Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===- llvm/MC/MCInstrAnalysis.h - InstrDesc target hooks -------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines the MCInstrAnalysis class which the MCTargetDescs can |
| 11 | // derive from to give additional information to MC. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_MC_MCINSTRANALYSIS_H |
| 16 | #define LLVM_MC_MCINSTRANALYSIS_H |
| 17 | |
| 18 | #include "llvm/MC/MCInst.h" |
| 19 | #include "llvm/MC/MCInstrDesc.h" |
| 20 | #include "llvm/MC/MCInstrInfo.h" |
| 21 | #include <cstdint> |
| 22 | |
| 23 | namespace llvm { |
| 24 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 25 | class MCRegisterInfo; |
| 26 | class Triple; |
| 27 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 28 | class MCInstrAnalysis { |
| 29 | protected: |
| 30 | friend class Target; |
| 31 | |
| 32 | const MCInstrInfo *Info; |
| 33 | |
| 34 | public: |
| 35 | MCInstrAnalysis(const MCInstrInfo *Info) : Info(Info) {} |
| 36 | virtual ~MCInstrAnalysis() = default; |
| 37 | |
| 38 | virtual bool isBranch(const MCInst &Inst) const { |
| 39 | return Info->get(Inst.getOpcode()).isBranch(); |
| 40 | } |
| 41 | |
| 42 | virtual bool isConditionalBranch(const MCInst &Inst) const { |
| 43 | return Info->get(Inst.getOpcode()).isConditionalBranch(); |
| 44 | } |
| 45 | |
| 46 | virtual bool isUnconditionalBranch(const MCInst &Inst) const { |
| 47 | return Info->get(Inst.getOpcode()).isUnconditionalBranch(); |
| 48 | } |
| 49 | |
| 50 | virtual bool isIndirectBranch(const MCInst &Inst) const { |
| 51 | return Info->get(Inst.getOpcode()).isIndirectBranch(); |
| 52 | } |
| 53 | |
| 54 | virtual bool isCall(const MCInst &Inst) const { |
| 55 | return Info->get(Inst.getOpcode()).isCall(); |
| 56 | } |
| 57 | |
| 58 | virtual bool isReturn(const MCInst &Inst) const { |
| 59 | return Info->get(Inst.getOpcode()).isReturn(); |
| 60 | } |
| 61 | |
| 62 | virtual bool isTerminator(const MCInst &Inst) const { |
| 63 | return Info->get(Inst.getOpcode()).isTerminator(); |
| 64 | } |
| 65 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 66 | /// Returns true if at least one of the register writes performed by |
| 67 | /// \param Inst implicitly clears the upper portion of all super-registers. |
| 68 | /// |
| 69 | /// Example: on X86-64, a write to EAX implicitly clears the upper half of |
| 70 | /// RAX. Also (still on x86) an XMM write perfomed by an AVX 128-bit |
| 71 | /// instruction implicitly clears the upper portion of the correspondent |
| 72 | /// YMM register. |
| 73 | /// |
| 74 | /// This method also updates an APInt which is used as mask of register |
| 75 | /// writes. There is one bit for every explicit/implicit write performed by |
| 76 | /// the instruction. If a write implicitly clears its super-registers, then |
| 77 | /// the corresponding bit is set (vic. the corresponding bit is cleared). |
| 78 | /// |
| 79 | /// The first bits in the APint are related to explicit writes. The remaining |
| 80 | /// bits are related to implicit writes. The sequence of writes follows the |
| 81 | /// machine operand sequence. For implicit writes, the sequence is defined by |
| 82 | /// the MCInstrDesc. |
| 83 | /// |
| 84 | /// The assumption is that the bit-width of the APInt is correctly set by |
| 85 | /// the caller. The default implementation conservatively assumes that none of |
| 86 | /// the writes clears the upper portion of a super-register. |
| 87 | virtual bool clearsSuperRegisters(const MCRegisterInfo &MRI, |
| 88 | const MCInst &Inst, |
| 89 | APInt &Writes) const; |
| 90 | |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame^] | 91 | /// Returns true if MI is a dependency breaking zero-idiom for the given |
| 92 | /// subtarget. |
| 93 | /// |
| 94 | /// Mask is used to identify input operands that have their dependency |
| 95 | /// broken. Each bit of the mask is associated with a specific input operand. |
| 96 | /// Bits associated with explicit input operands are laid out first in the |
| 97 | /// mask; implicit operands come after explicit operands. |
| 98 | /// |
| 99 | /// Dependencies are broken only for operands that have their corresponding bit |
| 100 | /// set. Operands that have their bit cleared, or that don't have a |
| 101 | /// corresponding bit in the mask don't have their dependency broken. Note |
| 102 | /// that Mask may not be big enough to describe all operands. The assumption |
| 103 | /// for operands that don't have a correspondent bit in the mask is that those |
| 104 | /// are still data dependent. |
| 105 | /// |
| 106 | /// The only exception to the rule is for when Mask has all zeroes. |
| 107 | /// A zero mask means: dependencies are broken for all explicit register |
| 108 | /// operands. |
| 109 | virtual bool isZeroIdiom(const MCInst &MI, APInt &Mask, |
| 110 | unsigned CPUID) const { |
| 111 | return false; |
| 112 | } |
| 113 | |
| 114 | /// Returns true if MI is a dependency breaking instruction for the |
| 115 | /// subtarget associated with CPUID . |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 116 | /// |
| 117 | /// The value computed by a dependency breaking instruction is not dependent |
| 118 | /// on the inputs. An example of dependency breaking instruction on X86 is |
| 119 | /// `XOR %eax, %eax`. |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame^] | 120 | /// |
| 121 | /// If MI is a dependency breaking instruction for subtarget CPUID, then Mask |
| 122 | /// can be inspected to identify independent operands. |
| 123 | /// |
| 124 | /// Essentially, each bit of the mask corresponds to an input operand. |
| 125 | /// Explicit operands are laid out first in the mask; implicit operands follow |
| 126 | /// explicit operands. Bits are set for operands that are independent. |
| 127 | /// |
| 128 | /// Note that the number of bits in Mask may not be equivalent to the sum of |
| 129 | /// explicit and implicit operands in MI. Operands that don't have a |
| 130 | /// corresponding bit in Mask are assumed "not independente". |
| 131 | /// |
| 132 | /// The only exception is for when Mask is all zeroes. That means: explicit |
| 133 | /// input operands of MI are independent. |
| 134 | virtual bool isDependencyBreaking(const MCInst &MI, APInt &Mask, |
| 135 | unsigned CPUID) const { |
| 136 | return isZeroIdiom(MI, Mask, CPUID); |
| 137 | } |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 138 | |
| 139 | /// Given a branch instruction try to get the address the branch |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 140 | /// targets. Return true on success, and the address in Target. |
| 141 | virtual bool |
| 142 | evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size, |
| 143 | uint64_t &Target) const; |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 144 | |
| 145 | /// Returns (PLT virtual address, GOT virtual address) pairs for PLT entries. |
| 146 | virtual std::vector<std::pair<uint64_t, uint64_t>> |
| 147 | findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents, |
| 148 | uint64_t GotPltSectionVA, const Triple &TargetTriple) const { |
| 149 | return {}; |
| 150 | } |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 151 | }; |
| 152 | |
| 153 | } // end namespace llvm |
| 154 | |
| 155 | #endif // LLVM_MC_MCINSTRANALYSIS_H |