blob: e39fe66c0a479536a514cdbddc07fa24aebcd3e2 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file provides helpers for the implementation of
11/// a TargetTransformInfo-conforming class.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
16#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
17
18#include "llvm/Analysis/ScalarEvolutionExpressions.h"
19#include "llvm/Analysis/TargetTransformInfo.h"
20#include "llvm/Analysis/VectorUtils.h"
21#include "llvm/IR/CallSite.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/GetElementPtrTypeIterator.h"
25#include "llvm/IR/Operator.h"
26#include "llvm/IR/Type.h"
27
28namespace llvm {
29
Andrew Scullcdfcccc2018-10-05 20:58:37 +010030/// Base class for use as a mix-in that aids implementing
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010031/// a TargetTransformInfo-compatible class.
32class TargetTransformInfoImplBase {
33protected:
34 typedef TargetTransformInfo TTI;
35
36 const DataLayout &DL;
37
38 explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}
39
40public:
41 // Provide value semantics. MSVC requires that we spell all of these out.
42 TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
43 : DL(Arg.DL) {}
44 TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {}
45
46 const DataLayout &getDataLayout() const { return DL; }
47
48 unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
49 switch (Opcode) {
50 default:
51 // By default, just classify everything as 'basic'.
52 return TTI::TCC_Basic;
53
54 case Instruction::GetElementPtr:
55 llvm_unreachable("Use getGEPCost for GEP operations!");
56
57 case Instruction::BitCast:
58 assert(OpTy && "Cast instructions must provide the operand type");
59 if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
60 // Identity and pointer-to-pointer casts are free.
61 return TTI::TCC_Free;
62
63 // Otherwise, the default basic cost is used.
64 return TTI::TCC_Basic;
65
66 case Instruction::FDiv:
67 case Instruction::FRem:
68 case Instruction::SDiv:
69 case Instruction::SRem:
70 case Instruction::UDiv:
71 case Instruction::URem:
72 return TTI::TCC_Expensive;
73
74 case Instruction::IntToPtr: {
75 // An inttoptr cast is free so long as the input is a legal integer type
76 // which doesn't contain values outside the range of a pointer.
77 unsigned OpSize = OpTy->getScalarSizeInBits();
78 if (DL.isLegalInteger(OpSize) &&
79 OpSize <= DL.getPointerTypeSizeInBits(Ty))
80 return TTI::TCC_Free;
81
82 // Otherwise it's not a no-op.
83 return TTI::TCC_Basic;
84 }
85 case Instruction::PtrToInt: {
86 // A ptrtoint cast is free so long as the result is large enough to store
87 // the pointer, and a legal integer type.
88 unsigned DestSize = Ty->getScalarSizeInBits();
89 if (DL.isLegalInteger(DestSize) &&
90 DestSize >= DL.getPointerTypeSizeInBits(OpTy))
91 return TTI::TCC_Free;
92
93 // Otherwise it's not a no-op.
94 return TTI::TCC_Basic;
95 }
96 case Instruction::Trunc:
97 // trunc to a native type is free (assuming the target has compare and
98 // shift-right of the same width).
99 if (DL.isLegalInteger(DL.getTypeSizeInBits(Ty)))
100 return TTI::TCC_Free;
101
102 return TTI::TCC_Basic;
103 }
104 }
105
106 int getGEPCost(Type *PointeeType, const Value *Ptr,
107 ArrayRef<const Value *> Operands) {
108 // In the basic model, we just assume that all-constant GEPs will be folded
109 // into their uses via addressing modes.
110 for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
111 if (!isa<Constant>(Operands[Idx]))
112 return TTI::TCC_Basic;
113
114 return TTI::TCC_Free;
115 }
116
117 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
118 unsigned &JTSize) {
119 JTSize = 0;
120 return SI.getNumCases();
121 }
122
123 int getExtCost(const Instruction *I, const Value *Src) {
124 return TTI::TCC_Basic;
125 }
126
127 unsigned getCallCost(FunctionType *FTy, int NumArgs) {
128 assert(FTy && "FunctionType must be provided to this routine.");
129
130 // The target-independent implementation just measures the size of the
131 // function by approximating that each argument will take on average one
132 // instruction to prepare.
133
134 if (NumArgs < 0)
135 // Set the argument number to the number of explicit arguments in the
136 // function.
137 NumArgs = FTy->getNumParams();
138
139 return TTI::TCC_Basic * (NumArgs + 1);
140 }
141
142 unsigned getInliningThresholdMultiplier() { return 1; }
143
144 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
145 ArrayRef<Type *> ParamTys) {
146 switch (IID) {
147 default:
148 // Intrinsics rarely (if ever) have normal argument setup constraints.
149 // Model them as having a basic instruction cost.
150 // FIXME: This is wrong for libc intrinsics.
151 return TTI::TCC_Basic;
152
153 case Intrinsic::annotation:
154 case Intrinsic::assume:
155 case Intrinsic::sideeffect:
156 case Intrinsic::dbg_declare:
157 case Intrinsic::dbg_value:
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100158 case Intrinsic::dbg_label:
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100159 case Intrinsic::invariant_start:
160 case Intrinsic::invariant_end:
Andrew Scull0372a572018-11-16 15:47:06 +0000161 case Intrinsic::launder_invariant_group:
162 case Intrinsic::strip_invariant_group:
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100163 case Intrinsic::lifetime_start:
164 case Intrinsic::lifetime_end:
165 case Intrinsic::objectsize:
166 case Intrinsic::ptr_annotation:
167 case Intrinsic::var_annotation:
168 case Intrinsic::experimental_gc_result:
169 case Intrinsic::experimental_gc_relocate:
170 case Intrinsic::coro_alloc:
171 case Intrinsic::coro_begin:
172 case Intrinsic::coro_free:
173 case Intrinsic::coro_end:
174 case Intrinsic::coro_frame:
175 case Intrinsic::coro_size:
176 case Intrinsic::coro_suspend:
177 case Intrinsic::coro_param:
178 case Intrinsic::coro_subfn_addr:
179 // These intrinsics don't actually represent code after lowering.
180 return TTI::TCC_Free;
181 }
182 }
183
184 bool hasBranchDivergence() { return false; }
185
186 bool isSourceOfDivergence(const Value *V) { return false; }
187
188 bool isAlwaysUniform(const Value *V) { return false; }
189
190 unsigned getFlatAddressSpace () {
191 return -1;
192 }
193
194 bool isLoweredToCall(const Function *F) {
195 assert(F && "A concrete function must be provided to this routine.");
196
197 // FIXME: These should almost certainly not be handled here, and instead
198 // handled with the help of TLI or the target itself. This was largely
199 // ported from existing analysis heuristics here so that such refactorings
200 // can take place in the future.
201
202 if (F->isIntrinsic())
203 return false;
204
205 if (F->hasLocalLinkage() || !F->hasName())
206 return true;
207
208 StringRef Name = F->getName();
209
210 // These will all likely lower to a single selection DAG node.
211 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
212 Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
213 Name == "fmin" || Name == "fminf" || Name == "fminl" ||
214 Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
215 Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
216 Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
217 return false;
218
219 // These are all likely to be optimized into something smaller.
220 if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
221 Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
222 Name == "floorf" || Name == "ceil" || Name == "round" ||
223 Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
224 Name == "llabs")
225 return false;
226
227 return true;
228 }
229
230 void getUnrollingPreferences(Loop *, ScalarEvolution &,
231 TTI::UnrollingPreferences &) {}
232
233 bool isLegalAddImmediate(int64_t Imm) { return false; }
234
235 bool isLegalICmpImmediate(int64_t Imm) { return false; }
236
237 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
238 bool HasBaseReg, int64_t Scale,
239 unsigned AddrSpace, Instruction *I = nullptr) {
240 // Guess that only reg and reg+reg addressing is allowed. This heuristic is
241 // taken from the implementation of LSR.
242 return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
243 }
244
245 bool isLSRCostLess(TTI::LSRCost &C1, TTI::LSRCost &C2) {
246 return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
247 C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
248 std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
249 C2.ScaleCost, C2.ImmCost, C2.SetupCost);
250 }
251
252 bool canMacroFuseCmp() { return false; }
253
254 bool shouldFavorPostInc() const { return false; }
255
256 bool isLegalMaskedStore(Type *DataType) { return false; }
257
258 bool isLegalMaskedLoad(Type *DataType) { return false; }
259
260 bool isLegalMaskedScatter(Type *DataType) { return false; }
261
262 bool isLegalMaskedGather(Type *DataType) { return false; }
263
264 bool hasDivRemOp(Type *DataType, bool IsSigned) { return false; }
265
266 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) { return false; }
267
268 bool prefersVectorizedAddressing() { return true; }
269
270 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
271 bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
272 // Guess that all legal addressing mode are free.
273 if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
274 Scale, AddrSpace))
275 return 0;
276 return -1;
277 }
278
279 bool LSRWithInstrQueries() { return false; }
280
281 bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; }
282
283 bool isProfitableToHoist(Instruction *I) { return true; }
284
285 bool useAA() { return false; }
286
287 bool isTypeLegal(Type *Ty) { return false; }
288
289 unsigned getJumpBufAlignment() { return 0; }
290
291 unsigned getJumpBufSize() { return 0; }
292
293 bool shouldBuildLookupTables() { return true; }
294 bool shouldBuildLookupTablesForConstant(Constant *C) { return true; }
295
296 bool useColdCCForColdCall(Function &F) { return false; }
297
298 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
299 return 0;
300 }
301
302 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
303 unsigned VF) { return 0; }
304
305 bool supportsEfficientVectorElementLoadStore() { return false; }
306
307 bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; }
308
309 const TTI::MemCmpExpansionOptions *enableMemCmpExpansion(
310 bool IsZeroCmp) const {
311 return nullptr;
312 }
313
314 bool enableInterleavedAccessVectorization() { return false; }
315
316 bool isFPVectorizationPotentiallyUnsafe() { return false; }
317
318 bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
319 unsigned BitWidth,
320 unsigned AddressSpace,
321 unsigned Alignment,
322 bool *Fast) { return false; }
323
324 TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) {
325 return TTI::PSK_Software;
326 }
327
328 bool haveFastSqrt(Type *Ty) { return false; }
329
330 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) { return true; }
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100331
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100332 unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; }
333
334 int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
335 Type *Ty) {
336 return 0;
337 }
338
339 unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; }
340
341 unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
342 Type *Ty) {
343 return TTI::TCC_Free;
344 }
345
346 unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
347 Type *Ty) {
348 return TTI::TCC_Free;
349 }
350
351 unsigned getNumberOfRegisters(bool Vector) { return 8; }
352
353 unsigned getRegisterBitWidth(bool Vector) const { return 32; }
354
355 unsigned getMinVectorRegisterBitWidth() { return 128; }
356
357 bool shouldMaximizeVectorBandwidth(bool OptSize) const { return false; }
358
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100359 unsigned getMinimumVF(unsigned ElemWidth) const { return 0; }
360
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100361 bool
362 shouldConsiderAddressTypePromotion(const Instruction &I,
363 bool &AllowPromotionWithoutCommonHeader) {
364 AllowPromotionWithoutCommonHeader = false;
365 return false;
366 }
367
368 unsigned getCacheLineSize() { return 0; }
369
370 llvm::Optional<unsigned> getCacheSize(TargetTransformInfo::CacheLevel Level) {
371 switch (Level) {
372 case TargetTransformInfo::CacheLevel::L1D:
373 LLVM_FALLTHROUGH;
374 case TargetTransformInfo::CacheLevel::L2D:
375 return llvm::Optional<unsigned>();
376 }
377
378 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
379 }
380
381 llvm::Optional<unsigned> getCacheAssociativity(
382 TargetTransformInfo::CacheLevel Level) {
383 switch (Level) {
384 case TargetTransformInfo::CacheLevel::L1D:
385 LLVM_FALLTHROUGH;
386 case TargetTransformInfo::CacheLevel::L2D:
387 return llvm::Optional<unsigned>();
388 }
389
390 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
391 }
392
393 unsigned getPrefetchDistance() { return 0; }
394
395 unsigned getMinPrefetchStride() { return 1; }
396
397 unsigned getMaxPrefetchIterationsAhead() { return UINT_MAX; }
398
399 unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
400
401 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
402 TTI::OperandValueKind Opd1Info,
403 TTI::OperandValueKind Opd2Info,
404 TTI::OperandValueProperties Opd1PropInfo,
405 TTI::OperandValueProperties Opd2PropInfo,
406 ArrayRef<const Value *> Args) {
407 return 1;
408 }
409
410 unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index,
411 Type *SubTp) {
412 return 1;
413 }
414
415 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
416 const Instruction *I) { return 1; }
417
418 unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
419 VectorType *VecTy, unsigned Index) {
420 return 1;
421 }
422
423 unsigned getCFInstrCost(unsigned Opcode) { return 1; }
424
425 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
426 const Instruction *I) {
427 return 1;
428 }
429
430 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
431 return 1;
432 }
433
434 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
435 unsigned AddressSpace, const Instruction *I) {
436 return 1;
437 }
438
439 unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
440 unsigned AddressSpace) {
441 return 1;
442 }
443
444 unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
445 bool VariableMask,
446 unsigned Alignment) {
447 return 1;
448 }
449
450 unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
451 unsigned Factor,
452 ArrayRef<unsigned> Indices,
453 unsigned Alignment,
454 unsigned AddressSpace) {
455 return 1;
456 }
457
458 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
459 ArrayRef<Type *> Tys, FastMathFlags FMF,
460 unsigned ScalarizationCostPassed) {
461 return 1;
462 }
463 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
464 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
465 return 1;
466 }
467
468 unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
469 return 1;
470 }
471
472 unsigned getNumberOfParts(Type *Tp) { return 0; }
473
474 unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *,
475 const SCEV *) {
476 return 0;
477 }
478
479 unsigned getArithmeticReductionCost(unsigned, Type *, bool) { return 1; }
480
481 unsigned getMinMaxReductionCost(Type *, Type *, bool, bool) { return 1; }
482
483 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; }
484
485 bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) {
486 return false;
487 }
488
489 unsigned getAtomicMemIntrinsicMaxElementSize() const {
490 // Note for overrides: You must ensure for all element unordered-atomic
491 // memory intrinsics that all power-of-2 element sizes up to, and
492 // including, the return value of this method have a corresponding
493 // runtime lib call. These runtime lib call definitions can be found
494 // in RuntimeLibcalls.h
495 return 0;
496 }
497
498 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
499 Type *ExpectedType) {
500 return nullptr;
501 }
502
503 Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
504 unsigned SrcAlign, unsigned DestAlign) const {
505 return Type::getInt8Ty(Context);
506 }
507
508 void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
509 LLVMContext &Context,
510 unsigned RemainingBytes,
511 unsigned SrcAlign,
512 unsigned DestAlign) const {
513 for (unsigned i = 0; i != RemainingBytes; ++i)
514 OpsOut.push_back(Type::getInt8Ty(Context));
515 }
516
517 bool areInlineCompatible(const Function *Caller,
518 const Function *Callee) const {
519 return (Caller->getFnAttribute("target-cpu") ==
520 Callee->getFnAttribute("target-cpu")) &&
521 (Caller->getFnAttribute("target-features") ==
522 Callee->getFnAttribute("target-features"));
523 }
524
525 bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty,
526 const DataLayout &DL) const {
527 return false;
528 }
529
530 bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty,
531 const DataLayout &DL) const {
532 return false;
533 }
534
535 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; }
536
537 bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }
538
539 bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }
540
541 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
542 unsigned Alignment,
543 unsigned AddrSpace) const {
544 return true;
545 }
546
547 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
548 unsigned Alignment,
549 unsigned AddrSpace) const {
550 return true;
551 }
552
553 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
554 unsigned ChainSizeInBytes,
555 VectorType *VecTy) const {
556 return VF;
557 }
558
559 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
560 unsigned ChainSizeInBytes,
561 VectorType *VecTy) const {
562 return VF;
563 }
564
565 bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
566 TTI::ReductionFlags Flags) const {
567 return false;
568 }
569
570 bool shouldExpandReduction(const IntrinsicInst *II) const {
571 return true;
572 }
573
574protected:
575 // Obtain the minimum required size to hold the value (without the sign)
576 // In case of a vector it returns the min required size for one element.
577 unsigned minRequiredElementSize(const Value* Val, bool &isSigned) {
578 if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) {
579 const auto* VectorValue = cast<Constant>(Val);
580
581 // In case of a vector need to pick the max between the min
582 // required size for each element
583 auto *VT = cast<VectorType>(Val->getType());
584
585 // Assume unsigned elements
586 isSigned = false;
587
588 // The max required size is the total vector width divided by num
589 // of elements in the vector
590 unsigned MaxRequiredSize = VT->getBitWidth() / VT->getNumElements();
591
592 unsigned MinRequiredSize = 0;
593 for(unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
594 if (auto* IntElement =
595 dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
596 bool signedElement = IntElement->getValue().isNegative();
597 // Get the element min required size.
598 unsigned ElementMinRequiredSize =
599 IntElement->getValue().getMinSignedBits() - 1;
600 // In case one element is signed then all the vector is signed.
601 isSigned |= signedElement;
602 // Save the max required bit size between all the elements.
603 MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
604 }
605 else {
606 // not an int constant element
607 return MaxRequiredSize;
608 }
609 }
610 return MinRequiredSize;
611 }
612
613 if (const auto* CI = dyn_cast<ConstantInt>(Val)) {
614 isSigned = CI->getValue().isNegative();
615 return CI->getValue().getMinSignedBits() - 1;
616 }
617
618 if (const auto* Cast = dyn_cast<SExtInst>(Val)) {
619 isSigned = true;
620 return Cast->getSrcTy()->getScalarSizeInBits() - 1;
621 }
622
623 if (const auto* Cast = dyn_cast<ZExtInst>(Val)) {
624 isSigned = false;
625 return Cast->getSrcTy()->getScalarSizeInBits();
626 }
627
628 isSigned = false;
629 return Val->getType()->getScalarSizeInBits();
630 }
631
632 bool isStridedAccess(const SCEV *Ptr) {
633 return Ptr && isa<SCEVAddRecExpr>(Ptr);
634 }
635
636 const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE,
637 const SCEV *Ptr) {
638 if (!isStridedAccess(Ptr))
639 return nullptr;
640 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
641 return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
642 }
643
644 bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr,
645 int64_t MergeDistance) {
646 const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
647 if (!Step)
648 return false;
649 APInt StrideVal = Step->getAPInt();
650 if (StrideVal.getBitWidth() > 64)
651 return false;
652 // FIXME: Need to take absolute value for negative stride case.
653 return StrideVal.getSExtValue() < MergeDistance;
654 }
655};
656
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100657/// CRTP base class for use as a mix-in that aids implementing
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100658/// a TargetTransformInfo-compatible class.
659template <typename T>
660class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
661private:
662 typedef TargetTransformInfoImplBase BaseT;
663
664protected:
665 explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}
666
667public:
668 using BaseT::getCallCost;
669
670 unsigned getCallCost(const Function *F, int NumArgs) {
671 assert(F && "A concrete function must be provided to this routine.");
672
673 if (NumArgs < 0)
674 // Set the argument number to the number of explicit arguments in the
675 // function.
676 NumArgs = F->arg_size();
677
678 if (Intrinsic::ID IID = F->getIntrinsicID()) {
679 FunctionType *FTy = F->getFunctionType();
680 SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
681 return static_cast<T *>(this)
682 ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
683 }
684
685 if (!static_cast<T *>(this)->isLoweredToCall(F))
686 return TTI::TCC_Basic; // Give a basic cost if it will be lowered
687 // directly.
688
689 return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs);
690 }
691
692 unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments) {
693 // Simply delegate to generic handling of the call.
694 // FIXME: We should use instsimplify or something else to catch calls which
695 // will constant fold with these arguments.
696 return static_cast<T *>(this)->getCallCost(F, Arguments.size());
697 }
698
699 using BaseT::getGEPCost;
700
701 int getGEPCost(Type *PointeeType, const Value *Ptr,
702 ArrayRef<const Value *> Operands) {
703 const GlobalValue *BaseGV = nullptr;
704 if (Ptr != nullptr) {
705 // TODO: will remove this when pointers have an opaque type.
706 assert(Ptr->getType()->getScalarType()->getPointerElementType() ==
707 PointeeType &&
708 "explicit pointee type doesn't match operand's pointee type");
709 BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
710 }
711 bool HasBaseReg = (BaseGV == nullptr);
712
713 auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType());
714 APInt BaseOffset(PtrSizeBits, 0);
715 int64_t Scale = 0;
716
717 auto GTI = gep_type_begin(PointeeType, Operands);
718 Type *TargetType = nullptr;
719
720 // Handle the case where the GEP instruction has a single operand,
721 // the basis, therefore TargetType is a nullptr.
722 if (Operands.empty())
723 return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic;
724
725 for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
726 TargetType = GTI.getIndexedType();
727 // We assume that the cost of Scalar GEP with constant index and the
728 // cost of Vector GEP with splat constant index are the same.
729 const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
730 if (!ConstIdx)
731 if (auto Splat = getSplatValue(*I))
732 ConstIdx = dyn_cast<ConstantInt>(Splat);
733 if (StructType *STy = GTI.getStructTypeOrNull()) {
734 // For structures the index is always splat or scalar constant
735 assert(ConstIdx && "Unexpected GEP index");
736 uint64_t Field = ConstIdx->getZExtValue();
737 BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
738 } else {
739 int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType());
740 if (ConstIdx) {
741 BaseOffset +=
742 ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize;
743 } else {
744 // Needs scale register.
745 if (Scale != 0)
746 // No addressing mode takes two scale registers.
747 return TTI::TCC_Basic;
748 Scale = ElementSize;
749 }
750 }
751 }
752
753 // Assumes the address space is 0 when Ptr is nullptr.
754 unsigned AS =
755 (Ptr == nullptr ? 0 : Ptr->getType()->getPointerAddressSpace());
756
757 if (static_cast<T *>(this)->isLegalAddressingMode(
758 TargetType, const_cast<GlobalValue *>(BaseGV),
759 BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale, AS))
760 return TTI::TCC_Free;
761 return TTI::TCC_Basic;
762 }
763
764 using BaseT::getIntrinsicCost;
765
766 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
767 ArrayRef<const Value *> Arguments) {
768 // Delegate to the generic intrinsic handling code. This mostly provides an
769 // opportunity for targets to (for example) special case the cost of
770 // certain intrinsics based on constants used as arguments.
771 SmallVector<Type *, 8> ParamTys;
772 ParamTys.reserve(Arguments.size());
773 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
774 ParamTys.push_back(Arguments[Idx]->getType());
775 return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys);
776 }
777
778 unsigned getUserCost(const User *U, ArrayRef<const Value *> Operands) {
779 if (isa<PHINode>(U))
780 return TTI::TCC_Free; // Model all PHI nodes as free.
781
782 // Static alloca doesn't generate target instructions.
783 if (auto *A = dyn_cast<AllocaInst>(U))
784 if (A->isStaticAlloca())
785 return TTI::TCC_Free;
786
787 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
788 return static_cast<T *>(this)->getGEPCost(GEP->getSourceElementType(),
789 GEP->getPointerOperand(),
790 Operands.drop_front());
791 }
792
793 if (auto CS = ImmutableCallSite(U)) {
794 const Function *F = CS.getCalledFunction();
795 if (!F) {
796 // Just use the called value type.
797 Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
798 return static_cast<T *>(this)
799 ->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
800 }
801
802 SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
803 return static_cast<T *>(this)->getCallCost(F, Arguments);
804 }
805
806 if (const CastInst *CI = dyn_cast<CastInst>(U)) {
807 // Result of a cmp instruction is often extended (to be used by other
808 // cmp instructions, logical or return instructions). These are usually
809 // nop on most sane targets.
810 if (isa<CmpInst>(CI->getOperand(0)))
811 return TTI::TCC_Free;
812 if (isa<SExtInst>(CI) || isa<ZExtInst>(CI) || isa<FPExtInst>(CI))
813 return static_cast<T *>(this)->getExtCost(CI, Operands.back());
814 }
815
816 return static_cast<T *>(this)->getOperationCost(
817 Operator::getOpcode(U), U->getType(),
818 U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr);
819 }
820
821 int getInstructionLatency(const Instruction *I) {
822 SmallVector<const Value *, 4> Operands(I->value_op_begin(),
823 I->value_op_end());
824 if (getUserCost(I, Operands) == TTI::TCC_Free)
825 return 0;
826
827 if (isa<LoadInst>(I))
828 return 4;
829
830 Type *DstTy = I->getType();
831
832 // Usually an intrinsic is a simple instruction.
833 // A real function call is much slower.
834 if (auto *CI = dyn_cast<CallInst>(I)) {
835 const Function *F = CI->getCalledFunction();
836 if (!F || static_cast<T *>(this)->isLoweredToCall(F))
837 return 40;
838 // Some intrinsics return a value and a flag, we use the value type
839 // to decide its latency.
840 if (StructType* StructTy = dyn_cast<StructType>(DstTy))
841 DstTy = StructTy->getElementType(0);
842 // Fall through to simple instructions.
843 }
844
845 if (VectorType *VectorTy = dyn_cast<VectorType>(DstTy))
846 DstTy = VectorTy->getElementType();
847 if (DstTy->isFloatingPointTy())
848 return 3;
849
850 return 1;
851 }
852};
853}
854
855#endif