend |
| 270 | /// supports partial stack slot spills/loads to further disambiguate |
| 271 | /// what the store does. |
| 272 | virtual unsigned isStoreToStackSlot(const MachineInstr &MI, |
| 273 | int &FrameIndex, |
| 274 | unsigned &MemBytes) const { |
| 275 | MemBytes = 0; |
| 276 | return isStoreToStackSlot(MI, FrameIndex); |
| 277 | } |
| 278 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 279 | /// Check for post-frame ptr elimination stack locations as well. |
| 280 | /// This uses a heuristic, so it isn't reliable for correctness. |
| 281 | virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI, |
| 282 | int &FrameIndex) const { |
| 283 | return 0; |
| 284 | } |
| 285 | |
| 286 | /// If the specified machine instruction has a store to a stack slot, |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame^] | 287 | /// return true along with the FrameIndices of the loaded stack slot and the |
| 288 | /// machine mem operands containing the reference. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 289 | /// If not, return false. Unlike isStoreToStackSlot, |
| 290 | /// this returns true for any instructions that stores to the |
| 291 | /// stack. This is just a hint, as some cases may be missed. |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame^] | 292 | virtual bool hasStoreToStackSlot( |
| 293 | const MachineInstr &MI, |
| 294 | SmallVectorImpl<const MachineMemOperand *> &Accesses) const; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 295 | |
| 296 | /// Return true if the specified machine instruction |
| 297 | /// is a copy of one stack slot to another and has no other effect. |
| 298 | /// Provide the identity of the two frame indices. |
| 299 | virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex, |
| 300 | int &SrcFrameIndex) const { |
| 301 | return false; |
| 302 | } |
| 303 | |
| 304 | /// Compute the size in bytes and offset within a stack slot of a spilled |
| 305 | /// register or subregister. |
| 306 | /// |
| 307 | /// \param [out] Size in bytes of the spilled value. |
| 308 | /// \param [out] Offset in bytes within the stack slot. |
| 309 | /// \returns true if both Size and Offset are successfully computed. |
| 310 | /// |
| 311 | /// Not all subregisters have computable spill slots. For example, |
| 312 | /// subregisters registers may not be byte-sized, and a pair of discontiguous |
| 313 | /// subregisters has no single offset. |
| 314 | /// |
| 315 | /// Targets with nontrivial bigendian implementations may need to override |
| 316 | /// this, particularly to support spilled vector registers. |
| 317 | virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, |
| 318 | unsigned &Size, unsigned &Offset, |
| 319 | const MachineFunction &MF) const; |
| 320 | |
| 321 | /// Returns the size in bytes of the specified MachineInstr, or ~0U |
| 322 | /// when this function is not implemented by a target. |
| 323 | virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const { |
| 324 | return ~0U; |
| 325 | } |
| 326 | |
| 327 | /// Return true if the instruction is as cheap as a move instruction. |
| 328 | /// |
| 329 | /// Targets for different archs need to override this, and different |
| 330 | /// micro-architectures can also be finely tuned inside. |
| 331 | virtual bool isAsCheapAsAMove(const MachineInstr &MI) const { |
| 332 | return MI.isAsCheapAsAMove(); |
| 333 | } |
| 334 | |
| 335 | /// Return true if the instruction should be sunk by MachineSink. |
| 336 | /// |
| 337 | /// MachineSink determines on its own whether the instruction is safe to sink; |
| 338 | /// this gives the target a hook to override the default behavior with regards |
| 339 | /// to which instructions should be sunk. |
| 340 | virtual bool shouldSink(const MachineInstr &MI) const { return true; } |
| 341 | |
| 342 | /// Re-issue the specified 'original' instruction at the |
| 343 | /// specific location targeting a new destination register. |
| 344 | /// The register in Orig->getOperand(0).getReg() will be substituted by |
| 345 | /// DestReg:SubIdx. Any existing subreg index is preserved or composed with |
| 346 | /// SubIdx. |
| 347 | virtual void reMaterialize(MachineBasicBlock &MBB, |
| 348 | MachineBasicBlock::iterator MI, unsigned DestReg, |
| 349 | unsigned SubIdx, const MachineInstr &Orig, |
| 350 | const TargetRegisterInfo &TRI) const; |
| 351 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 352 | /// Clones instruction or the whole instruction bundle \p Orig and |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 353 | /// insert into \p MBB before \p InsertBefore. The target may update operands |
| 354 | /// that are required to be unique. |
| 355 | /// |
| 356 | /// \p Orig must not return true for MachineInstr::isNotDuplicable(). |
| 357 | virtual MachineInstr &duplicate(MachineBasicBlock &MBB, |
| 358 | MachineBasicBlock::iterator InsertBefore, |
| 359 | const MachineInstr &Orig) const; |
| 360 | |
| 361 | /// This method must be implemented by targets that |
| 362 | /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target |
| 363 | /// may be able to convert a two-address instruction into one or more true |
| 364 | /// three-address instructions on demand. This allows the X86 target (for |
| 365 | /// example) to convert ADD and SHL instructions into LEA instructions if they |
| 366 | /// would require register copies due to two-addressness. |
| 367 | /// |
| 368 | /// This method returns a null pointer if the transformation cannot be |
| 369 | /// performed, otherwise it returns the last new instruction. |
| 370 | /// |
| 371 | virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, |
| 372 | MachineInstr &MI, |
| 373 | LiveVariables *LV) const { |
| 374 | return nullptr; |
| 375 | } |
| 376 | |
| 377 | // This constant can be used as an input value of operand index passed to |
| 378 | // the method findCommutedOpIndices() to tell the method that the |
| 379 | // corresponding operand index is not pre-defined and that the method |
| 380 | // can pick any commutable operand. |
| 381 | static const unsigned CommuteAnyOperandIndex = ~0U; |
| 382 | |
| 383 | /// This method commutes the operands of the given machine instruction MI. |
| 384 | /// |
| 385 | /// The operands to be commuted are specified by their indices OpIdx1 and |
| 386 | /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value |
| 387 | /// 'CommuteAnyOperandIndex', which means that the method is free to choose |
| 388 | /// any arbitrarily chosen commutable operand. If both arguments are set to |
| 389 | /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable |
| 390 | /// operands; then commutes them if such operands could be found. |
| 391 | /// |
| 392 | /// If NewMI is false, MI is modified in place and returned; otherwise, a |
| 393 | /// new machine instruction is created and returned. |
| 394 | /// |
| 395 | /// Do not call this method for a non-commutable instruction or |
| 396 | /// for non-commuable operands. |
| 397 | /// Even though the instruction is commutable, the method may still |
| 398 | /// fail to commute the operands, null pointer is returned in such cases. |
| 399 | MachineInstr * |
| 400 | commuteInstruction(MachineInstr &MI, bool NewMI = false, |
| 401 | unsigned OpIdx1 = CommuteAnyOperandIndex, |
| 402 | unsigned OpIdx2 = CommuteAnyOperandIndex) const; |
| 403 | |
| 404 | /// Returns true iff the routine could find two commutable operands in the |
| 405 | /// given machine instruction. |
| 406 | /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. |
| 407 | /// If any of the INPUT values is set to the special value |
| 408 | /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable |
| 409 | /// operand, then returns its index in the corresponding argument. |
| 410 | /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method |
| 411 | /// looks for 2 commutable operands. |
| 412 | /// If INPUT values refer to some operands of MI, then the method simply |
| 413 | /// returns true if the corresponding operands are commutable and returns |
| 414 | /// false otherwise. |
| 415 | /// |
| 416 | /// For example, calling this method this way: |
| 417 | /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; |
| 418 | /// findCommutedOpIndices(MI, Op1, Op2); |
| 419 | /// can be interpreted as a query asking to find an operand that would be |
| 420 | /// commutable with the operand#1. |
| 421 | virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, |
| 422 | unsigned &SrcOpIdx2) const; |
| 423 | |
| 424 | /// A pair composed of a register and a sub-register index. |
| 425 | /// Used to give some type checking when modeling Reg:SubReg. |
| 426 | struct RegSubRegPair { |
| 427 | unsigned Reg; |
| 428 | unsigned SubReg; |
| 429 | |
| 430 | RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0) |
| 431 | : Reg(Reg), SubReg(SubReg) {} |
| 432 | }; |
| 433 | |
| 434 | /// A pair composed of a pair of a register and a sub-register index, |
| 435 | /// and another sub-register index. |
| 436 | /// Used to give some type checking when modeling Reg:SubReg1, SubReg2. |
| 437 | struct RegSubRegPairAndIdx : RegSubRegPair { |
| 438 | unsigned SubIdx; |
| 439 | |
| 440 | RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0, |
| 441 | unsigned SubIdx = 0) |
| 442 | : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {} |
| 443 | }; |
| 444 | |
| 445 | /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI |
| 446 | /// and \p DefIdx. |
| 447 | /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of |
| 448 | /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef |
| 449 | /// flag are not added to this list. |
| 450 | /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce |
| 451 | /// two elements: |
| 452 | /// - %1:sub1, sub0 |
| 453 | /// - %2<:0>, sub1 |
| 454 | /// |
| 455 | /// \returns true if it is possible to build such an input sequence |
| 456 | /// with the pair \p MI, \p DefIdx. False otherwise. |
| 457 | /// |
| 458 | /// \pre MI.isRegSequence() or MI.isRegSequenceLike(). |
| 459 | /// |
| 460 | /// \note The generic implementation does not provide any support for |
| 461 | /// MI.isRegSequenceLike(). In other words, one has to override |
| 462 | /// getRegSequenceLikeInputs for target specific instructions. |
| 463 | bool |
| 464 | getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx, |
| 465 | SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const; |
| 466 | |
| 467 | /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI |
| 468 | /// and \p DefIdx. |
| 469 | /// \p [out] InputReg of the equivalent EXTRACT_SUBREG. |
| 470 | /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce: |
| 471 | /// - %1:sub1, sub0 |
| 472 | /// |
| 473 | /// \returns true if it is possible to build such an input sequence |
| 474 | /// with the pair \p MI, \p DefIdx and the operand has no undef flag set. |
| 475 | /// False otherwise. |
| 476 | /// |
| 477 | /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike(). |
| 478 | /// |
| 479 | /// \note The generic implementation does not provide any support for |
| 480 | /// MI.isExtractSubregLike(). In other words, one has to override |
| 481 | /// getExtractSubregLikeInputs for target specific instructions. |
| 482 | bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx, |
| 483 | RegSubRegPairAndIdx &InputReg) const; |
| 484 | |
| 485 | /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI |
| 486 | /// and \p DefIdx. |
| 487 | /// \p [out] BaseReg and \p [out] InsertedReg contain |
| 488 | /// the equivalent inputs of INSERT_SUBREG. |
| 489 | /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce: |
| 490 | /// - BaseReg: %0:sub0 |
| 491 | /// - InsertedReg: %1:sub1, sub3 |
| 492 | /// |
| 493 | /// \returns true if it is possible to build such an input sequence |
| 494 | /// with the pair \p MI, \p DefIdx and the operand has no undef flag set. |
| 495 | /// False otherwise. |
| 496 | /// |
| 497 | /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike(). |
| 498 | /// |
| 499 | /// \note The generic implementation does not provide any support for |
| 500 | /// MI.isInsertSubregLike(). In other words, one has to override |
| 501 | /// getInsertSubregLikeInputs for target specific instructions. |
| 502 | bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx, |
| 503 | RegSubRegPair &BaseReg, |
| 504 | RegSubRegPairAndIdx &InsertedReg) const; |
| 505 | |
| 506 | /// Return true if two machine instructions would produce identical values. |
| 507 | /// By default, this is only true when the two instructions |
| 508 | /// are deemed identical except for defs. If this function is called when the |
| 509 | /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for |
| 510 | /// aggressive checks. |
| 511 | virtual bool produceSameValue(const MachineInstr &MI0, |
| 512 | const MachineInstr &MI1, |
| 513 | const MachineRegisterInfo *MRI = nullptr) const; |
| 514 | |
| 515 | /// \returns true if a branch from an instruction with opcode \p BranchOpc |
| 516 | /// bytes is capable of jumping to a position \p BrOffset bytes away. |
| 517 | virtual bool isBranchOffsetInRange(unsigned BranchOpc, |
| 518 | int64_t BrOffset) const { |
| 519 | llvm_unreachable("target did not implement"); |
| 520 | } |
| 521 | |
| 522 | /// \returns The block that branch instruction \p MI jumps to. |
| 523 | virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const { |
| 524 | llvm_unreachable("target did not implement"); |
| 525 | } |
| 526 | |
| 527 | /// Insert an unconditional indirect branch at the end of \p MBB to \p |
| 528 | /// NewDestBB. \p BrOffset indicates the offset of \p NewDestBB relative to |
| 529 | /// the offset of the position to insert the new branch. |
| 530 | /// |
| 531 | /// \returns The number of bytes added to the block. |
| 532 | virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB, |
| 533 | MachineBasicBlock &NewDestBB, |
| 534 | const DebugLoc &DL, |
| 535 | int64_t BrOffset = 0, |
| 536 | RegScavenger *RS = nullptr) const { |
| 537 | llvm_unreachable("target did not implement"); |
| 538 | } |
| 539 | |
| 540 | /// Analyze the branching code at the end of MBB, returning |
| 541 | /// true if it cannot be understood (e.g. it's a switch dispatch or isn't |
| 542 | /// implemented for a target). Upon success, this returns false and returns |
| 543 | /// with the following information in various cases: |
| 544 | /// |
| 545 | /// 1. If this block ends with no branches (it just falls through to its succ) |
| 546 | /// just return false, leaving TBB/FBB null. |
| 547 | /// 2. If this block ends with only an unconditional branch, it sets TBB to be |
| 548 | /// the destination block. |
| 549 | /// 3. If this block ends with a conditional branch and it falls through to a |
| 550 | /// successor block, it sets TBB to be the branch destination block and a |
| 551 | /// list of operands that evaluate the condition. These operands can be |
| 552 | /// passed to other TargetInstrInfo methods to create new branches. |
| 553 | /// 4. If this block ends with a conditional branch followed by an |
| 554 | /// unconditional branch, it returns the 'true' destination in TBB, the |
| 555 | /// 'false' destination in FBB, and a list of operands that evaluate the |
| 556 | /// condition. These operands can be passed to other TargetInstrInfo |
| 557 | /// methods to create new branches. |
| 558 | /// |
| 559 | /// Note that removeBranch and insertBranch must be implemented to support |
| 560 | /// cases where this method returns success. |
| 561 | /// |
| 562 | /// If AllowModify is true, then this routine is allowed to modify the basic |
| 563 | /// block (e.g. delete instructions after the unconditional branch). |
| 564 | /// |
| 565 | /// The CFG information in MBB.Predecessors and MBB.Successors must be valid |
| 566 | /// before calling this function. |
| 567 | virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, |
| 568 | MachineBasicBlock *&FBB, |
| 569 | SmallVectorImpl<MachineOperand> &Cond, |
| 570 | bool AllowModify = false) const { |
| 571 | return true; |
| 572 | } |
| 573 | |
| 574 | /// Represents a predicate at the MachineFunction level. The control flow a |
| 575 | /// MachineBranchPredicate represents is: |
| 576 | /// |
| 577 | /// Reg = LHS `Predicate` RHS == ConditionDef |
| 578 | /// if Reg then goto TrueDest else goto FalseDest |
| 579 | /// |
| 580 | struct MachineBranchPredicate { |
| 581 | enum ComparePredicate { |
| 582 | PRED_EQ, // True if two values are equal |
| 583 | PRED_NE, // True if two values are not equal |
| 584 | PRED_INVALID // Sentinel value |
| 585 | }; |
| 586 | |
| 587 | ComparePredicate Predicate = PRED_INVALID; |
| 588 | MachineOperand LHS = MachineOperand::CreateImm(0); |
| 589 | MachineOperand RHS = MachineOperand::CreateImm(0); |
| 590 | MachineBasicBlock *TrueDest = nullptr; |
| 591 | MachineBasicBlock *FalseDest = nullptr; |
| 592 | MachineInstr *ConditionDef = nullptr; |
| 593 | |
| 594 | /// SingleUseCondition is true if ConditionDef is dead except for the |
| 595 | /// branch(es) at the end of the basic block. |
| 596 | /// |
| 597 | bool SingleUseCondition = false; |
| 598 | |
| 599 | explicit MachineBranchPredicate() = default; |
| 600 | }; |
| 601 | |
| 602 | /// Analyze the branching code at the end of MBB and parse it into the |
| 603 | /// MachineBranchPredicate structure if possible. Returns false on success |
| 604 | /// and true on failure. |
| 605 | /// |
| 606 | /// If AllowModify is true, then this routine is allowed to modify the basic |
| 607 | /// block (e.g. delete instructions after the unconditional branch). |
| 608 | /// |
| 609 | virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB, |
| 610 | MachineBranchPredicate &MBP, |
| 611 | bool AllowModify = false) const { |
| 612 | return true; |
| 613 | } |
| 614 | |
| 615 | /// Remove the branching code at the end of the specific MBB. |
| 616 | /// This is only invoked in cases where AnalyzeBranch returns success. It |
| 617 | /// returns the number of instructions that were removed. |
| 618 | /// If \p BytesRemoved is non-null, report the change in code size from the |
| 619 | /// removed instructions. |
| 620 | virtual unsigned removeBranch(MachineBasicBlock &MBB, |
| 621 | int *BytesRemoved = nullptr) const { |
| 622 | llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!"); |
| 623 | } |
| 624 | |
| 625 | /// Insert branch code into the end of the specified MachineBasicBlock. The |
| 626 | /// operands to this method are the same as those returned by AnalyzeBranch. |
| 627 | /// This is only invoked in cases where AnalyzeBranch returns success. It |
| 628 | /// returns the number of instructions inserted. If \p BytesAdded is non-null, |
| 629 | /// report the change in code size from the added instructions. |
| 630 | /// |
| 631 | /// It is also invoked by tail merging to add unconditional branches in |
| 632 | /// cases where AnalyzeBranch doesn't apply because there was no original |
| 633 | /// branch to analyze. At least this much must be implemented, else tail |
| 634 | /// merging needs to be disabled. |
| 635 | /// |
| 636 | /// The CFG information in MBB.Predecessors and MBB.Successors must be valid |
| 637 | /// before calling this function. |
| 638 | virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, |
| 639 | MachineBasicBlock *FBB, |
| 640 | ArrayRef<MachineOperand> Cond, |
| 641 | const DebugLoc &DL, |
| 642 | int *BytesAdded = nullptr) const { |
| 643 | llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!"); |
| 644 | } |
| 645 | |
| 646 | unsigned insertUnconditionalBranch(MachineBasicBlock &MBB, |
| 647 | MachineBasicBlock *DestBB, |
| 648 | const DebugLoc &DL, |
| 649 | int *BytesAdded = nullptr) const { |
| 650 | return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL, |
| 651 | BytesAdded); |
| 652 | } |
| 653 | |
| 654 | /// Analyze the loop code, return true if it cannot be understoo. Upon |
| 655 | /// success, this function returns false and returns information about the |
| 656 | /// induction variable and compare instruction used at the end. |
| 657 | virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst, |
| 658 | MachineInstr *&CmpInst) const { |
| 659 | return true; |
| 660 | } |
| 661 | |
| 662 | /// Generate code to reduce the loop iteration by one and check if the loop |
| 663 | /// is finished. Return the value/register of the new loop count. We need |
| 664 | /// this function when peeling off one or more iterations of a loop. This |
| 665 | /// function assumes the nth iteration is peeled first. |
| 666 | virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineInstr *IndVar, |
| 667 | MachineInstr &Cmp, |
| 668 | SmallVectorImpl<MachineOperand> &Cond, |
| 669 | SmallVectorImpl<MachineInstr *> &PrevInsts, |
| 670 | unsigned Iter, unsigned MaxIter) const { |
| 671 | llvm_unreachable("Target didn't implement ReduceLoopCount"); |
| 672 | } |
| 673 | |
| 674 | /// Delete the instruction OldInst and everything after it, replacing it with |
| 675 | /// an unconditional branch to NewDest. This is used by the tail merging pass. |
| 676 | virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, |
| 677 | MachineBasicBlock *NewDest) const; |
| 678 | |
| 679 | /// Return true if it's legal to split the given basic |
| 680 | /// block at the specified instruction (i.e. instruction would be the start |
| 681 | /// of a new basic block). |
| 682 | virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, |
| 683 | MachineBasicBlock::iterator MBBI) const { |
| 684 | return true; |
| 685 | } |
| 686 | |
| 687 | /// Return true if it's profitable to predicate |
| 688 | /// instructions with accumulated instruction latency of "NumCycles" |
| 689 | /// of the specified basic block, where the probability of the instructions |
| 690 | /// being executed is given by Probability, and Confidence is a measure |
| 691 | /// of our confidence that it will be properly predicted. |
| 692 | virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, |
| 693 | unsigned ExtraPredCycles, |
| 694 | BranchProbability Probability) const { |
| 695 | return false; |
| 696 | } |
| 697 | |
| 698 | /// Second variant of isProfitableToIfCvt. This one |
| 699 | /// checks for the case where two basic blocks from true and false path |
| 700 | /// of a if-then-else (diamond) are predicated on mutally exclusive |
| 701 | /// predicates, where the probability of the true path being taken is given |
| 702 | /// by Probability, and Confidence is a measure of our confidence that it |
| 703 | /// will be properly predicted. |
| 704 | virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, |
| 705 | unsigned ExtraTCycles, |
| 706 | MachineBasicBlock &FMBB, unsigned NumFCycles, |
| 707 | unsigned ExtraFCycles, |
| 708 | BranchProbability Probability) const { |
| 709 | return false; |
| 710 | } |
| 711 | |
| 712 | /// Return true if it's profitable for if-converter to duplicate instructions |
| 713 | /// of specified accumulated instruction latencies in the specified MBB to |
| 714 | /// enable if-conversion. |
| 715 | /// The probability of the instructions being executed is given by |
| 716 | /// Probability, and Confidence is a measure of our confidence that it |
| 717 | /// will be properly predicted. |
| 718 | virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, |
| 719 | unsigned NumCycles, |
| 720 | BranchProbability Probability) const { |
| 721 | return false; |
| 722 | } |
| 723 | |
| 724 | /// Return true if it's profitable to unpredicate |
| 725 | /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually |
| 726 | /// exclusive predicates. |
| 727 | /// e.g. |
| 728 | /// subeq r0, r1, #1 |
| 729 | /// addne r0, r1, #1 |
| 730 | /// => |
| 731 | /// sub r0, r1, #1 |
| 732 | /// addne r0, r1, #1 |
| 733 | /// |
| 734 | /// This may be profitable is conditional instructions are always executed. |
| 735 | virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, |
| 736 | MachineBasicBlock &FMBB) const { |
| 737 | return false; |
| 738 | } |
| 739 | |
| 740 | /// Return true if it is possible to insert a select |
| 741 | /// instruction that chooses between TrueReg and FalseReg based on the |
| 742 | /// condition code in Cond. |
| 743 | /// |
| 744 | /// When successful, also return the latency in cycles from TrueReg, |
| 745 | /// FalseReg, and Cond to the destination register. In most cases, a select |
| 746 | /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1 |
| 747 | /// |
| 748 | /// Some x86 implementations have 2-cycle cmov instructions. |
| 749 | /// |
| 750 | /// @param MBB Block where select instruction would be inserted. |
| 751 | /// @param Cond Condition returned by AnalyzeBranch. |
| 752 | /// @param TrueReg Virtual register to select when Cond is true. |
| 753 | /// @param FalseReg Virtual register to select when Cond is false. |
| 754 | /// @param CondCycles Latency from Cond+Branch to select output. |
| 755 | /// @param TrueCycles Latency from TrueReg to select output. |
| 756 | /// @param FalseCycles Latency from FalseReg to select output. |
| 757 | virtual bool canInsertSelect(const MachineBasicBlock &MBB, |
| 758 | ArrayRef<MachineOperand> Cond, unsigned TrueReg, |
| 759 | unsigned FalseReg, int &CondCycles, |
| 760 | int &TrueCycles, int &FalseCycles) const { |
| 761 | return false; |
| 762 | } |
| 763 | |
| 764 | /// Insert a select instruction into MBB before I that will copy TrueReg to |
| 765 | /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false. |
| 766 | /// |
| 767 | /// This function can only be called after canInsertSelect() returned true. |
| 768 | /// The condition in Cond comes from AnalyzeBranch, and it can be assumed |
| 769 | /// that the same flags or registers required by Cond are available at the |
| 770 | /// insertion point. |
| 771 | /// |
| 772 | /// @param MBB Block where select instruction should be inserted. |
| 773 | /// @param I Insertion point. |
| 774 | /// @param DL Source location for debugging. |
| 775 | /// @param DstReg Virtual register to be defined by select instruction. |
| 776 | /// @param Cond Condition as computed by AnalyzeBranch. |
| 777 | /// @param TrueReg Virtual register to copy when Cond is true. |
| 778 | /// @param FalseReg Virtual register to copy when Cons is false. |
| 779 | virtual void insertSelect(MachineBasicBlock &MBB, |
| 780 | MachineBasicBlock::iterator I, const DebugLoc &DL, |
| 781 | unsigned DstReg, ArrayRef<MachineOperand> Cond, |
| 782 | unsigned TrueReg, unsigned FalseReg) const { |
| 783 | llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!"); |
| 784 | } |
| 785 | |
| 786 | /// Analyze the given select instruction, returning true if |
| 787 | /// it cannot be understood. It is assumed that MI->isSelect() is true. |
| 788 | /// |
| 789 | /// When successful, return the controlling condition and the operands that |
| 790 | /// determine the true and false result values. |
| 791 | /// |
| 792 | /// Result = SELECT Cond, TrueOp, FalseOp |
| 793 | /// |
| 794 | /// Some targets can optimize select instructions, for example by predicating |
| 795 | /// the instruction defining one of the operands. Such targets should set |
| 796 | /// Optimizable. |
| 797 | /// |
| 798 | /// @param MI Select instruction to analyze. |
| 799 | /// @param Cond Condition controlling the select. |
| 800 | /// @param TrueOp Operand number of the value selected when Cond is true. |
| 801 | /// @param FalseOp Operand number of the value selected when Cond is false. |
| 802 | /// @param Optimizable Returned as true if MI is optimizable. |
| 803 | /// @returns False on success. |
| 804 | virtual bool analyzeSelect(const MachineInstr &MI, |
| 805 | SmallVectorImpl<MachineOperand> &Cond, |
| 806 | unsigned &TrueOp, unsigned &FalseOp, |
| 807 | bool &Optimizable) const { |
| 808 | assert(MI.getDesc().isSelect() && "MI must be a select instruction"); |
| 809 | return true; |
| 810 | } |
| 811 | |
| 812 | /// Given a select instruction that was understood by |
| 813 | /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by |
| 814 | /// merging it with one of its operands. Returns NULL on failure. |
| 815 | /// |
| 816 | /// When successful, returns the new select instruction. The client is |
| 817 | /// responsible for deleting MI. |
| 818 | /// |
| 819 | /// If both sides of the select can be optimized, PreferFalse is used to pick |
| 820 | /// a side. |
| 821 | /// |
| 822 | /// @param MI Optimizable select instruction. |
| 823 | /// @param NewMIs Set that record all MIs in the basic block up to \p |
| 824 | /// MI. Has to be updated with any newly created MI or deleted ones. |
| 825 | /// @param PreferFalse Try to optimize FalseOp instead of TrueOp. |
| 826 | /// @returns Optimized instruction or NULL. |
| 827 | virtual MachineInstr *optimizeSelect(MachineInstr &MI, |
| 828 | SmallPtrSetImpl<MachineInstr *> &NewMIs, |
| 829 | bool PreferFalse = false) const { |
| 830 | // This function must be implemented if Optimizable is ever set. |
| 831 | llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!"); |
| 832 | } |
| 833 | |
| 834 | /// Emit instructions to copy a pair of physical registers. |
| 835 | /// |
| 836 | /// This function should support copies within any legal register class as |
| 837 | /// well as any cross-class copies created during instruction selection. |
| 838 | /// |
| 839 | /// The source and destination registers may overlap, which may require a |
| 840 | /// careful implementation when multiple copy instructions are required for |
| 841 | /// large registers. See for example the ARM target. |
| 842 | virtual void copyPhysReg(MachineBasicBlock &MBB, |
| 843 | MachineBasicBlock::iterator MI, const DebugLoc &DL, |
| 844 | unsigned DestReg, unsigned SrcReg, |
| 845 | bool KillSrc) const { |
| 846 | llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!"); |
| 847 | } |
| 848 | |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame^] | 849 | protected: |
| 850 | /// Target-dependent implemenation for IsCopyInstr. |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 851 | /// If the specific machine instruction is a instruction that moves/copies |
| 852 | /// value from one register to another register return true along with |
| 853 | /// @Source machine operand and @Destination machine operand. |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame^] | 854 | virtual bool isCopyInstrImpl(const MachineInstr &MI, |
| 855 | const MachineOperand *&Source, |
| 856 | const MachineOperand *&Destination) const { |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 857 | return false; |
| 858 | } |
| 859 | |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame^] | 860 | public: |
| 861 | /// If the specific machine instruction is a instruction that moves/copies |
| 862 | /// value from one register to another register return true along with |
| 863 | /// @Source machine operand and @Destination machine operand. |
| 864 | /// For COPY-instruction the method naturally returns true, for all other |
| 865 | /// instructions the method calls target-dependent implementation. |
| 866 | bool isCopyInstr(const MachineInstr &MI, const MachineOperand *&Source, |
| 867 | const MachineOperand *&Destination) const { |
| 868 | if (MI.isCopy()) { |
| 869 | Destination = &MI.getOperand(0); |
| 870 | Source = &MI.getOperand(1); |
| 871 | return true; |
| 872 | } |
| 873 | return isCopyInstrImpl(MI, Source, Destination); |
| 874 | } |
| 875 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 876 | /// Store the specified register of the given register class to the specified |
| 877 | /// stack frame index. The store instruction is to be added to the given |
| 878 | /// machine basic block before the specified machine instruction. If isKill |
| 879 | /// is true, the register operand is the last use and must be marked kill. |
| 880 | virtual void storeRegToStackSlot(MachineBasicBlock &MBB, |
| 881 | MachineBasicBlock::iterator MI, |
| 882 | unsigned SrcReg, bool isKill, int FrameIndex, |
| 883 | const TargetRegisterClass *RC, |
| 884 | const TargetRegisterInfo *TRI) const { |
| 885 | llvm_unreachable("Target didn't implement " |
| 886 | "TargetInstrInfo::storeRegToStackSlot!"); |
| 887 | } |
| 888 | |
| 889 | /// Load the specified register of the given register class from the specified |
| 890 | /// stack frame index. The load instruction is to be added to the given |
| 891 | /// machine basic block before the specified machine instruction. |
| 892 | virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, |
| 893 | MachineBasicBlock::iterator MI, |
| 894 | unsigned DestReg, int FrameIndex, |
| 895 | const TargetRegisterClass *RC, |
| 896 | const TargetRegisterInfo *TRI) const { |
| 897 | llvm_unreachable("Target didn't implement " |
| 898 | "TargetInstrInfo::loadRegFromStackSlot!"); |
| 899 | } |
| 900 | |
| 901 | /// This function is called for all pseudo instructions |
| 902 | /// that remain after register allocation. Many pseudo instructions are |
| 903 | /// created to help register allocation. This is the place to convert them |
| 904 | /// into real instructions. The target can edit MI in place, or it can insert |
| 905 | /// new instructions and erase MI. The function should return true if |
| 906 | /// anything was changed. |
| 907 | virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; } |
| 908 | |
| 909 | /// Check whether the target can fold a load that feeds a subreg operand |
| 910 | /// (or a subreg operand that feeds a store). |
| 911 | /// For example, X86 may want to return true if it can fold |
| 912 | /// movl (%esp), %eax |
| 913 | /// subb, %al, ... |
| 914 | /// Into: |
| 915 | /// subb (%esp), ... |
| 916 | /// |
| 917 | /// Ideally, we'd like the target implementation of foldMemoryOperand() to |
| 918 | /// reject subregs - but since this behavior used to be enforced in the |
| 919 | /// target-independent code, moving this responsibility to the targets |
| 920 | /// has the potential of causing nasty silent breakage in out-of-tree targets. |
| 921 | virtual bool isSubregFoldable() const { return false; } |
| 922 | |
| 923 | /// Attempt to fold a load or store of the specified stack |
| 924 | /// slot into the specified machine instruction for the specified operand(s). |
| 925 | /// If this is possible, a new instruction is returned with the specified |
| 926 | /// operand folded, otherwise NULL is returned. |
| 927 | /// The new instruction is inserted before MI, and the client is responsible |
| 928 | /// for removing the old instruction. |
| 929 | MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 930 | int FI, |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 931 | LiveIntervals *LIS = nullptr) const; |
| 932 | |
| 933 | /// Same as the previous version except it allows folding of any load and |
| 934 | /// store from / to any address, not just from a specific stack slot. |
| 935 | MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, |
| 936 | MachineInstr &LoadMI, |
| 937 | LiveIntervals *LIS = nullptr) const; |
| 938 | |
| 939 | /// Return true when there is potentially a faster code sequence |
| 940 | /// for an instruction chain ending in \p Root. All potential patterns are |
| 941 | /// returned in the \p Pattern vector. Pattern should be sorted in priority |
| 942 | /// order since the pattern evaluator stops checking as soon as it finds a |
| 943 | /// faster sequence. |
| 944 | /// \param Root - Instruction that could be combined with one of its operands |
| 945 | /// \param Patterns - Vector of possible combination patterns |
| 946 | virtual bool getMachineCombinerPatterns( |
| 947 | MachineInstr &Root, |
| 948 | SmallVectorImpl<MachineCombinerPattern> &Patterns) const; |
| 949 | |
| 950 | /// Return true when a code sequence can improve throughput. It |
| 951 | /// should be called only for instructions in loops. |
| 952 | /// \param Pattern - combiner pattern |
| 953 | virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const; |
| 954 | |
| 955 | /// Return true if the input \P Inst is part of a chain of dependent ops |
| 956 | /// that are suitable for reassociation, otherwise return false. |
| 957 | /// If the instruction's operands must be commuted to have a previous |
| 958 | /// instruction of the same type define the first source operand, \P Commuted |
| 959 | /// will be set to true. |
| 960 | bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const; |
| 961 | |
| 962 | /// Return true when \P Inst is both associative and commutative. |
| 963 | virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const { |
| 964 | return false; |
| 965 | } |
| 966 | |
| 967 | /// Return true when \P Inst has reassociable operands in the same \P MBB. |
| 968 | virtual bool hasReassociableOperands(const MachineInstr &Inst, |
| 969 | const MachineBasicBlock *MBB) const; |
| 970 | |
| 971 | /// Return true when \P Inst has reassociable sibling. |
| 972 | bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const; |
| 973 | |
| 974 | /// When getMachineCombinerPatterns() finds patterns, this function generates |
| 975 | /// the instructions that could replace the original code sequence. The client |
| 976 | /// has to decide whether the actual replacement is beneficial or not. |
| 977 | /// \param Root - Instruction that could be combined with one of its operands |
| 978 | /// \param Pattern - Combination pattern for Root |
| 979 | /// \param InsInstrs - Vector of new instructions that implement P |
| 980 | /// \param DelInstrs - Old instructions, including Root, that could be |
| 981 | /// replaced by InsInstr |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 982 | /// \param InstIdxForVirtReg - map of virtual register to instruction in |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 983 | /// InsInstr that defines it |
| 984 | virtual void genAlternativeCodeSequence( |
| 985 | MachineInstr &Root, MachineCombinerPattern Pattern, |
| 986 | SmallVectorImpl<MachineInstr *> &InsInstrs, |
| 987 | SmallVectorImpl<MachineInstr *> &DelInstrs, |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 988 | DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 989 | |
| 990 | /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to |
| 991 | /// reduce critical path length. |
| 992 | void reassociateOps(MachineInstr &Root, MachineInstr &Prev, |
| 993 | MachineCombinerPattern Pattern, |
| 994 | SmallVectorImpl<MachineInstr *> &InsInstrs, |
| 995 | SmallVectorImpl<MachineInstr *> &DelInstrs, |
| 996 | DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const; |
| 997 | |
| 998 | /// This is an architecture-specific helper function of reassociateOps. |
| 999 | /// Set special operand attributes for new instructions after reassociation. |
| 1000 | virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, |
| 1001 | MachineInstr &NewMI1, |
| 1002 | MachineInstr &NewMI2) const {} |
| 1003 | |
| 1004 | /// Return true when a target supports MachineCombiner. |
| 1005 | virtual bool useMachineCombiner() const { return false; } |
| 1006 | |
| 1007 | /// Return true if the given SDNode can be copied during scheduling |
| 1008 | /// even if it has glue. |
| 1009 | virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; } |
| 1010 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1011 | protected: |
| 1012 | /// Target-dependent implementation for foldMemoryOperand. |
| 1013 | /// Target-independent code in foldMemoryOperand will |
| 1014 | /// take care of adding a MachineMemOperand to the newly created instruction. |
| 1015 | /// The instruction and any auxiliary instructions necessary will be inserted |
| 1016 | /// at InsertPt. |
| 1017 | virtual MachineInstr * |
| 1018 | foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, |
| 1019 | ArrayRef<unsigned> Ops, |
| 1020 | MachineBasicBlock::iterator InsertPt, int FrameIndex, |
| 1021 | LiveIntervals *LIS = nullptr) const { |
| 1022 | return nullptr; |
| 1023 | } |
| 1024 | |
| 1025 | /// Target-dependent implementation for foldMemoryOperand. |
| 1026 | /// Target-independent code in foldMemoryOperand will |
| 1027 | /// take care of adding a MachineMemOperand to the newly created instruction. |
| 1028 | /// The instruction and any auxiliary instructions necessary will be inserted |
| 1029 | /// at InsertPt. |
| 1030 | virtual MachineInstr *foldMemoryOperandImpl( |
| 1031 | MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, |
| 1032 | MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, |
| 1033 | LiveIntervals *LIS = nullptr) const { |
| 1034 | return nullptr; |
| 1035 | } |
| 1036 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1037 | /// Target-dependent implementation of getRegSequenceInputs. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1038 | /// |
| 1039 | /// \returns true if it is possible to build the equivalent |
| 1040 | /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise. |
| 1041 | /// |
| 1042 | /// \pre MI.isRegSequenceLike(). |
| 1043 | /// |
| 1044 | /// \see TargetInstrInfo::getRegSequenceInputs. |
| 1045 | virtual bool getRegSequenceLikeInputs( |
| 1046 | const MachineInstr &MI, unsigned DefIdx, |
| 1047 | SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { |
| 1048 | return false; |
| 1049 | } |
| 1050 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1051 | /// Target-dependent implementation of getExtractSubregInputs. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1052 | /// |
| 1053 | /// \returns true if it is possible to build the equivalent |
| 1054 | /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. |
| 1055 | /// |
| 1056 | /// \pre MI.isExtractSubregLike(). |
| 1057 | /// |
| 1058 | /// \see TargetInstrInfo::getExtractSubregInputs. |
| 1059 | virtual bool getExtractSubregLikeInputs(const MachineInstr &MI, |
| 1060 | unsigned DefIdx, |
| 1061 | RegSubRegPairAndIdx &InputReg) const { |
| 1062 | return false; |
| 1063 | } |
| 1064 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1065 | /// Target-dependent implementation of getInsertSubregInputs. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1066 | /// |
| 1067 | /// \returns true if it is possible to build the equivalent |
| 1068 | /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. |
| 1069 | /// |
| 1070 | /// \pre MI.isInsertSubregLike(). |
| 1071 | /// |
| 1072 | /// \see TargetInstrInfo::getInsertSubregInputs. |
| 1073 | virtual bool |
| 1074 | getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, |
| 1075 | RegSubRegPair &BaseReg, |
| 1076 | RegSubRegPairAndIdx &InsertedReg) const { |
| 1077 | return false; |
| 1078 | } |
| 1079 | |
| 1080 | public: |
| 1081 | /// getAddressSpaceForPseudoSourceKind - Given the kind of memory |
| 1082 | /// (e.g. stack) the target returns the corresponding address space. |
| 1083 | virtual unsigned |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame^] | 1084 | getAddressSpaceForPseudoSourceKind(unsigned Kind) const { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1085 | return 0; |
| 1086 | } |
| 1087 | |
| 1088 | /// unfoldMemoryOperand - Separate a single instruction which folded a load or |
| 1089 | /// a store or a load and a store into two or more instruction. If this is |
| 1090 | /// possible, returns true as well as the new instructions by reference. |
| 1091 | virtual bool |
| 1092 | unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg, |
| 1093 | bool UnfoldLoad, bool UnfoldStore, |
| 1094 | SmallVectorImpl<MachineInstr *> &NewMIs) const { |
| 1095 | return false; |
| 1096 | } |
| 1097 | |
| 1098 | virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, |
| 1099 | SmallVectorImpl<SDNode *> &NewNodes) const { |
| 1100 | return false; |
| 1101 | } |
| 1102 | |
| 1103 | /// Returns the opcode of the would be new |
| 1104 | /// instruction after load / store are unfolded from an instruction of the |
| 1105 | /// specified opcode. It returns zero if the specified unfolding is not |
| 1106 | /// possible. If LoadRegIndex is non-null, it is filled in with the operand |
| 1107 | /// index of the operand which will hold the register holding the loaded |
| 1108 | /// value. |
| 1109 | virtual unsigned |
| 1110 | getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, |
| 1111 | unsigned *LoadRegIndex = nullptr) const { |
| 1112 | return 0; |
| 1113 | } |
| 1114 | |
| 1115 | /// This is used by the pre-regalloc scheduler to determine if two loads are |
| 1116 | /// loading from the same base address. It should only return true if the base |
| 1117 | /// pointers are the same and the only differences between the two addresses |
| 1118 | /// are the offset. It also returns the offsets by reference. |
| 1119 | virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, |
| 1120 | int64_t &Offset1, |
| 1121 | int64_t &Offset2) const { |
| 1122 | return false; |
| 1123 | } |
| 1124 | |
| 1125 | /// This is a used by the pre-regalloc scheduler to determine (in conjunction |
| 1126 | /// with areLoadsFromSameBasePtr) if two loads should be scheduled together. |
| 1127 | /// On some targets if two loads are loading from |
| 1128 | /// addresses in the same cache line, it's better if they are scheduled |
| 1129 | /// together. This function takes two integers that represent the load offsets |
| 1130 | /// from the common base address. It returns true if it decides it's desirable |
| 1131 | /// to schedule the two loads together. "NumLoads" is the number of loads that |
| 1132 | /// have already been scheduled after Load1. |
| 1133 | virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, |
| 1134 | int64_t Offset1, int64_t Offset2, |
| 1135 | unsigned NumLoads) const { |
| 1136 | return false; |
| 1137 | } |
| 1138 | |
| 1139 | /// Get the base register and byte offset of an instruction that reads/writes |
| 1140 | /// memory. |
| 1141 | virtual bool getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg, |
| 1142 | int64_t &Offset, |
| 1143 | const TargetRegisterInfo *TRI) const { |
| 1144 | return false; |
| 1145 | } |
| 1146 | |
| 1147 | /// Return true if the instruction contains a base register and offset. If |
| 1148 | /// true, the function also sets the operand position in the instruction |
| 1149 | /// for the base register and offset. |
| 1150 | virtual bool getBaseAndOffsetPosition(const MachineInstr &MI, |
| 1151 | unsigned &BasePos, |
| 1152 | unsigned &OffsetPos) const { |
| 1153 | return false; |
| 1154 | } |
| 1155 | |
| 1156 | /// If the instruction is an increment of a constant value, return the amount. |
| 1157 | virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const { |
| 1158 | return false; |
| 1159 | } |
| 1160 | |
| 1161 | /// Returns true if the two given memory operations should be scheduled |
| 1162 | /// adjacent. Note that you have to add: |
| 1163 | /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); |
| 1164 | /// or |
| 1165 | /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); |
| 1166 | /// to TargetPassConfig::createMachineScheduler() to have an effect. |
| 1167 | virtual bool shouldClusterMemOps(MachineInstr &FirstLdSt, unsigned BaseReg1, |
| 1168 | MachineInstr &SecondLdSt, unsigned BaseReg2, |
| 1169 | unsigned NumLoads) const { |
| 1170 | llvm_unreachable("target did not implement shouldClusterMemOps()"); |
| 1171 | } |
| 1172 | |
| 1173 | /// Reverses the branch condition of the specified condition list, |
| 1174 | /// returning false on success and true if it cannot be reversed. |
| 1175 | virtual bool |
| 1176 | reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { |
| 1177 | return true; |
| 1178 | } |
| 1179 | |
| 1180 | /// Insert a noop into the instruction stream at the specified point. |
| 1181 | virtual void insertNoop(MachineBasicBlock &MBB, |
| 1182 | MachineBasicBlock::iterator MI) const; |
| 1183 | |
| 1184 | /// Return the noop instruction to use for a noop. |
| 1185 | virtual void getNoop(MCInst &NopInst) const; |
| 1186 | |
| 1187 | /// Return true for post-incremented instructions. |
| 1188 | virtual bool isPostIncrement(const MachineInstr &MI) const { return false; } |
| 1189 | |
| 1190 | /// Returns true if the instruction is already predicated. |
| 1191 | virtual bool isPredicated(const MachineInstr &MI) const { return false; } |
| 1192 | |
| 1193 | /// Returns true if the instruction is a |
| 1194 | /// terminator instruction that has not been predicated. |
| 1195 | virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const; |
| 1196 | |
| 1197 | /// Returns true if MI is an unconditional tail call. |
| 1198 | virtual bool isUnconditionalTailCall(const MachineInstr &MI) const { |
| 1199 | return false; |
| 1200 | } |
| 1201 | |
| 1202 | /// Returns true if the tail call can be made conditional on BranchCond. |
| 1203 | virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond, |
| 1204 | const MachineInstr &TailCall) const { |
| 1205 | return false; |
| 1206 | } |
| 1207 | |
| 1208 | /// Replace the conditional branch in MBB with a conditional tail call. |
| 1209 | virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB, |
| 1210 | SmallVectorImpl<MachineOperand> &Cond, |
| 1211 | const MachineInstr &TailCall) const { |
| 1212 | llvm_unreachable("Target didn't implement replaceBranchWithTailCall!"); |
| 1213 | } |
| 1214 | |
| 1215 | /// Convert the instruction into a predicated instruction. |
| 1216 | /// It returns true if the operation was successful. |
| 1217 | virtual bool PredicateInstruction(MachineInstr &MI, |
| 1218 | ArrayRef<MachineOperand> Pred) const; |
| 1219 | |
| 1220 | /// Returns true if the first specified predicate |
| 1221 | /// subsumes the second, e.g. GE subsumes GT. |
| 1222 | virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, |
| 1223 | ArrayRef<MachineOperand> Pred2) const { |
| 1224 | return false; |
| 1225 | } |
| 1226 | |
| 1227 | /// If the specified instruction defines any predicate |
| 1228 | /// or condition code register(s) used for predication, returns true as well |
| 1229 | /// as the definition predicate(s) by reference. |
| 1230 | virtual bool DefinesPredicate(MachineInstr &MI, |
| 1231 | std::vector<MachineOperand> &Pred) const { |
| 1232 | return false; |
| 1233 | } |
| 1234 | |
| 1235 | /// Return true if the specified instruction can be predicated. |
| 1236 | /// By default, this returns true for every instruction with a |
| 1237 | /// PredicateOperand. |
| 1238 | virtual bool isPredicable(const MachineInstr &MI) const { |
| 1239 | return MI.getDesc().isPredicable(); |
| 1240 | } |
| 1241 | |
| 1242 | /// Return true if it's safe to move a machine |
| 1243 | /// instruction that defines the specified register class. |
| 1244 | virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { |
| 1245 | return true; |
| 1246 | } |
| 1247 | |
| 1248 | /// Test if the given instruction should be considered a scheduling boundary. |
| 1249 | /// This primarily includes labels and terminators. |
| 1250 | virtual bool isSchedulingBoundary(const MachineInstr &MI, |
| 1251 | const MachineBasicBlock *MBB, |
| 1252 | const MachineFunction &MF) const; |
| 1253 | |
| 1254 | /// Measure the specified inline asm to determine an approximation of its |
| 1255 | /// length. |
| 1256 | virtual unsigned getInlineAsmLength(const char *Str, |
| 1257 | const MCAsmInfo &MAI) const; |
| 1258 | |
| 1259 | /// Allocate and return a hazard recognizer to use for this target when |
| 1260 | /// scheduling the machine instructions before register allocation. |
| 1261 | virtual ScheduleHazardRecognizer * |
| 1262 | CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, |
| 1263 | const ScheduleDAG *DAG) const; |
| 1264 | |
| 1265 | /// Allocate and return a hazard recognizer to use for this target when |
| 1266 | /// scheduling the machine instructions before register allocation. |
| 1267 | virtual ScheduleHazardRecognizer * |
| 1268 | CreateTargetMIHazardRecognizer(const InstrItineraryData *, |
| 1269 | const ScheduleDAG *DAG) const; |
| 1270 | |
| 1271 | /// Allocate and return a hazard recognizer to use for this target when |
| 1272 | /// scheduling the machine instructions after register allocation. |
| 1273 | virtual ScheduleHazardRecognizer * |
| 1274 | CreateTargetPostRAHazardRecognizer(const InstrItineraryData *, |
| 1275 | const ScheduleDAG *DAG) const; |
| 1276 | |
| 1277 | /// Allocate and return a hazard recognizer to use for by non-scheduling |
| 1278 | /// passes. |
| 1279 | virtual ScheduleHazardRecognizer * |
| 1280 | CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { |
| 1281 | return nullptr; |
| 1282 | } |
| 1283 | |
| 1284 | /// Provide a global flag for disabling the PreRA hazard recognizer that |
| 1285 | /// targets may choose to honor. |
| 1286 | bool usePreRAHazardRecognizer() const; |
| 1287 | |
| 1288 | /// For a comparison instruction, return the source registers |
| 1289 | /// in SrcReg and SrcReg2 if having two register operands, and the value it |
| 1290 | /// compares against in CmpValue. Return true if the comparison instruction |
| 1291 | /// can be analyzed. |
| 1292 | virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, |
| 1293 | unsigned &SrcReg2, int &Mask, int &Value) const { |
| 1294 | return false; |
| 1295 | } |
| 1296 | |
| 1297 | /// See if the comparison instruction can be converted |
| 1298 | /// into something more efficient. E.g., on ARM most instructions can set the |
| 1299 | /// flags register, obviating the need for a separate CMP. |
| 1300 | virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, |
| 1301 | unsigned SrcReg2, int Mask, int Value, |
| 1302 | const MachineRegisterInfo *MRI) const { |
| 1303 | return false; |
| 1304 | } |
| 1305 | virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; } |
| 1306 | |
| 1307 | /// Try to remove the load by folding it to a register operand at the use. |
| 1308 | /// We fold the load instructions if and only if the |
| 1309 | /// def and use are in the same BB. We only look at one load and see |
| 1310 | /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register |
| 1311 | /// defined by the load we are trying to fold. DefMI returns the machine |
| 1312 | /// instruction that defines FoldAsLoadDefReg, and the function returns |
| 1313 | /// the machine instruction generated due to folding. |
| 1314 | virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI, |
| 1315 | const MachineRegisterInfo *MRI, |
| 1316 | unsigned &FoldAsLoadDefReg, |
| 1317 | MachineInstr *&DefMI) const { |
| 1318 | return nullptr; |
| 1319 | } |
| 1320 | |
| 1321 | /// 'Reg' is known to be defined by a move immediate instruction, |
| 1322 | /// try to fold the immediate into the use instruction. |
| 1323 | /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true, |
| 1324 | /// then the caller may assume that DefMI has been erased from its parent |
| 1325 | /// block. The caller may assume that it will not be erased by this |
| 1326 | /// function otherwise. |
| 1327 | virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, |
| 1328 | unsigned Reg, MachineRegisterInfo *MRI) const { |
| 1329 | return false; |
| 1330 | } |
| 1331 | |
| 1332 | /// Return the number of u-operations the given machine |
| 1333 | /// instruction will be decoded to on the target cpu. The itinerary's |
| 1334 | /// IssueWidth is the number of microops that can be dispatched each |
| 1335 | /// cycle. An instruction with zero microops takes no dispatch resources. |
| 1336 | virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, |
| 1337 | const MachineInstr &MI) const; |
| 1338 | |
| 1339 | /// Return true for pseudo instructions that don't consume any |
| 1340 | /// machine resources in their current form. These are common cases that the |
| 1341 | /// scheduler should consider free, rather than conservatively handling them |
| 1342 | /// as instructions with no itinerary. |
| 1343 | bool isZeroCost(unsigned Opcode) const { |
| 1344 | return Opcode <= TargetOpcode::COPY; |
| 1345 | } |
| 1346 | |
| 1347 | virtual int getOperandLatency(const InstrItineraryData *ItinData, |
| 1348 | SDNode *DefNode, unsigned DefIdx, |
| 1349 | SDNode *UseNode, unsigned UseIdx) const; |
| 1350 | |
| 1351 | /// Compute and return the use operand latency of a given pair of def and use. |
| 1352 | /// In most cases, the static scheduling itinerary was enough to determine the |
| 1353 | /// operand latency. But it may not be possible for instructions with variable |
| 1354 | /// number of defs / uses. |
| 1355 | /// |
| 1356 | /// This is a raw interface to the itinerary that may be directly overridden |
| 1357 | /// by a target. Use computeOperandLatency to get the best estimate of |
| 1358 | /// latency. |
| 1359 | virtual int getOperandLatency(const InstrItineraryData *ItinData, |
| 1360 | const MachineInstr &DefMI, unsigned DefIdx, |
| 1361 | const MachineInstr &UseMI, |
| 1362 | unsigned UseIdx) const; |
| 1363 | |
| 1364 | /// Compute the instruction latency of a given instruction. |
| 1365 | /// If the instruction has higher cost when predicated, it's returned via |
| 1366 | /// PredCost. |
| 1367 | virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, |
| 1368 | const MachineInstr &MI, |
| 1369 | unsigned *PredCost = nullptr) const; |
| 1370 | |
| 1371 | virtual unsigned getPredicationCost(const MachineInstr &MI) const; |
| 1372 | |
| 1373 | virtual int getInstrLatency(const InstrItineraryData *ItinData, |
| 1374 | SDNode *Node) const; |
| 1375 | |
| 1376 | /// Return the default expected latency for a def based on its opcode. |
| 1377 | unsigned defaultDefLatency(const MCSchedModel &SchedModel, |
| 1378 | const MachineInstr &DefMI) const; |
| 1379 | |
| 1380 | int computeDefOperandLatency(const InstrItineraryData *ItinData, |
| 1381 | const MachineInstr &DefMI) const; |
| 1382 | |
| 1383 | /// Return true if this opcode has high latency to its result. |
| 1384 | virtual bool isHighLatencyDef(int opc) const { return false; } |
| 1385 | |
| 1386 | /// Compute operand latency between a def of 'Reg' |
| 1387 | /// and a use in the current loop. Return true if the target considered |
| 1388 | /// it 'high'. This is used by optimization passes such as machine LICM to |
| 1389 | /// determine whether it makes sense to hoist an instruction out even in a |
| 1390 | /// high register pressure situation. |
| 1391 | virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel, |
| 1392 | const MachineRegisterInfo *MRI, |
| 1393 | const MachineInstr &DefMI, unsigned DefIdx, |
| 1394 | const MachineInstr &UseMI, |
| 1395 | unsigned UseIdx) const { |
| 1396 | return false; |
| 1397 | } |
| 1398 | |
| 1399 | /// Compute operand latency of a def of 'Reg'. Return true |
| 1400 | /// if the target considered it 'low'. |
| 1401 | virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel, |
| 1402 | const MachineInstr &DefMI, |
| 1403 | unsigned DefIdx) const; |
| 1404 | |
| 1405 | /// Perform target-specific instruction verification. |
| 1406 | virtual bool verifyInstruction(const MachineInstr &MI, |
| 1407 | StringRef &ErrInfo) const { |
| 1408 | return true; |
| 1409 | } |
| 1410 | |
| 1411 | /// Return the current execution domain and bit mask of |
| 1412 | /// possible domains for instruction. |
| 1413 | /// |
| 1414 | /// Some micro-architectures have multiple execution domains, and multiple |
| 1415 | /// opcodes that perform the same operation in different domains. For |
| 1416 | /// example, the x86 architecture provides the por, orps, and orpd |
| 1417 | /// instructions that all do the same thing. There is a latency penalty if a |
| 1418 | /// register is written in one domain and read in another. |
| 1419 | /// |
| 1420 | /// This function returns a pair (domain, mask) containing the execution |
| 1421 | /// domain of MI, and a bit mask of possible domains. The setExecutionDomain |
| 1422 | /// function can be used to change the opcode to one of the domains in the |
| 1423 | /// bit mask. Instructions whose execution domain can't be changed should |
| 1424 | /// return a 0 mask. |
| 1425 | /// |
| 1426 | /// The execution domain numbers don't have any special meaning except domain |
| 1427 | /// 0 is used for instructions that are not associated with any interesting |
| 1428 | /// execution domain. |
| 1429 | /// |
| 1430 | virtual std::pair<uint16_t, uint16_t> |
| 1431 | getExecutionDomain(const MachineInstr &MI) const { |
| 1432 | return std::make_pair(0, 0); |
| 1433 | } |
| 1434 | |
| 1435 | /// Change the opcode of MI to execute in Domain. |
| 1436 | /// |
| 1437 | /// The bit (1 << Domain) must be set in the mask returned from |
| 1438 | /// getExecutionDomain(MI). |
| 1439 | virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {} |
| 1440 | |
| 1441 | /// Returns the preferred minimum clearance |
| 1442 | /// before an instruction with an unwanted partial register update. |
| 1443 | /// |
| 1444 | /// Some instructions only write part of a register, and implicitly need to |
| 1445 | /// read the other parts of the register. This may cause unwanted stalls |
| 1446 | /// preventing otherwise unrelated instructions from executing in parallel in |
| 1447 | /// an out-of-order CPU. |
| 1448 | /// |
| 1449 | /// For example, the x86 instruction cvtsi2ss writes its result to bits |
| 1450 | /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so |
| 1451 | /// the instruction needs to wait for the old value of the register to become |
| 1452 | /// available: |
| 1453 | /// |
| 1454 | /// addps %xmm1, %xmm0 |
| 1455 | /// movaps %xmm0, (%rax) |
| 1456 | /// cvtsi2ss %rbx, %xmm0 |
| 1457 | /// |
| 1458 | /// In the code above, the cvtsi2ss instruction needs to wait for the addps |
| 1459 | /// instruction before it can issue, even though the high bits of %xmm0 |
| 1460 | /// probably aren't needed. |
| 1461 | /// |
| 1462 | /// This hook returns the preferred clearance before MI, measured in |
| 1463 | /// instructions. Other defs of MI's operand OpNum are avoided in the last N |
| 1464 | /// instructions before MI. It should only return a positive value for |
| 1465 | /// unwanted dependencies. If the old bits of the defined register have |
| 1466 | /// useful values, or if MI is determined to otherwise read the dependency, |
| 1467 | /// the hook should return 0. |
| 1468 | /// |
| 1469 | /// The unwanted dependency may be handled by: |
| 1470 | /// |
| 1471 | /// 1. Allocating the same register for an MI def and use. That makes the |
| 1472 | /// unwanted dependency identical to a required dependency. |
| 1473 | /// |
| 1474 | /// 2. Allocating a register for the def that has no defs in the previous N |
| 1475 | /// instructions. |
| 1476 | /// |
| 1477 | /// 3. Calling breakPartialRegDependency() with the same arguments. This |
| 1478 | /// allows the target to insert a dependency breaking instruction. |
| 1479 | /// |
| 1480 | virtual unsigned |
| 1481 | getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, |
| 1482 | const TargetRegisterInfo *TRI) const { |
| 1483 | // The default implementation returns 0 for no partial register dependency. |
| 1484 | return 0; |
| 1485 | } |
| 1486 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1487 | /// Return the minimum clearance before an instruction that reads an |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1488 | /// unused register. |
| 1489 | /// |
| 1490 | /// For example, AVX instructions may copy part of a register operand into |
| 1491 | /// the unused high bits of the destination register. |
| 1492 | /// |
| 1493 | /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 |
| 1494 | /// |
| 1495 | /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a |
| 1496 | /// false dependence on any previous write to %xmm0. |
| 1497 | /// |
| 1498 | /// This hook works similarly to getPartialRegUpdateClearance, except that it |
| 1499 | /// does not take an operand index. Instead sets \p OpNum to the index of the |
| 1500 | /// unused register. |
| 1501 | virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum, |
| 1502 | const TargetRegisterInfo *TRI) const { |
| 1503 | // The default implementation returns 0 for no undef register dependency. |
| 1504 | return 0; |
| 1505 | } |
| 1506 | |
| 1507 | /// Insert a dependency-breaking instruction |
| 1508 | /// before MI to eliminate an unwanted dependency on OpNum. |
| 1509 | /// |
| 1510 | /// If it wasn't possible to avoid a def in the last N instructions before MI |
| 1511 | /// (see getPartialRegUpdateClearance), this hook will be called to break the |
| 1512 | /// unwanted dependency. |
| 1513 | /// |
| 1514 | /// On x86, an xorps instruction can be used as a dependency breaker: |
| 1515 | /// |
| 1516 | /// addps %xmm1, %xmm0 |
| 1517 | /// movaps %xmm0, (%rax) |
| 1518 | /// xorps %xmm0, %xmm0 |
| 1519 | /// cvtsi2ss %rbx, %xmm0 |
| 1520 | /// |
| 1521 | /// An <imp-kill> operand should be added to MI if an instruction was |
| 1522 | /// inserted. This ties the instructions together in the post-ra scheduler. |
| 1523 | /// |
| 1524 | virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, |
| 1525 | const TargetRegisterInfo *TRI) const {} |
| 1526 | |
| 1527 | /// Create machine specific model for scheduling. |
| 1528 | virtual DFAPacketizer * |
| 1529 | CreateTargetScheduleState(const TargetSubtargetInfo &) const { |
| 1530 | return nullptr; |
| 1531 | } |
| 1532 | |
| 1533 | /// Sometimes, it is possible for the target |
| 1534 | /// to tell, even without aliasing information, that two MIs access different |
| 1535 | /// memory addresses. This function returns true if two MIs access different |
| 1536 | /// memory addresses and false otherwise. |
| 1537 | /// |
| 1538 | /// Assumes any physical registers used to compute addresses have the same |
| 1539 | /// value for both instructions. (This is the most useful assumption for |
| 1540 | /// post-RA scheduling.) |
| 1541 | /// |
| 1542 | /// See also MachineInstr::mayAlias, which is implemented on top of this |
| 1543 | /// function. |
| 1544 | virtual bool |
| 1545 | areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb, |
| 1546 | AliasAnalysis *AA = nullptr) const { |
| 1547 | assert((MIa.mayLoad() || MIa.mayStore()) && |
| 1548 | "MIa must load from or modify a memory location"); |
| 1549 | assert((MIb.mayLoad() || MIb.mayStore()) && |
| 1550 | "MIb must load from or modify a memory location"); |
| 1551 | return false; |
| 1552 | } |
| 1553 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1554 | /// Return the value to use for the MachineCSE's LookAheadLimit, |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1555 | /// which is a heuristic used for CSE'ing phys reg defs. |
| 1556 | virtual unsigned getMachineCSELookAheadLimit() const { |
| 1557 | // The default lookahead is small to prevent unprofitable quadratic |
| 1558 | // behavior. |
| 1559 | return 5; |
| 1560 | } |
| 1561 | |
| 1562 | /// Return an array that contains the ids of the target indices (used for the |
| 1563 | /// TargetIndex machine operand) and their names. |
| 1564 | /// |
| 1565 | /// MIR Serialization is able to serialize only the target indices that are |
| 1566 | /// defined by this method. |
| 1567 | virtual ArrayRef<std::pair<int, const char *>> |
| 1568 | getSerializableTargetIndices() const { |
| 1569 | return None; |
| 1570 | } |
| 1571 | |
| 1572 | /// Decompose the machine operand's target flags into two values - the direct |
| 1573 | /// target flag value and any of bit flags that are applied. |
| 1574 | virtual std::pair<unsigned, unsigned> |
| 1575 | decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const { |
| 1576 | return std::make_pair(0u, 0u); |
| 1577 | } |
| 1578 | |
| 1579 | /// Return an array that contains the direct target flag values and their |
| 1580 | /// names. |
| 1581 | /// |
| 1582 | /// MIR Serialization is able to serialize only the target flags that are |
| 1583 | /// defined by this method. |
| 1584 | virtual ArrayRef<std::pair<unsigned, const char *>> |
| 1585 | getSerializableDirectMachineOperandTargetFlags() const { |
| 1586 | return None; |
| 1587 | } |
| 1588 | |
| 1589 | /// Return an array that contains the bitmask target flag values and their |
| 1590 | /// names. |
| 1591 | /// |
| 1592 | /// MIR Serialization is able to serialize only the target flags that are |
| 1593 | /// defined by this method. |
| 1594 | virtual ArrayRef<std::pair<unsigned, const char *>> |
| 1595 | getSerializableBitmaskMachineOperandTargetFlags() const { |
| 1596 | return None; |
| 1597 | } |
| 1598 | |
| 1599 | /// Return an array that contains the MMO target flag values and their |
| 1600 | /// names. |
| 1601 | /// |
| 1602 | /// MIR Serialization is able to serialize only the MMO target flags that are |
| 1603 | /// defined by this method. |
| 1604 | virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>> |
| 1605 | getSerializableMachineMemOperandTargetFlags() const { |
| 1606 | return None; |
| 1607 | } |
| 1608 | |
| 1609 | /// Determines whether \p Inst is a tail call instruction. Override this |
| 1610 | /// method on targets that do not properly set MCID::Return and MCID::Call on |
| 1611 | /// tail call instructions." |
| 1612 | virtual bool isTailCall(const MachineInstr &Inst) const { |
| 1613 | return Inst.isReturn() && Inst.isCall(); |
| 1614 | } |
| 1615 | |
| 1616 | /// True if the instruction is bound to the top of its basic block and no |
| 1617 | /// other instructions shall be inserted before it. This can be implemented |
| 1618 | /// to prevent register allocator to insert spills before such instructions. |
| 1619 | virtual bool isBasicBlockPrologue(const MachineInstr &MI) const { |
| 1620 | return false; |
| 1621 | } |
| 1622 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1623 | /// Returns a \p outliner::OutlinedFunction struct containing target-specific |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1624 | /// information for a set of outlining candidates. |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1625 | virtual outliner::OutlinedFunction getOutliningCandidateInfo( |
| 1626 | std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1627 | llvm_unreachable( |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1628 | "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1629 | } |
| 1630 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1631 | /// Returns how or if \p MI should be outlined. |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1632 | virtual outliner::InstrType |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1633 | getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const { |
| 1634 | llvm_unreachable( |
| 1635 | "Target didn't implement TargetInstrInfo::getOutliningType!"); |
| 1636 | } |
| 1637 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1638 | /// Returns target-defined flags defining properties of the MBB for |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1639 | /// the outliner. |
| 1640 | virtual unsigned getMachineOutlinerMBBFlags(MachineBasicBlock &MBB) const { |
| 1641 | return 0x0; |
| 1642 | } |
| 1643 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1644 | /// Insert a custom frame for outlined functions. |
| 1645 | virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, |
| 1646 | const outliner::OutlinedFunction &OF) const { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1647 | llvm_unreachable( |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1648 | "Target didn't implement TargetInstrInfo::buildOutlinedFrame!"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1649 | } |
| 1650 | |
| 1651 | /// Insert a call to an outlined function into the program. |
| 1652 | /// Returns an iterator to the spot where we inserted the call. This must be |
| 1653 | /// implemented by the target. |
| 1654 | virtual MachineBasicBlock::iterator |
| 1655 | insertOutlinedCall(Module &M, MachineBasicBlock &MBB, |
| 1656 | MachineBasicBlock::iterator &It, MachineFunction &MF, |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1657 | const outliner::Candidate &C) const { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1658 | llvm_unreachable( |
| 1659 | "Target didn't implement TargetInstrInfo::insertOutlinedCall!"); |
| 1660 | } |
| 1661 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1662 | /// Return true if the function can safely be outlined from. |
| 1663 | /// A function \p MF is considered safe for outlining if an outlined function |
| 1664 | /// produced from instructions in F will produce a program which produces the |
| 1665 | /// same output for any set of given inputs. |
| 1666 | virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF, |
| 1667 | bool OutlineFromLinkOnceODRs) const { |
| 1668 | llvm_unreachable("Target didn't implement " |
| 1669 | "TargetInstrInfo::isFunctionSafeToOutlineFrom!"); |
| 1670 | } |
| 1671 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1672 | /// Return true if the function should be outlined from by default. |
| 1673 | virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const { |
| 1674 | return false; |
| 1675 | } |
| 1676 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1677 | private: |
| 1678 | unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode; |
| 1679 | unsigned CatchRetOpcode; |
| 1680 | unsigned ReturnOpcode; |
| 1681 | }; |
| 1682 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1683 | /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1684 | template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> { |
| 1685 | using RegInfo = DenseMapInfo<unsigned>; |
| 1686 | |
| 1687 | static inline TargetInstrInfo::RegSubRegPair getEmptyKey() { |
| 1688 | return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(), |
| 1689 | RegInfo::getEmptyKey()); |
| 1690 | } |
| 1691 | |
| 1692 | static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() { |
| 1693 | return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(), |
| 1694 | RegInfo::getTombstoneKey()); |
| 1695 | } |
| 1696 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1697 | /// Reuse getHashValue implementation from |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1698 | /// std::pair<unsigned, unsigned>. |
| 1699 | static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) { |
| 1700 | std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg); |
| 1701 | return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal); |
| 1702 | } |
| 1703 | |
| 1704 | static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS, |
| 1705 | const TargetInstrInfo::RegSubRegPair &RHS) { |
| 1706 | return RegInfo::isEqual(LHS.Reg, RHS.Reg) && |
| 1707 | RegInfo::isEqual(LHS.SubReg, RHS.SubReg); |
| 1708 | } |
| 1709 | }; |
| 1710 | |
| 1711 | } // end namespace llvm |
| 1712 | |
| 1713 | #endif // LLVM_TARGET_TARGETINSTRINFO_H |